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Abstract. Croston’s method is generally viewed as superior to exponen-
tial smoothing when demand is intermittent, but it has the drawbacks
of bias and an inability to deal with obsolescence, in which an item’s
demand ceases altogether. Several variants have been reported, some of
which are unbiased on certain types of demand, but only one recent vari-
ant addresses the problem of obsolescence. We describe a new hybrid of
Croston’s method and Bayesian inference called Hyperbolic-Exponential
Smoothing, which is unbiased on non-intermittent and stochastic inter-
mittent demand, decays hyperbolically when obsolescence occurs and
performs well in experiments.1

1 Introduction

Inventory management is of great economic importance to industry, but fore-
casting demand for spare parts is difficult because it is intermittent : in many
time periods the demand is zero. Various methods have been proposed for fore-
casting, some simple and others statistically sophisticated, but relatively little
work has been done on intermittent demand.

We now list the methods most relevant to this paper. Single exponential

smoothing (SES) generates estimates ŷt of the demand by exponentially weight-
ing previous observations y via the formula

ŷt = αyt + (1− α)ŷt−1

where α ∈ (0, 1) is a smoothing parameter . The smaller the value of α the less
weight is attached to the most recent observations. An up-to-date survey of
exponential smoothing algorithms is given in [7]. They perform remarkably well,
often beating more complex approaches [6], but SES is known to perform poorly
(under some measures of accuracy) on intermittent demand.

1 Earlier versions of this work were presented at the 25th European Conference on Op-
erations Research, 2012; and at the 54th Annual Conference of the UK Operational
Research Society, 2012. A journal version is in preparation.

http://arxiv.org/abs/1307.6102v1


A well-known method for handling intermittency is Croston’s method [4]
which applies SES to the demand sizes y and intervals τ independently. Given
smoothed demand ŷt and smoothed interval τ̂t at time t, the forecast is

ft =
ŷt
τ̂t

Both ŷt and τ̂t are updated at each time t for which yt 6= 0. According to
[7] it is hard to conclude from the various studies that Croston’s method is
successful, because the results depend on the data used and on how forecast
errors are measured. But it is generally regarded as one of the best methods for
intermittent series [8], and versions of the method are used in leading statistical
forecasting software packages such as SAP and Forecast Pro [20].

To remove at least some of the known bias of Croston’s method on stochastic
intermittent demand (in which demands occur randomly), a correction factor is
introduced by Syntetos & Boylan [16]:

ft =

(

1−
β

2

)

ŷt
τ̂t

where β is the smoothing factor used for inter-demand intervals, which may
be different to the α smoothing factor used for demands.2 This works well for
intermittent demand but is incorrect for non-intermittent demand. This problem
is cured by Syntetos [15] who uses a forecast

ft =

(

1−
β

2

)

ŷt

τ̂t −
β
2

This reduces bias on non-intermittent demand, but slightly increases forecast
variance [19].

Another modified Croston method is given by Levén & Segerstedt [13], who
claim that it also removes the bias in the original method but in a simpler way:
they apply SES to the ratio of demand size and interval length each time a
nonzero demand occurs. That is, they update the forecast using

ft = α

(

yt
τt

)

+ (1− α)ft−1

However, this also turns out to be biased [2].
A more recent development is the TSB (Teunter-Syntetos-Babai) algorithm

[20], which updates the demand probability instead of the demand interval.
This allows it to solve the problem of obsolescence which was not previously
dealt with in the literature. An item is considered obsolete if it has seen no
demand for a long time. When many thousands of items are being handled
automatically, this may go unnoticed by Croston’s method and its variants. One
of the authors of this paper (Prestwich) has worked with an inventory company

2 In [16] this factor is denoted by α because it is used to smooth both ŷ and τ̂ .



who used Croston’s method, but were forced to resort to ad hoc rules such as:
if an item has seen no demand for 2 years then forecast 0. TSB is designed
to overcome this problem. Instead of a smoothed interval τ̂ it uses exponential
smoothing to estimate a probability p̂t where pt is 1 when demand occurs at time
t and 0 otherwise. Different smoothing factors α and β are used for ŷt and p̂t
respectively. p̂t is updated every period, while ŷt is only updated when demand
occurs. The forecast is

ft = p̂tŷt

In this paper we shall use CR to denote the original method of Croston,
SB the variant of Syntetos & Boylan, SY that of Syntetos, and TSB that of
Teunter, Syntetos & Babai. We explore a new variant of Croston’s method that
is unbiased and handles obsolescence. Its novelty is that during long periods of no
demand its forecasts decay hyperbolically instead of exponentially (as in TSB),
a property that derives from Bayesian inference. The new method is described in
Section 2 and evaluated in Section 3, and conclusions are summarised in Section
4.

