
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oxidative damage, ageing, and life-history evolution

Citation for published version:
Selman, C, Blount, JD, Nussey, DH & Speakman, JR 2012, 'Oxidative damage, ageing, and life-history
evolution: where now?' Trends in Ecology & Evolution, vol 27, no. 10, pp. 570-7.,
10.1016/j.tree.2012.06.006

Digital Object Identifier (DOI):
10.1016/j.tree.2012.06.006

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
Trends in Ecology & Evolution

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tree.2012.06.006
http://www.research.ed.ac.uk/portal/en/publications/oxidative-damage-ageing-and-lifehistory-evolution(86aaae6b-5dd6-495e-9a84-2935d654c600).html


Oxidative damage, ageing, and
life-history evolution: where now?
Colin Selman1, Jonathan D. Blount2, Daniel H. Nussey3, and John R. Speakman1,4

1 Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
2 Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn,

TR10 9EZ, UK
3 Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK
4 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing 100101, P.R. China

The idea that resources are limited and animals can
maximise fitness by trading costly activities off against
one another forms the basis of life-history theory. Al-
though investment in reproduction or growth negatively
affects survival, the mechanisms underlying such trade-
offs remain obscure. One plausible mechanism is oxida-
tive damage to proteins, lipids, and nucleic acids caused
by reactive oxygen species (ROS). Here, we critically
evaluate the premise that ROS-induced oxidative dam-
age shapes life history, focussing on birds and mam-
mals, and highlight the importance of ecological studies
examining free-living animals within this experimental
framework. We conclude by emphasising the value of
using multiple assays to determine oxidative protection
and damage. We also highlight the importance of using
standardised and appropriate protocols, and discuss
future research directions.

Life-history theory, physiology, and ageing
Although a Darwinian demon is hypothesised to maximise
all aspects of fitness simultaneously [1], in reality it is
evident that life-history traits, such as fecundity and life-
span, show an inverse relation. To explain these patterns,
life-history theory assumes that resources are limited and
animals maximise their fitness by trading costly activities
off against one another [2,3]. Given that perpetuating the
germ line is a key aim, reproductive activity may be given
priority in this allocation of resources, but this can only be
achieved by reducing investment in resources allocated
towards somatic protection and maintenance. Within this
theoretical framework, the disposable soma theory (DST;
see Glossary) was proposed to help explain the evolution of
ageing [4]. Ageing is most normally thought of as an
accumulation of molecular and cellular damage, leading
to functional decline and, ultimately, the increased risk of
disease and death with advancing age [5]. Conceptually,
the DST assumes that investment in reproduction or
growth diverts key resources, such as energy, away from
somatic maintenance. Natural selection should shape life
histories to maximise reproductive fitness for the environ-
ment of an organism, given this fundamental physiological
constraint [4]. The risk of environmentally caused mortali-
ty (e.g., predation or infection) is classically considered as

being central to understanding the degree to which natural
selection favours early reproduction and fast growth over
maintenance [4]. For example, under conditions of high
age-independent predation risk, investing in somatic
maintenance to the detriment of early reproduction or
rapid growth is likely to be a less successful strategy,
because few individuals investing in maintenance will

Review

Glossary

Catalase: antioxidant enzymes that catalyse the dismutation of hydrogen

peroxide into oxygen and water.

Comet assay: an assay that uses single-cell gel electrophoresis to measure

DNA damage in individual cells.

Dismutation: a redox reaction whereby a chemical species is simultaneously

reduced and oxidised to form two distinct products.

Disposable soma theory (DST): first postulated by Thomas Kirkwood in 1977, it

suggests that longevity is determined through the regulation of longevity

assurance mechanisms, which provide an optimal compromise between

reproduction and growth on the one hand and somatic maintenance on the

other.

Free radical: an atom or group of atoms that contains an unpaired electron and,

therefore, are unstable and highly reactive. Free radicals are natural

byproducts of aerobic metabolism.

Glutathione (g-glutamyl-cysteinyl-glycine): the most abundant low-molecular-

weight thiol in animal cells. It participates in a range of cellular reactions and is

a potent antioxidant that can scavenge free radicals and other reactive oxygen

species (ROS).

Glutathione peroxidise: antioxidant enzymes that converts hydrogen peroxide

to water and reduces lipid hydroperoxides to their resultant alcohols.

