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Abstract 

 

Tyrannosaurs, the group of dinosaurian carnivores including Tyrannosaurus rex and its 

closest relatives, are icons of prehistory. They are also the most intensively studied 

extinct dinosaurs, and thanks to large sample sizes and an influx of new discoveries have 

become ancient exemplar organisms used to study many themes. A phylogeny that 

includes recently described species shows that tyrannosaurs originated by the Middle 

Jurassic but remained mostly small and ecologically marginal until the latest Cretaceous. 

Anatomical, biomechanical, and histological studies of T. rex and other derived 

tyrannosaurs show that large tyrannosaurs could not run rapidly, were capable of 

crushing bite forces, had accelerated growth rates and keen senses, and underwent 

dramatic changes during ontogeny. The biology and evolutionary history of tyrannosaurs 

provides a foundation for comparison with other dinosaurs and living organisms.   

mailto:stephen.brusatte@ed.ac.uk


Tyrannosaurs, the group of carnivores that includes Tyrannosaurus rex and its closest 

relatives, are archetypal dinosaurs (1) (Fig. 1; Table S1). They are pop culture icons, but 

also valuable research subjects, and have become something of an exemplar group used 

to study many themes in vertebrate paleontology. Research on tyrannosaurs is undergoing 

a renaissance, as new discoveries and technological approaches are helping to understand 

the biology and evolution of these animals in unprecedented detail.  

 Tyrannosaurus rex was initially described 105 years ago (3), and for most of the 

20th century tyrannosaurs were known almost solely from fossils of T. rex and four 

closely related species of large, multi-ton Late Cretaceous predators (4). Within the last 

decade, however, the diversity of tyrannosaurs has more than doubled, and during the last 

year alone six new species were described, some of which are 100 million years older and 

1/100th the size of T. rex (2, 5) (Fig. 1). These discoveries have fostered an increased 

understanding of tyrannosaur anatomy (6-7), growth dynamics (8-9), population structure 

(10), feeding (11), locomotion (12), biogeography (13), and soft tissue morphology (14-

16). This breadth of information, and of research activity, on a restricted group of 

organisms is unparalleled in contemporary dinosaur paleontology. 

 Here we assess the current state of tyrannosaur research, with a focus on the 

phylogenetic relationships and large-scale evolutionary patterns exhibited by the group, 

the biology of tyrannosaurs as living organisms, and information revealed from the 

newest discoveries. 

 

 

 



Phylogenetic relationships and evolution of tyrannosaurs 

 

Tyrannosaurs, which formally comprise the clade Tyrannosauroidea, are a relatively 

derived group of theropod dinosaurs, more closely related to birds than to other large 

theropods such as allosauroids and spinosaurids (1, 17). Approximately 20 

tyrannosauroid genera are currently known, 5 of which were described during the past 

year. To assess their interrelationships we conducted a phylogenetic analysis, which 

includes all well-known genera scored for 307 morphological characters (18). The dataset 

is based on personal observation of specimens and includes novel characters (123, 40% 

of total) based on recently discovered tyrannosaur taxa (2, 19-21). 

 Tyrannosaurs are a long-lived group that originated by the Middle Jurassic, 

approximately 165 million years ago (5) (Fig. 2). The oldest and most basal tyrannosaurs 

comprise a speciose subclade, Proceratosauridae, which includes mostly small-bodied 

animals no larger than a human, many of which possessed elaborate cranial crests (22). 

Progressively more derived tyrannosaurs form a pectinate series on the line toward 

Tyrannosauridae, the subclade of multi-ton, deep-skulled behemoths from the terminal 

Cretaceous (Campanian-Maastrichtian), including Tyrannosaurus, Tarbosaurus, 

Albertosaurus, and close relatives (1). Taxa phylogenetically intermediate between 

proceratosaurids and tyrannosaurids include a range of genera from the Late Jurassic-

early Late Cretaceous of Asia, North America, and Europe, most of which have been 

recently discovered (2, 14, 20-21, 23-24). These taxa run the gamut from small to 

medium size (~1.4-9.0 m in length) and few were likely apex predators in their 

ecosystems (21). 



 Until recently, the prevailing notion was that tyrannosaur body size gradually, and 

progressively, increased over time, in concert with the piecemeal accumulation of 

signature tyrannosaur skeletal features (14, 21). However, new discoveries have lead to a 

reassessment. The Early Cretaceous proceratosaurid Sinotyrannus may have approached 

10 m in body length, demonstrating that tyrannosaurs were capable of achieving large 

size early in their history (25). More striking, the close tyrannosaurid outgroup Raptorex 

is only 2-3 m in length, suggesting that there was great size variability among close 

tyrannosaurid relatives and perhaps that the immediate ancestors of tyrannosaurids were 

small animals (2). Truly enormous size, however, is restricted to the latest Cretaceous 

tyrannosaurids, some of which grew to lengths of 13 m and masses of 5-8 tons (8). 