2 Hyperbolic-exponential smoothing

We take a Croston-style approach, separating demands into demand sizes yt
and the inter-demand interval τt. As in most Croston methods, when non-zero
demand occurs the estimated demand size ŷt and inter-demand period τ̂t are
both exponentially smoothed, using factors α and β respectively. The novelty of
our method is what happens when there is no demand.

Suppose that at time t, up to and including the last non-zero demand we
have smoothed demand size ŷt and inter-demand period τ̂t, and that we have
observed τt consecutive periods without demand since the last non-zero demand.
What should be our estimate of the probability that a demand will occur in the
next period? A similar question was addressed by Laplace [12]: given that the
sun has risen N times in the past, what is the probability that it will rise again
tomorrow? His solution was to add one to the count of each event (the sun
rising or not rising) to avoid zero probabilities, and estimate the probability
by counting the adjusted frequencies. So if we have observed N sunrises and
0 non-sunrises, in the absence of any other knowledge we would estimate the
probability of a non-sunrise tomorrow as 1/(N + 2). But he noted that, given
any additional knowledge about sunrises, we should adjust this probability. These
ideas are encapsulated in the modern pseudocount method which can be viewed
as Bayesian inference with a Beta prior distribution. We base our discussion on a
recent book [14] (Chapter 7) that describes the technique we need in the context
of Bayesian classifiers.

For the two possibilities yt = 0 and yt 6= 0 we add non-negative pseudocounts
c0 and c1 respectively to the actual counts n0 and n1 of observations.

3 As well as

3 These pseudocounts are often denoted α, β from the Beta distribution hyperparam-
eters, but we already use these symbols for smoothing factors.



addressing the problem of zero observations, pseudocounts allow us to express
the relative importance of prior knowledge and new data when computing the
posterior distribution. By Bayes’ rule the posterior probability of a nonzero
demand occurring is estimated by

p(yt 6= 0) =
n1 + c1

n0 + c0 + n1 + c1

(This is actually a conditional probability that depends on the recent observa-
tions and prior probabilities, but we follow [14] and write p(yt 6= 0) for sim-
plicity.) In our problem we have seen no demand for τt periods so n1 = 0 and
n0 = τt:

p(yt 6= 0) =
c1

τt + c0 + c1

We can eliminate one of the pseudocounts by noting that the prior probability
of a demand found by exponential smoothing is 1/τ̂t, and that the pseudocounts
must reflect this:

c1
c0 + c1

=
1

τ̂t

hence c0 = c1(τ̂t − 1) and

p(yt 6= 0) =
c1

τt + c1τ̂t
=

1

τ̂t + τt/c1

As with TSB, to obtain a forecast we multiply this probability by the smoothed
demand size:

ft =
ŷt

τ̂t + τt/c1

We can also eliminate c1 by choosing a value that gives an unbiased forecaster
on stochastic intermittent demand, as follows. Consider the demand sequence
as a sequence of substrings, each starting with a nonzero demand: for example
the sequence (5, 0, 0, 1, 0, 0, 0, 3, 0) has substrings (5, 0, 0), (1, 0, 0, 0) and (3, 0).
Within a substring ŷt and τ̂t remain constant so our forecaster has expected
forecast

E

[

ŷt
τ̂t + τt/c1

]

= E

[

ŷt
τ̂t

(

1

1 + τt/τ̂tc1

)]

≈ E

[

ŷt
τ̂t

(

1−
τt
τ̂tc1

)]

=
ŷt
τ̂t

(

1−
1

c1

)

The derivation used the linearity of expectation, the constancy of ŷt and τ̂t, the
fact that E[τt] = τ̂t, and the approximation (1+δ)−1 ≈ 1−δ for small δ which can
be found by taking the first two terms of geometric series (1 + δ)−1 =

∑

∞

i=0 δ
i.

Choosing c1 = 2/β, and therefore c0 = 2(τ̂ − 1)/β, we obtain a forecast

ft =
ŷt

τ̂t + βτt/2

with expected value
(

1−
β

2

)

ŷt
τ̂t



which is identical to the actual SB forecast. So on any substring our forecaster
has the same expected forecast as SB, given the same values of ŷt and τ̂t. More-
over, it updates ŷt and τ̂t in exactly the same way as SB at the start of each
substring, therefore it has the same expected forecast as SB over the entire de-
mand sequence. Thus by [16] it is unbiased on stochastic intermittent demand.