Hydroxynonenal: a reactive and toxic aldehyde produced following lipid

peroxidation of cellular components, such as membranes.

Malondialdehyde: a marker of lipid peroxidation formed primarily following

the decomposition of various polyunsaturated lipids by ROS. It is highly

reactive and can act as a ROS.

Metabolomics: the systematic measurement and analysis of metabolites.

Mitochondrial respiratory steady-state: the prevailing oxygen consumption by

mitochondria when maintained on a particular metabolic substrate.

Mitochondrial uncoupling: the loss of coupling between the rate of electron

transport within the respiratory chain (respiration) and ATP production

(oxidative phosphorylation).

Protein carbonyls: markers of protein oxidation that are formed when carbonyl

groups (aldehydes and ketones) are produced on protein side chains following

oxidation.

Proteomics: the large-scale analysis of proteins, particularly their structure and

function.

Proton leak: the movement of protons (H+ ions) across the inner mitochondrial

membrane. This process does not contribute to ATP synthesis.

Reactive oxygen species (ROS): molecules or ions formed by the incomplete

one-electron reduction of oxygen; not necessarily free radicals.

Redox reaction: oxidation–reduction reactions that primarily involve the

transfer of electrons between two chemical species.

Superoxide dismutase: antioxidant enzymes that catalyse the dismutation of

superoxide into oxygen and hydrogen peroxide.

Thiobarbituric acid: a reagent used to determine lipid peroxidation. It reacts

with compounds such as malondialdehyde to form a fluorescent red adduct.

Transcriptomics: the examination of mRNAs within a genome.
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survive to sexual maturity [4]. Consequently, the DST
predicts that, under such conditions, individuals should
grow fast, reproduce early and at a high rate, but with the
cost of a relatively unprotected soma, leading to rapid
ageing and a comparatively short lifespan.

This, in turn, leads to the idea that life-history variation
in ageing rate across species and/or populations lies on a
fast–slow continuum [6] from ‘live fast, die young’ to ‘live
slow, die old’, with natural selection operating to position a
species or a population on this continuum depending upon
its ecological context. Age-related declines in demographic
rates (survival probability and reproductive performance
traits) have been widely observed in free-living vertebrates
[7,8], and are increasingly well documented in free-living
invertebrates (e.g., [9]). Evidence of physiological deterio-
ration with age in natural populations is also steadily
increasing, including body mass loss [10], altered muscle
structure [11,12], osteoarthritis [13], and changes in im-
mune phenotype [14]. Evolutionary theory predicts that
variation in life-history decisions during development and
in early adulthood should underpin variation in ageing
rates among individuals within a population [8,15]. Long-
term, longitudinal studies of wild birds and mammals
suggest that environmental conditions in early life are
associated with ageing patterns later on in adulthood
[16–18]. As predicted, more rapid ageing and shorter
lifespan are associated with previous investment in

energetically expensive activities associated with success-
ful reproduction [17,19–21]. However, the exact nature of
the constraints acting on different life-history strategies is
currently unclear.

Recently, there has been growing recognition of the
importance of physiological rather than ecological costs
as the key causal mechanisms [22–24], and a growing
awareness of the need to include studies of behaviour
and physiology to understand ecology and life histories
[6]. Ecological costs of increased parental effort, for exam-
ple, include elevated exposure to predators or infective
agents in the environment. Physiological costs would in-
clude, for instance, reduced immune function and with-
drawal of calcium from bones, leading to elevated risk of
fracture [3]. Over the past few years, there has been a surge
of interest in the potential role of oxidative damage as a
mediator of life-history trade-offs. In this review, we ex-
amine this idea and discuss the potential pitfalls in mea-
suring markers associated with oxidative damage and
suggest how best these might be avoided.