Therefore, for the first 80 million years of their history tyrannosaurs were mostly small-

to-mid-sized animals that lived in the shadow of other giant predators (e.g., allosauroids, 

megalosauroids), and only during the final 20 million years of the Mesozoic did they 

develop into some of the largest terrestrial carnivores to ever live (26). The dominance of 

tyrannosaurs as megapredators was purely a latest Cretaceous phenomenon. 

 

Tyrannosaur anatomy 

 

The spate of new discoveries has prompted a renewed focus on tyrannosaur anatomy, 

including external, internal, and soft tissue morphology (Fig. 3). All tyrannosaurs are 

bipedal predators and possess several unique features, including a small premaxilla with 

D-shaped “incisor”-like teeth, fused nasals, extreme pneumaticity in the skull roof and 



lower jaws, a pronounced muscle attachment ridge on the ilium, and an elevated femoral 

head (6, 27-28).  

A number of derived specializations characterize the giant tyrannosaurids: a large 

and deep skull with powerful jaw muscles, robust teeth, reinforced sutures between skull 

bones, and tiny forelimbs (6, 29), features often considered adaptations for a 

hypercarnivore to function at large size (2). Basal tyrannosauroids, in contrast, have 

smaller skulls and longer arms, and generally resemble sleek, bird-like theropods more 

than their enormous tyrannosaurid cousins (14, 22). New discoveries have shown, 

however, that the hallmark tyrannosaurid bodyplan (large and deep skull, robust teeth, 

etc.) does not uniquely or uniformly characterize the tyrannosaurid clade. Most of these 

features are now known to be present in Raptorex, the man-sized tyrannosaurid outgroup 

that lived 40 million years before tyrannosaurids originated (2). Furthermore, the gracile 

and long-snouted Alioramus, a tyrannosaurid that is about half the size of close relatives 

such as Tarbosaurus and Tyrannosaurus, lacks a deep and muscular skull and thick teeth 

(19). Thus, characteristic tyrannosaurid features did not evolve as a consequence of large 

body size, but likely originated in small animals, and not even all derived, Late 

Cretaceous tyrannosaurids are united by a characteristic morphotype (2, 19). 

Much is also known about the internal anatomy of the tyrannosaur skull, thanks to 

the discovery of exceptionally preserved fossils and the application of digital techniques 

such as CT scanning (7, 30-31). Tyrannosaurs possessed the required neuroanatomy to 

lead the active, predatory lifestyle expected of derived theropods (7, 30). Their 

encephalization quotient—an estimate of relative brain size—varies between 2.0 and 2.4, 

larger than in basal theropods but lower than that of birds and their closest relatives (19). 



Large olfactory lobes indicate a strong sense of smell (7, 31). Elongate cochlear and 

semicircular canals apparently support elevated sensitivity to low-frequency sound and 

highly coordinated head and eye movements (7).  

Several tyrannosaurid specimens have been reported to preserve integumentary 

structures and other soft tissues, which rarely fossilize in dinosaurs. Although 

impressions of scaly skin have been described for large tyrannosaurids (32), simple 

filamentous integument, interpreted as homologous to feathers, is clearly preserved in a 

specimen of the basal tyrannosauroid Dilong (14). These branched filaments appear to 

have extensively covered the body, as they are observed near the skull and tail. A recent 

study suggests that much larger tyrannosauroids were covered with elongate, broader 

integumentary structures (33), which were likely used for display (34). Several easily 

degraded soft tissues, such as cells, blood vessels, and collagen, have been reported from 

a specimen of Tyrannosaurus (15, 35). Some of these findings have been met with 

skepticism (36), and they remain to be validated by other research groups. However, if 

correct, they promise to give radical new insight into the process of fossilization and may 

allow for molecular phylogenetic analysis of these extinct taxa (37). 

 

Tyrannosaur growth 

 

Arguably we know more about tyrannosaur biology than that of any other dinosaurs (Fig. 

3-4). Much of this knowledge has been gained over the past 20 years, through the 

collection of skeletons of both adults and juveniles, bones of their prey with bite marks, 

coprolites (fossil feces), stomach contents, and pathological specimens (38). 