A drawback with this forecaster is that, like SB, it is biased on non-intermittent
demand. This can be overcome by a slight adjustment to the forecast:

ft =
ŷt

τ̂t + β(τt − 1)/2

Following a similar derivation of the expected forecast:

E

[

ŷt

τ̂t+
β

2
(τt−1)

]

= E

[

ŷt

τ̂t

(

1

1+ β

2τ̂t
(τt−1)

)]

≈ E

[

ŷt

τ̂t

(

1− β
2τ̂t

(τt − 1)
)]

= ŷt

τ̂t

(

1− β
2

)

(

1 + β

2τ̂t(1− β

2 )

)

≈ ŷt

τ̂t

(

1− β
2

)(

1 + β
2τ̂t

)

≈
(

1− β
2

)

ŷt

τ̂t(1− β

2τ̂t
)

=
(

1− β
2

)

ŷt

τ̂t−
β
2

The final expression is exactly the forecast made by the SY method throughout
the substring. But SY is unbiased on standard stochastic intermittent demand
and also on non-intermittent demand [15], so (using the same arguments as
above) our forecaster is too. This is the forecaster we shall use, and we call it
Hyperbolic-Exponential Smoothing (HES) because of its combination of expo-
nential smoothing with hyperbolic decay.

An illustration of the different behaviour of SY, TSB and HES is shown in
Figure 1. Demand is stochastic intermittent with probability 0.25, all nonzero
demands (shown as impulses) are 1, and the forecasters use α = β = 0.1. On
stochastic intermittent demand the HES forecasts are similar to those of SY,
though there is some decay between demands. TSB also has greater variation,
though this difference could be reduced by using smaller smoothing parameters.
When demand becomes zero, for example because the item becomes obsolete,
SY remains constant, TSB decays exponentially and HES decays hyperbolically.

3 Experiments

We now test HES empirically to evaluate its bias and forecasting accuracy. In all
experiments, for CR, SB and SY we let β = α as is usual with those methods.

3.1 Accuracy measures

In any comparison of forecasting methods we must choose accuracy measures.
[9] lists 17 measures, noting that a “bewildering array of accuracy measures have
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Fig. 1. Behaviour of SY, TSB and HES

been used to evaluate the performance of forecasting methods”, that no single
method is generally preferred, and that some are not well-defined on data with in-
termittent demand. We shall use measures that have been recently recommended
for intermittent demand. To measure bias we use MASE (Mean Absolute Scaled
Error), recommended by [10] and defined as mean(|qt|) where qt is a scaled error
defined by

qt =
et

1
n−1

∑n

i=2 |yi − yi−1|

et is the error yt− ŷt and t = 1 . . . n are the time periods of the samples used for
forecasting, which we take to be the 104 samples used to initialise the smoothed
estimates. We take these means over multiple runs. MASE effectively evaluates a
forecasting method against the naive (or random walk) forecaster, which simply
forecasts that the next demand will be identical to the current demand.

As a measure of deviation we use the MAD/Mean Ratio (MMR), which
has been argued to be superior to several other methods used in forecasting
competitions [11] and is defined by

∑n

t=1 |et|
∑n

t=1 yt

Again the summations are taken over multiple runs.
As another measure of deviation we also use the Relative Root Mean Squared

Error, defined as RMSE/RMSEb where RMSE is measured on the method be-
ing evaluated and RMSEb on a baseline measure, both taken over multiple runs.
When the baseline is random walk this is Theil’s U2 statistic [21], and this is the
baseline we use. The motivation behind using these two measures of deviation is
that MMR is based on absolute errors while U2 is based on root mean squared
errors; the latter penalises outliers more than the former so any differences be-
tween them could be revealing.



For stationary demand experiments we shall also compare TSB and HES
using two relative measures. Firstly we use the Relative Geometric Root Mean
Squared Error (RGRMSE) of HES with respect to TSB, analysed by [5] and
defined in our case as the geometric mean of |eHES|/|eTSB| taken over all periods in
multiple runs. RGRMSE is also known as the Geometric Mean Relative Absolute
Error and was used by [16]. [1] recommends the use of such relative error-based
measures, though they have the drawback of potentially infinite variance because
the denominator can be arbitrarily small [3,10]. Secondly we use the Percentage
of times Better (PB), recommended by [11] and defined as the percentage of
times the absolute HES error is less than the absolute TSB error.

3.2 Logarithmic demand sizes

We base our first experiments on those of Teunter et al. [20] in which demands
occur with some probability in each period, hence inter-demand intervals are
distributed geometrically, and we use a logarithmic distribution for demand sizes.
Geometrically distributed intervals are a discrete version of Poisson intervals,
and the combination of Poisson intervals and logarithmic demand sizes yields
a negative binomial distribution, for which there is theoretical and empirical
evidence: see for example the recent discussion in [18].