Oxidative damage as a life-history cost
One plausible physiological cost incurred during metaboli-
cally expensive activities is elevated damage to cellular
components by highly reactive chemical species derived
directly as byproducts of metabolism. The free radical
theory [25] or oxidative stress theory of ageing (OSTA

ROS
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peroxide, hydroxyl radical
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Figure 1. Schematic showing premise behind the oxidative stress theory of ageing (OSTA). Reactive oxygen species (ROS) are produced primarily within mitochondria

during oxidative phosphorylation, although they are also produced by additional endogenous and exogenous factors. ROS are subsequently neutralised by a network of

endogenous and exogenous antioxidants, although some ROS always evade these protective systems. It is these ROS that induce oxidative damage to cellular

components, such as lipids, proteins, and nucleic acids. Although mechanisms exist to repair oxidatively-damaged biomolecules, some damage remains. The OSTA

hypothesises that it is this oxidative damage that causes cellular attrition, physiological decline, ageing, and ultimately death.
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[26]) hypothesise that free radicals damage various cellu-
lar components (e.g., lipids, proteins, and DNA), that the
rate and/or amount of damage increases with advancing
age, and that this damage causes ageing. Free radicals,
such as superoxide (O2

�), are generated primarily as
byproducts of mitochondrial oxidative phosphorylation.
Such radicals can be involved in subsequent chemical
reactions producing additional molecules [i.e. ROS and
reactive nitrogen species (RNS)] that can also elicit dam-
age, but are not necessarily free radicals themselves
[26,27]. Therefore, ROS is a collective term for radical
and nonradical agents. Biological systems have well-de-
scribed protection and repair systems (Figure 1) to help
mitigate oxidative damage [26–28], although these are not
100% effective. Therefore, it is feasible that ROS-induced
oxidative damage is a key metabolic mechanism that acts
to mediate life-history trade-offs in wild animals
[22,24,29,30]. The idea that a higher metabolic rate pro-
duces more ROS, leading to faster ageing, has been used by
advocates of the rate-of-living (ROL) theory of ageing [31]
to help explain the inverse relation between metabolic rate
and longevity. However, empirical support for the ROL
theory has recently waned [32–34], although some support
still exists interspecifically for birds [35], but not mammals
[36], following appropriate accounting for phylogeny and
body mass.

Critically, ROS are not simply generated in direct pro-
portion to oxygen (O2) consumption; that is, a twofold
increase in O2 consumption does not necessarily double
ROS production. Mitochondrial ROS production depends
on many factors, including proton leak, mitochondrial
uncoupling, and the prevailing mitochondrial respiratory
steady-state [37], with different tissues producing ROS at
different rates [38]. Indeed, under many circumstances,
mitochondrial ROS production is highest when animals
have their lowest energy expenditure, which might explain
the reported positive associations between high metabolic
rate and longevity [33,39]. Moreover, ‘outlier’ species,
which live exceptionally long lives, have evolved particular
mechanisms to cope with the effects of ROS-induced oxi-
dative damage (Box 1).

What can free-living animals reveal about ageing?
Although the findings in model organisms are impressive
[5,40,41], several lines of research suggest that there is no
cause–effect relation between oxidative damage and age-
ing (reviewed in [30,42]). It is also unclear whether findings
from the laboratory generalise to less protected and less
benign environments, and to longer-lived organisms with
slower life histories [29]. Laboratory ‘model’ organisms,
such as mice, have been selectively bred for rapid growth,
short generation times, early reproduction, and high fe-
cundity. Their genetics and life histories have been altered
by artificial selection and so it might be difficult to gener-
alise as to whether life-history trade-offs or genetic var-
iants observed in these organisms have wider ecological
relevance. Also, physiological and fitness costs of particular
life-history choices are profoundly dependent on environ-
mental conditions. Costs might not appear, or might be
different, in laboratory animals. Evolutionarily relevant
costs might only manifest under natural conditions, when
resources are finite and ecological factors, such as extrinsic
mortality risk, are at play [22,24,29,30,43]. Model organ-
isms are by default small and thereby likely evolutionarily
to have faced high mortality rates. As a consequence, they
might not have needed to invest heavily in somatic protec-
tion against oxidative damage [44]. Recently, there has
been significant focus on using ‘nontraditional’ animal
models, both within the laboratory and under free-living
conditions, to identify the mechanistic basis of the physio-
logical costs of different life-history strategies [29].

Does oxidative damage shape life-histories? Evidence
from nontraditional models and free-living animals
A significant amount of recent research effort has aimed to
integrate physiology and ecology to understand whether
oxidative damage is a plausible life-history cost [22,24,45].
However, findings from both laboratory and field studies
are somewhat ambiguous with regard to whether ROS-
induced oxidative damage mediates life-history trade-offs.
Captive reproducing female house mice (Mus musculus
domesticus) had less hepatic oxidative damage (malondial-
dehyde and protein thiols) compared with non-breeding

Box 1. Radical species: exceptions to the rule?