 Much attention has focused on how tyrannosaurs grew, especially on how giants 

such as Tyrannosaurus rex achieved such massive size and how their skeletons changed 

during the transition from embryo to multi-ton adult. Comparative growth curves for 

several species, which plot body mass (calculated from femur size) against age in years 

(calculated from counting growth lines in histological section) (8) (Fig. 4B), show that 

large tyrannosaurids reached somatic maturity around 20 years old, though most rarely 

lived for more than 25 years. T. rex evidently attained its large size via acceleration of 

growth rates relative to closely related species, not by extending its lifespan. Its 

maximum growth rate may have exceeded 767 kg per year, equivalent to adding a 

remarkable 2 kg per day (8). 

 Tyrannosaur skeletons changed substantially as individuals matured. Although 

less is known about the growth of small, basal tyrannosaurs, tyrannosaurids and their 

closest large-bodied relatives are united by a conservative pattern of growth in which the 

skulls of juveniles were entirely reshaped during ontogeny (9, 20, 39). This sequence has 

been reconstructed using cladistic analysis, based on the principle that ontogeny, like 

phylogeny, involves a hierarchically nested series of character changes (19, 39). During 

the growth of an individual species, the skull and jaws deepened, pneumatic bones 

inflated, ornamented structures enlarged and coarsened, sutural surfaces deepened and 

became more rugose, and the teeth became larger and thicker (9, 40) (Fig. 1). Changes 

have also been documented in the postcranial skeleton. Most dramatically, the forearm 

shortened and the long shin and foot of juveniles became shorter and stockier in adults 

(40). The differences between juvenile and adult tyrannosaurids are so great that different 

growth stages have often been mistaken for different species (4, 9).  



 

Tyrannosaur behavior 

 

A variety of studies have used biomechanical modeling, which incorporates mathematics, 

physics, and computer programming (41), to infer tyrannosaur behavior. Tyrannosaurs, 

especially the large, derived forms, have often been used as exemplars to demonstrate the 

utility of such computer models.  

Most studies have suggested that although large tyrannosaurids might have been 

able to run at slow to moderate speeds at best (top speeds between 5-11 ms-1), they could 

not run nearly as fast as large athletic animals today, such as racehorses (~20ms-1) (12, 

41-42). Consensus also is building that even though large tyrannosaurids were not 

restricted to a pillar-like columnar limb posture to maximize mechanical advantage, they 

were still far from having very crouched, more birdlike postures (12, 41-42). Aspects of 

tyrannosaurid anatomy, such as the long legs and large pelvic limb muscles, which 

intuitively seem to indicate fast running capacity, were inherited from small, presumably 

fast-running ancestors. Modeling studies have incorporated these features and shown that 

they did not make large tyrannosaurids extremely fast. However, it is worth noting that 

these studies rely on estimates of muscle size and attachment points, a somewhat 

conjectural exercise, albeit constrained by the anatomy of extant relatives (12, 16), that 

plagues all such functional analyses.  

Both trace fossils (bite marks, coprolites) and quantitative techniques have helped 

to understand what tyrannosaurs ate and how they fed. Tyrannosaurid bite marks have 

been found on the bones of a wide diversity of species, including various other 



tyrannosaurs, demonstrating that they were ecological generalists (43). Bite mark patterns 

show that tyrannosaurids characteristically bit deeply into carcasses, often through bones, 

and then pulled back, creating long cuts [puncture-pull feeding sensu (44)]. Some T. rex 

bite marks (44) and coprolites with bone chunks (45) indicate that bone was fractured, 

ingested, and used for sustenance, a mammal-like attribute not seen in extant reptiles. The 

bite forces needed to crunch through bone would have been enormous. Biomechanical 

experiments have replicated the size and depth of fossilized bite marks and suggest that 

T. rex generated bite forces of at least 13,400 N. Maximal bite forces were probably 

greater (46).  

Such large bite forces would have exerted tremendous stress on the skull. 

Tyrannosaurid skull shape and its relation to bite-induced stress have been extensively 

studied using finite element analysis (FEA). The results indicate that large tyrannosaurids 

had skulls optimized to endure strong bites, as various sutures absorbed stress and the 

fused nasals strengthened the snout (11, 47-48). Similar biomechanical techniques have 

also been used to examine the role of the tyrannosaur neck in feeding, showing that it was 

important for generating pulling forces on food items and in inertial feeding (49), and the 

function of the unusual “pinched metatarsus” of the foot in turning, indicating that it was 

structured to resist shearing and twisting forces (50).  

Little is known about the ecological community structure for most extinct 

animals, but large sample sizes permit some understanding of tyrannosaur ecology. Late 

Cretaceous tyrannosaurids were the first dinosaurs for which population dynamics—the 

balance between deaths and births that create a population’s age structure—could be 

assessed (10) (Fig. 4C). Like large birds and mammals, but unlike living reptiles, 



tyrannosaurids probably experienced extremely high neonate mortality, followed by few 

deaths after two years of age (presumably a release from predation), and then increased 

mortality at mid-life (probably from the rigors of reproduction), so that few individuals 

had a long reproductive lifespan. Furthermore, a number of fossil sites have preserved 

multiple individuals, suggesting that tyrannosaurs were at least occasionally gregarious 

(51). Bite marks indicate that individuals of the same species bit each other in the face 

during encounters (52), and many older individuals with gout, bacterial legions, and bone 

fractures have been reported, showing that disease and injury were common (53). 

Multiple lines of evidence indicate that tyrannosaur ecological habits changed 

during ontogeny. In Late Cretaceous tyrannosaurids, the difference in form between the 

lightly built, fleet juveniles and the larger, bulkier adults suggests that foraging behavior 

and targeted prey size changed as tyrannosaurs grew. The deep and muscular adult skull, 

with reinforced sutures and robust teeth, is well suited for sustaining high bite forces, 

whereas juveniles had none of these features (9, 39). Furthermore, the longer and more 

gracile hind limbs of juveniles indicate that they were relatively faster than adults (40), 

which has been corroborated by biomechanical analysis (12). These differences could 

have promoted major size-related shifts in ecology and behavior. It is plausible that adults 

preferentially attacked larger, but less mobile, prey than their younger counterparts. Such 

an ontogenetic shift is not seen in many familiar predators today (e.g. lions), but is 

present in extant crocodylians (54). As most basal tyrannosauroids are similar in skull 

and body proportions to juvenile Late Cretaceous tyrannosaurids, it is likely that they 

behaved and fed in a similar manner. However, detailed biomechanical analyses have yet 

to be carried out for most non-tyrannosaurid tyrannosauroids. 



Whether T. rex and other large tyrannosaurs were scavengers or predators has 

generated much speculation and dispute. Bite marks from mass death assemblages of 

herbivorous dinosaurs show that tyrannosaurs certainly scavenged on occasion (38). 

However, multiple reports of healed tyrannosaur bite marks on prey bones (55-56) and 

tyrannosaur stomach contents containing remains of young dinosaurs (57) indicate that 

tyrannosaurs were capable of active predation. Like most carnivores, tyrannosaurs 

probably both scavenged and hunted.  

One of the largest voids in our understanding of dinosaur biology is the sex of 

individual specimens. It has been suggested that female tyrannosaurs required a larger 

pelvic outlet for the passage of eggs, reflected by a greater span between the ischial bones 

and a smaller or more posteriorly located first tail chevron, but these indices find little 

neontological support in living archosaurs (58-59). More recently, medullary bone, a 

calcium phosphate deposit for the use of shelling in eggs, was reported in one T. rex 

specimen (60). This provides a surefire identification of sex in dinosaurs, and holds much 

promise for future studies of dinosaur sex and ecology. 

 

Tyrannosaur biogeography 

 

Until recently, all tyrannosaurs fossils were limited to Asia and North America, but the 

discovery and recognition of basal tyrannosauroids over the last decade reveals a more 

cosmopolitan distribution during their early evolution (5, 22-24, 61). Members of the 

Middle-Late Jurassic proceratosaurid radiation are known from Europe and Asia (5), 

whereas the Late Jurassic genus Stokesosaurus is known from both Europe and North 



America (24). However, all well known tyrannosaurs more derived than Eotyrannus and 

Stokesosaurus exhibit a purely Asian or North American distribution. Faunal interchange 

between these continents is characteristic of most Campanian-Maastrichtian dinosaur 

clades, and reflects an increasing Laurasian-Gondwanan provincialism during the final 

stages of the Age of Dinosaurs (62). Tyrannosaurs, because of their rich fossil record and 

well-studied phylogenetic relationships, are one of the primary sources of evidence for 

this long-established biogeographic hypothesis. 

 Emerging evidence, however, indicates that tyrannosaurs were likely present on 

the southern continents during their early evolutionary history. An isolated pubis from the 

Early Cretaceous of Australia was recently identified as belonging to a derived 

tyrannosaur (13). As contemporary Early-mid Cretaceous dinosaurs mostly belong to 

globally-distributed clades (26), the absence of Gondwanan tyrannosaurs during this time 

had been a puzzling anomaly. Even with this discovery, if it is from a tyrannosaur, 

tyrannosaurs are absent in the well-sampled mid-Late Cretaceous units of South America, 

Africa, and Madagascar (63). It is possible that tyrannosaurs were rare on the southern 

continents during the Early-mid Cretaceous, and it is likely that Gondwanan forms did 

not persist into the latest Cretaceous, at least as common and ecologically dominant 

carnivores. 