Several animal species appear to refute the OSTA, although perhaps

for these same reasons they might help identify the mechanisms

underlying ageing. Undoubtedly, the best described ‘outlier’ is the

naked mole rat (NMR; Heterocephalus glaber), a eusocial subterranean

rodent with a maximum lifespan approaching 30 years. NMRs maintain

reproductive and physiological function as they age, show no

demonstrable age-related increase in morbidity or mortality and do

not suffer from cancer [85]. However, they produce comparable

amounts of ROS to similarly sized mice (approximate lifespan 3 years),

have relatively short telomeres and unremarkable antioxidant levels,

and experience relatively high levels of oxidative damage [85]. The key

to their exceptional longevity might be how they mitigate and cope

with oxidative damage; NMRs maintain protein quality and stability

throughout their life, their cells resist experimental tumorigenesis and

are also resistant to some, but not all, types of chemical challenge [85].

Excitingly, the NMR genome has been sequenced [86], and so this

information should help understand why they are just so ‘peculiar’.

The ability of animals and their cells to resist ROS is not only

observed in NMRs, but is also correlated with longevity in birds [87],

wild-derived [88] and genetically mutant captive mice [89], bats [90],

and in the ocean quahog (Arctica islandica) [91]. In addition, the olm

(Proteus anguinus), a cave-dwelling salamander, combines a long life

[92] with unremarkable antioxidant protection [93]. Of course, ROS-

induced oxidative damage might be a private (specific to particular

evolutionary lineages) rather than a public (shared across evolu-

tionary lineages) determinant of ageing [94], and this might explain

these outliers. Those species that have undergone selection for

exceptionally long lifespan, driven by ecological factors, might have

evolved in tandem specific mechanisms that mitigate oxidative

damage. The absence of such mechanisms in most animal species,

which have relatively short lifespan, perhaps suggests that in general

the fitness costs of oxidative damage are of relatively minor

importance in determining the evolution of life histories.

We suggest that studying members of ‘Methuselah’s Zoo’ [29] and

examining precisely how they mitigate the impact of ROS-induced

oxidative damage on ageing rate and pathology is critical to

understanding the mechanisms underlying ageing. In addition, it

would also be useful to identify commonalities (and differences) in

life histories among these outlier species compared to close relatives

with shorter lifespan.
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females [46]. Similarly, lipid oxidative damage was lower
(kidney and muscle) and protein oxidative damage unal-
tered (kidney, muscle, and heart) in breeding female bank
voles (Myodes glareolus) relative to non-breeding females
[47]. These data suggest that reproductively active females
invoke protective mechanisms to limit oxidative damage,
and indeed the antioxidant glutathione was increased in
livers of reproducing house mice [46]. Life-long cold expo-
sure in captive short-tailed field voles (Microtus agrestis)
significantly increased metabolic rate relative to warm-
exposed animals, but had negligible impact on tissue oxi-
dative damage or antioxidant levels [32]. This increase in
metabolic rate also had no impact on longevity, implying
that physiologically mediated costs associated with in-
creased energy expenditure do not affect oxidative damage
or survival. In captive zebra finches (Taeniopygia guttata),
increased reproductive effort was associated with reduced
antioxidant protection (e.g., [45,48]), although neither
study assayed oxidative damage or survival. Captive zebra
finches from experimentally reduced broods also had great-
er cellular (erythrocyte) resistance to oxidative stress than
did birds from large broods [48]. This enhanced cellular
resistance was correlated with higher lifetime reproduc-
tive output, but reduced lifespan [49]. Overall then, these
studies paint a rather confused picture of the manner in
which oxidative damage is related to reproductive effort.

One exciting approach to examine how differences in
ageing rates and levels of ROS and oxidative damage
have evolved in the wild has involved common garden
experiments, which take different ecotypes from the wild
and compare them under controlled laboratory condi-
tions. For example, western terrestrial garter snakes
(Thamnophis elegans) have evolved long or short life-
spans in response to low or high extrinsic mortality,
respectively [50]. Neonates of the long-lived ecotype
had more efficient mitochondria and antioxidant defences
than did those of short-lived snakes, although their DNA
was more damaged by UV exposure [50]. However, DNA
damage was repaired more efficiently in the long-lived
ecotypes. It was also shown that captive-bred long-lived
colubrid snakes generated less ROS (H2O2) within liver
mitochondria compared with shorter lived species,
despite whole-animal metabolic rates and mitochondrial
efficiency being unaffected [51].

Ageing and ROS-induced oxidative damage in free-
living animals
Surprisingly few studies have examined whether oxidative
damage is altered with age or reproductive effort in free-
living animals [29]. Most research examining parameters
relating to ROS-induced oxidative damage and ageing in
free-living animals has been undertaken in birds and
mammals. Oxidative status [the ratio between reactive
oxygen metabolites (ROMs; hydroperoxides generated pri-
marily by lipid peroxidation) and total antioxidant capaci-
ty (TAC)] was elevated in young female collared flycatchers
(Ficedula albicollis) relative to older birds, although no age
effect was observed in males [52]. Oxidative status was also
elevated in younger relative to older Eurasian kestrel
chicks (Falco tinnunculus) between 9 and 31 days of age,
with the levels of ROMs also lower in older nestlings [53].

The resistance of erythrocytes to ROS-induced damage in
greater flamingos (Phoenicopterus ruber roseus) was higher
in young adults compared with both immature and old
individuals [54]. Similarly, erythrocyte resistance to ROS
increased in early life but declined in later life in female
Alpine swifts (Apus melba), although no age-related de-
cline was seen in male birds [55]; erythrocyte resistance
was also associated with a greater survival to the next
breeding season in males, but not females [55]. In addition,
a relatively high plasma TAC was predictive of long-term
survival in barn swallows (Hirundo rustica), with antioxi-
dant protection having high repeatability within individu-
als both within and between years [56]. Therefore,
although resistance to oxidative stress and increased an-
tioxidant levels may be predictors of survival in some bird
species, less evidence supports the premise that oxidative
damage increases with age.

Fewer studies have examined the impact of age on
oxidative damage and antioxidant protection under free-
living conditions in non-avian species. In water shrews
(Sorex palustris) and short-tailed shrews (Blarina brevi-
cauda), an age-related increase in antioxidant enzymes
(catalase, glutathione peroxidise, and superoxide dismu-
tase) was observed in skeletal muscle [12]. Although lipid
peroxidation levels increased with age, other oxidative
damage markers were either unaltered or decreased by
age [12]. By contrast, plasma lipid oxidative damage levels
were highest in lambs relative to older age classes in Soay
sheep (Ovis aries) [57]. Thus, these data are again unsup-
portive of a key tenet of the OSTA; that oxidative damage
increases with age.

Reproduction and ROS-induced oxidative damage in
free-living animals
Reproduction in many animals is associated with a signifi-
cant increase in energy requirements [58], and investment
in reproduction can negatively impact on subsequent sur-
vival [17,23,59,60]. However, reproduction is not generally
associated with increased oxidative damage [24]. In adult
free-living Soay sheep, no relation between lipid oxidative
damage and reproductive effort was reported [57]. Simi-
larly, no effect of reproduction on lipid peroxidation was
observed in female eastern chipmunks [61]. Average an-
nual reproductive rates in Leach’s storm petrels (Oceano-
droma leucorhoa) were negatively correlated with TAC
[62]. This suggests that high reproductive rates impact
on antioxidant protection, as reported in captive zebra
finches [45,48]. However, this relation did not hold for
savannah sparrows (Passerculus sandwichensis) [62]. Fe-
male alpine swifts with greater erythrocyte resistance to
ROS laid larger clutches that were more likely to hatch
successfully [55]. Egg size was also positively correlated
with plasma TAC in female collared flycatchers [52]. Simi-
larly, great tits (Parus major) given experimentally en-
larged broods showed lower erythrocyte resistance to ROS
compared with individuals with experimentally reduced or
unmanipulated broods [63], again in agreement with cap-
tive studies [48]. However, by contrast, an experimental
increase in foraging rate and chick provisioning in Adélie
penguins (Pygoscelis adeliae) increased plasma TAC [64]
and had no effect on plasma hydroperoxides. Offspring
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from extra-pair matings enjoy various phenotypic advan-
tages over those from within-pair matings [65], and great
tit chicks from extra-pair matings had lower plasma lipid
peroxidation relative to within-pair mating offspring [66].