 Most tyrannosaurs are known from mesic (moderate moisture) or seasonally 

mesic paleoenvironments, and their fossils are strikingly absent from xeric (dry) facies, 

even those that interfinger with tyrannosaur-bearing mesic sediments within the same 

sedimentary rock basins in Asia (64). This likely indicates that tyrannosaurs preferred 

wetter habitats, although it may still reflect a sampling bias. Wherever they were present 



during the Late Cretaceous in North America and Asia, tyrannosaurs were the sole apex 

predators in their environments. Multiple large tyrannosaurids co-occurred during some 

intervals in North America and Asia (19, 27), but the Maastrichtian of western North 

America was solely dominated by T. rex (39). In contrast, most non-tyrannosaurid 

tyrannosauroids are found alongside larger non-tyrannosaur predators, demonstrating that 

tyrannosaurs did not exclusively dominate the apex predator niche, no matter where they 

lived, until the final 20 million years of the Cretaceous. 

 

Conclusion 

 

Tyrannosaurus rex and its close relatives are the most intensely studied dinosaurs. 

Derived tyrannosaurs such as Albertosaurus, Tarbosaurus, and Tyrannosaurus are known 

from more fossils than most other dinosaurs, and these specimens span the spectrum from 

juvenile to adult. Many modern analytical approaches have been pioneered using 

Tyrannosaurus and close kin, and the results of these studies are allowing for quantitative 

comparisons between the biology of extinct dinosaurs and living species.  
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Fig. 1. The anatomy of tyrannosaurs, showing the variety of skeletal and cranial 

morphology in the group. (A) A skeletal reconstruction of Alioramus, a gracile and long-

snouted tyrannosaurid, which exhibits many features of the generalized tyrannosaurid 

body plan (large skull, small arms, long hindlimbs, long tail). (B-D) Skulls of the basal 

tyrannosauroids Guanlong (B), Dilong (C) and Bistahieversor (D). (E-F) Skulls of 

juvenile (E) and adult (F) Tyrannosaurus scaled to the same length, illustrating the 

transition from a longer to a deeper skull during ontogeny. All scale bars equal 10 cm. 

Credits: Frank Ippolito/American Museum of Natural History (A); Ira Block/National 

Geographic Stock (B); Mick Ellison/AMNH (C); David Baccadutre/New Mexico 

Museum of Natural History and Science (D); Scott Williams/Burpee Museum of Natural 

History (E); AMNH Photo Archives (#2752, Tyrannosaurus skull as mounted in the old 

hall) (F). 

 

Fig. 2. Phylogenetic relationships of tyrannosauroid theropods, assessed via a cladistic 

analysis (18). Single most parsimonious tree, showing the relationships of 19 

tyrannosaurs, scaled to the geologic time scale. Taxa in blue are those that have been 



described during the last year. Silhouettes indicate relative body size (based on femur 

length as a proxy). Thick red bars indicate major ghost lineages. Thick black bars 

represent the finest age resolution for each taxon, not actual duration. 

 

Fig. 3. Tyrannosaur soft tissues, feeding, and locomotion. (A) CT imagery of internal 

pneumatic sinuses of the braincase of Alioramus altai (19). (B) Endocast of brain, cranial 

nerves, and semicircular canals of Alioramus altai (19). (C) Finite element analysis of a skull 

of Tyrannosaurus rex (11, 47), showing high stresses (red colors) in the nasal and cheek 

regions (courtesy of E. Rayfield). (D) Lacrimal of Alioramus altai (reversed), showing 

pneumatic spaces that housed air sacs (credit: M. Ellison). (E) Feathery integument along the 

tail of Dilong paradoxus. (F) 3D biomechanical model based on muscle reconstruction of the 

right hindlimb of Tyrannosaurus rex (16), used to assess running mechanics.  

 

Fig. 4. Tyrannosaur growth and ecology. (A) Histological section of a Tyrannosaurus rex 

dorsal rib showing growth lines whose counts are used to reveal age and longevity. (B) 

Growth curves for North American tyrannosaurids derived from growth line counts and body 

size estimations for individuals showing how size changes with age. No sampled 

tyrannosaurid adults were over 30 years old, and acceleration rather than prolonged 

development was the key to the great size of T. rex (8). (C) Survivorship curve for 

Albertosaurus sarcophagus. This tyrannosaur exhibited high neonate mortality, then few 

deaths after age two, and then increased mortality at mid-life (8). 
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