Social status and life-history decisions might also im-
pact on oxidative damage. In cooperatively breeding Sey-
chelles warblers (Acrocephalus sechellensis), subordinate
non-helping females had poorer body condition and elevat-
ed plasma ROMs relative to subordinate female helpers
and dominant females [67]. Low-quality territories are also
associated with elevated plasma ROMs in this species [68],
perhaps due to increased foraging effort within poor-quality
habitats. Accelerated early growth can have negative con-
sequences later in life [69–71], and so compensatory growth,
in the context of life-history theory, might also induce
oxidative damage. Few studies have examined this in
free-living organisms and the findings are contrasting.

Whereas faster growth rate in Soay sheep was correlated
with elevated plasma lipid oxidative damage [57], no effect
of growth rates on damage was reported in red-winged
blackbirds (Agelaius phoeniceus) [72].

Whereas some studies support the idea that ROS-
induced oxidative damage mediates life-history trade-offs,
others fail to demonstrate such effects. We suggest that the
lack of agreement can, at least in part, be traced to meth-
odological differences between studies, that is, the use of
heterogeneous sampling protocols (Box 2) and assorted
assays (Box 3). Caution must be taken when discussing
the role of oxidative damage in a life-history context, if
oxidative damage per se has not been determined [24,29].
ROS-induced oxidative damage occurs when ROS produc-
tion exceeds the ability of the protection and repair
systems that mitigate against ROS. Therefore, measures
of TAC in isolation cannot inform about ROS-induced

Box 2. Challenges for field studies

Significant difficulties exist in examining oxidative damage in wild

animals, notably sampling individual animals and offspring, repeat-

edly identifying and sampling the same individuals and capturing

sufficient individuals of a known age and sex. Most studies under-

taken in the laboratory and field are cross-sectional in design, which

can confound age effects due to the selective disappearance of

specific phenotypes within a population [95], thus making it difficult

to separate intraindividual ageing rates from interindividual hetero-

geneity within free-living populations [8]. The collection of sufficient

and relevant biological material is also complicated when studying

endangered populations or individuals from long-term studies, where

experimental manipulations might be considered unethical, too

invasive, or might conflict with other objectives. Consequently, most

studies examining oxidative damage in wild animals collect blood.

Although this is important, it might reflect immediate measures of the

state of an individual, as opposed to damage within tissue, which

perhaps might give better insights into long-term processes [24]. A

single study using a multi-assay approach (Box 3) has reported that

oxidative damage and antioxidant levels in plasma might provide

reliable information on these same parameters in tissues (e.g., heart,

skeletal muscle, and liver [75]). However, whether this is generally the

case is still open to question.

Sample collection in the field can also be challenging due to the

remoteness of study sites and the absence of appropriate

laboratory facilities. Oxidative damage markers, by their very

nature, are prone to oxidation and so there is a requirement to

have equipment close at hand to preserve sample integrity. Blood

samples should be cooled quickly following collection and

centrifuged rapidly to prevent lysis of red blood cells, because

lysis can affect spectrophotometric absorbencies and haem can,

under certain conditions, exert pro-oxidant effects [96]. Where

possible, samples should be aliquoted to minimise the number of

subsequent freeze and thaw cycles. For specific assays, samples

should also be frozen in liquid nitrogen immediately after

collection and stored at �808C. Researchers should always test

that their sampling and storage methods are appropriate for each

particular assay before starting any experiment. The ‘shelf life’ of

biological material can also vary, for example, being reduced in

samples with high levels of polyunsaturated fatty acids and/or low

concentrations of antioxidants. Excitingly, the requirement to

freeze samples might soon be a thing of the past, with companies

(e.g., Biomatrica1) now offering technology derived from extre-

mophiles whereby biological samples can be stored at room

temperature for several months without degradation.

Box 3. ROS-induced oxidative damage: does a gold standard exist?

A long-standing question in oxidative biology is what assay is most

appropriate. Currently, no gold standard exists [28], although what is

unequivocal is that the route from ROS production to oxidative

damage is complex. At the very minimum, measures of oxidative

damage should be performed (e.g., protein carbonyls and lipid

peroxidation), because, unlike antioxidants, these measure the out-

come of oxidative stress. Many studies have determined TAC in

blood. Although this approach has some advantages (e.g., requiring

small sample volumes, ease of use, and providing an index of the

capacity to withstand ROS attack), several issues exist. Not least, it is

nonspecific and the ‘antioxidant’ response is restricted to one

particular ROS generator, which might not biologically be the most

relevant [24]. In addition, although several commercial kits are

available to measure TAC, they do not appear to measure exactly

the same antioxidants [97]. Therefore, TAC assays should ideally be

run alongside antioxidant enzyme activity assays (e.g., superoxide

dismutase, glutathione peroxidase, and catalase).

Lipid peroxidation, determined by malondialdehyde levels via

derivatisation of thiobarbituric acid reactive substances, is also used

extensively. However, commercial spectrophotometric kits should be

avoided because thiobarbituric acid is not 100% specific for

malondialdehyde, and can be produced during sample preparation

and affected by diet [24,28]. Consequently, this nonspecificity can

overestimate the amount of oxidative damage present. However,

HPLC-based techniques are less prone to experimental artefacts and

have greater specificity [28,98].

We suggest that researchers should aim to collect multiple

measures wherever possible. Oxidative damage to proteins (carbo-

nyls and thiols), lipids (e.g., F2 isoprostanes, 4-hydroxynonenal,

malondialdehyde by HPLC, and hydroperoxides) and/or DNA (e.g.,

8-hydroxy-20-deoxyguanosine, 8-hydroxyguanosine, and the Comet

assay), in conjunction with antioxidant protection and/or measures of

redox status (e.g., superoxide dismutase, glutathione peroxidase,

catalase, glutathione, reduced: oxidised glutathione, TAC, and

vitamin E), and/or cellular stress resistance. This multi-assay

approach also appears to give better insights into what is happening

at the tissue level, even when only plasma is measured [75].

Assays to determine repair mechanisms (e.g., proteasome activity

and DNA base-excision repair) are run routinely in many laboratories

and, therefore, are also accessible to ecologists. Interpreting data

from multiple measures of protection, damage, and repair and

relating these to life-history traits will benefit from multivariate

statistical techniques, such as factor analysis [99]. We suggest that

using such a combinatory approach will provide the best hope for

understanding the role of ROS-induced oxidative damage in deter-

mining life histories.
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oxidative damage [24,73]. Different ROS, antioxidants,
and repair mechanisms exist that do not act in isolation
and that react and compensate for one another in a bewil-
dering fashion [24,27,29,74]. Care must also be taken when
reaching conclusions relating to oxidative damage when a
single tissue or damage to a single macromolecule is
determined. Tissues generate specific types and levels of
ROS, and have different types (and relative concentra-
tions) of antioxidants and repair mechanisms [24]. Conse-
quently, they are all likely to experience different rates of
oxidative damage, which may also be specific to a particu-
lar life-history trait. Moreover, the probable consequences
of lipid damage might be different to the probable conse-
quences of DNA damage. We do not imply any criticism of
previous work, given that, in many cases, our own studies
to date have included such types of isolated measurement
(e.g., [57,61]). On the bright side, using a multi-assay
approach (Box 3) in laboratory rats demonstrated that
markers of oxidative damage and antioxidant protection
were correlated between plasma and several tissues (skel-
etal muscle, liver, and heart), although some tissue- and
marker-specific differences were observed [75]. In addition,
plasma ROM levels correlated with 4-hydroxynonenal (a
marker of lipid peroxidation) in wild alpine marmots
(Marmota marmot) [76].

Where now?
Although significant logistical and technological challenges
exist for researchers examining ROS-induced oxidative
damage (Box 3), widespread interest exists in whether
ROS-induced oxidative damage has a role in shaping the
life histories of free-living animals. To date, much research
has concerned small animals living in protected pathogen-
free environments with abundant resources and few envi-
ronmental pressures. The clear benefits of such studies
include an ability to perform experimental manipulations
and make multiple measurements of the traits of interest.
Yet, the shortcomings of such models are that trade-offs
might be less obvious compared with animals dealing with
limited resources combined with other pressures in the wild.
The scepticism resulting from laboratory studies regarding
the role of oxidative damage in ageing does not necessarily
reflect a lack of importance in mediating life-history phe-
nomena in natural settings. Long-term studies using natu-
ral populations with extensive databases of life-history
traits and repeated measures are likely to provide unprece-
dented opportunities to test these predictions [15]. It is clear
that meaningfully testing hypotheses of ageing and life
history in natural populations demands longitudinal data
and analyses at the within-individual level [40]. Such stud-
ies in the context of oxidative damage are lacking. Costs of
early life-history decisions and the ageing process occur, of
course, across the lifetimes of individuals. Individual phe-
notypic heterogeneity due to variation in resource availabil-
ity, early life conditions, or genetic background is
considerable in wild animals. This among-individual varia-
tion will bias estimates and lead to erroneous conclusions
about the life-history costs and ageing, unless within and
between individual processes can be dissected and explored
separately with longitudinal data and appropriate statisti-
cal tools [40].

What is evident from this review, and highlighted else-
where (e.g., [29]), is that despite the widespread interest in
the potential role that ROS might have in life-history, few
studies have determined ROS-induced oxidative damage
per se in free-living animals (e.g., [12,57,76]). We suggest
that significant progress will only be made if ecological
researchers use assays to determine simultaneously anti-
oxidant protection, oxidative damage, and, ideally, also
repair. Although single assays, in single tissues (or blood)
might be easier to perform, we suggest that these
approaches have led to the current state of confusion
(see also [8]). Studies using a range of assays reflecting
damage, protection, and repair across multiple tissues and
multiple macromolecules, will provide the most significant
insights. We suggest that only by following relevant exper-
imental protocols (Box 2) and through adopting a multi-
assay approach of appropriate assays (Box 3) will one get
close to understanding the role of ROS-induced oxidative
damage in shaping life history. Of course, many long-term
field studies necessitate nonterminal procedures (Box 2),
but using biopsies to collect tissue might help circumvent
this. There is also a requirement for studies that not only
quantify oxidative damage, but also simultaneously mea-
sure additional parameters that are likely to be of impor-
tance, such as metabolic rate [50,51,61], mitochondrial
function [51], telomere dynamics [44,77], and/or physiolog-
ical condition [11,50,51,78]. Such studies are clearly start-
ing to be made and we encourage ecologists to embrace
these approaches, and collaborate more expansively with
molecular biologists and biogerontologists where possible.
Field experiments manipulating brood size, litter size, and/
or diet will continue to be informative. Studies using non-
model organisms or ecotypes within laboratory settings
(e.g., [32,46,50,51]) are also likely to continue being impor-
tant, because they will test the generality of laboratory
findings in semi-natural or natural conditions, and test
evolutionary and ecological ideas in the laboratory. Field
ecology in isolation, although producing important correl-
ative data, might not move the field forward sufficiently in
terms of cause and effect with regard to the key questions
highlighted in this review. However, it is clear that such
approaches are starting to percolate across disciplines
(e.g., [12,32,50,51,78,79]). We suggest that only multidis-
ciplinary research can elucidate the cause and effect rela-
tions between oxidative damage, ageing, and life-history
evolution, if they do in fact exist.

Comparative approaches [80], particularly those using
methodologies and analytical tools (e.g., [81]) rarely used in
ecology, should help uncover whether ROS-induced oxida-
tive damage is an important cost to free-living animals. In
particular, due to its declining expense, next-generation
sequencing and network analysis [81] should unearth
genetic differences between and within species [81], and
identify pathways linked to somatic protection. In theory,
researchers should be able to identify a signature of so-
matic protection, that is, a ‘protectome’, shaped by natural
selection. Metabolomic and proteomic approaches will also
help identify metabolites and enzymes associated with
oxidative damage, both of which can be used non-inva-
sively on blood and urine [81]. Such approaches will com-
plement more traditional assays (Box 3) to obtain
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unparalleled insights into the role of ROS and somatic
protection in the lives of free-living animals. Many of the
assays highlighted in Box 3 can be undertaken easily on
blood samples, which many researchers find themselves
limited to (e.g., protein carbonyls, 8-hydroxy-20-deoxygua-
nosine, and 4-hydroxynonenal). It is also conceivable that
ROS-induced oxidative damage is not a key mediator of
life-history trade-offs across diverse taxa, hence the equiv-
ocal picture painted by our review of laboratory and field
studies. Excluding oxidative damage, other molecular
mechanisms exist that may drive functional decline and
ageing (e.g., [5,14,23,40,41,82–84] and that may mediate
life-history trade-offs. Field researchers need to also start
incorporating these ideas into their studies.
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