Teunter et al. compare several forecasters on demand that is nonzero with
probability p0 where p0 is either 0.2 or 0.5, and whose size is logarithmically
distributed. The logarithmic distribution is characterised by a parameter ℓ ∈
(0, 1) and is discrete with Pr[X = k] = −ℓk/k log(1 − ℓ) for k ≥ 1. They use
two values: ℓ = 0.001 to simulate low demand and ℓ = 0.9 to simulate lumpy
demand. They use α values 0.1, 0.2 and 0.3, and β values 0.01, 0.02, 0.03, 0.04,
0.05, 0.1, 0.2, 0.3. We add SY and HES to these experiments, but we drop SES
as they found it to have large errors. They take mean results over 10 runs, each
with 120 time periods, whereas we use 100 runs. They initialise each forecaster
with “correct” values whereas we initialise with arbitrary values ŷ0 = τ̂0 = 1
then run them for 104 periods using demand probability p0. A final difference is
that instead of mean error and mean squared error we use MASE and MMR.

The results are shown in Tables 1–4. Because CR, SB and SY use only one
smoothing factor α we do not show their results for cases in which β 6= α.
Comparing MASE best-cases in each table, TSB and SY are least biased, followed
by HES, then CR and SB. Comparing MMR best-cases, SB is best, followed by
TSB and HES, then CR and SY. Comparing U2 best-cases HES is always at
least as good as TSB, though there is little difference. SB gives best results in
some cases, CR and SY the worst. Comparing MMR-worst cases, neither TSB
nor HES dominates the other though HES seems slightly better. Again SB gives
best results, CR and SY generally the worst. Comparing U2-worst cases HES
beats TSB and seems to be more robust under different smoothing factors. SB
again gives best results, while CR and SY have variable performance.

To examine the relative best-case performance of HES and TSB more closely,
Table 5 compares TSB and HES using RGRMSE and PB. To make this com-
parison we must choose smoothing factors α, β for both methods, and we do



this in two different ways: those giving the best MMR results and those giv-
ing the best U2 results. The table also shows the best factors, denoted by
αHES, βHES, αTSB, βTSB. Using the MMR-best factors HES performs rather less
well than TSB on lumpy demand, under both RGRMSE and PB. But using U2-
best factors there is little difference between the methods. The table also shows
that to optimise U2 we should use small factors for both TSB and HES, but to
optimise MMR the best factors depend on the form of the demand.

3.3 Geometric demand sizes

Another demand distribution that has recieved interest, and for which there
is also theoretical and empirical support, is the stuttering Poisson distribution
[18] in which demand intervals are Poisson and demand sizes are geometrically
distributed. Again we use a discrete version with geometrically distributed inter-
vals. The geometric distribution is characterised by a probability we shall denote
by g, and is discrete with Pr[X = k] = (1− g)k−1g for k ≥ 1. We use two values
of g: 0.2 and 0.8 to simulate low and lumpy demand respectively. Otherwise the
experiments are as in Section 3.2.

The results are shown in Tables 6–9. Though the numbers are different,
qualitatively the TSB and HES results are the same as for logarithmic demand
sizes. However, CR, SB and SY now give similar results to each other, and SB no
longer has the best best-case U2 result, though it still has the best worst-case U2
result. Table 10 compares TSB and HES using the RGRMSE and PB measures.
Qualitatively the results are the same as with logarithmic demand sizes, except
that HES is now worse than TSB in all 4 tables for MMR best-cases — though
there is still little difference between the U2-best cases.

3.4 Decreasing demand

The experiments so far use stationary demand, but Teunter et al. also consider
nonstationary demand. Again demand sizes follow the logarithmic distribution,
while the probability of a nonzero demand decreases linearly from p0 in the
first period to 0 during the last period. Demand sizes are again logarithmically
distributed. As pointed out by Teunter et al., none of the forecasters use trending
to model the decreasing demand so all are positively biased.

The results are shown in Tables 11–14. TSB clearly has the best best-case
MASE, MMR and U2 results, while HES is next-best, though SB occasionally
beats HES. HES has the worst worst-case MASE, MMR and U2 results, followed
by TSB. However, if we only consider HES and TSB results for which α = β
then CR, SB and SY have the worst worst-cases, with HES also poor on lumpy
demand.

The best β for all methods is larger: as pointed out by Teunter et al., large
smoothing factors are best at handling non-stationary demand, while small fac-
tors are best when demand is stationary. The best α value is relatively unim-
portant here, which makes sense as demand sizes are stationary.



3.5 Sudden obsolescence

We repeat the experiments of Section 3.4, but instead of linearly decreasing
the probability of demand we reduce it immediately to 0 after half (60) of the
periods, again following Teunter et al. Demand sizes are again logarithmically
distributed. The results are shown in Tables 15–18. As found by Teunter et al.
the differences between TSB and CR, SB and SY are more pronounced because
the latter are given no opportunity to adjust to the change in demand pattern.
The results are qualitatively similar to those for decreasing demand, but with
greater differences.

3.6 Summary of empirical results

On stationary demand SB performs very well, followed by TSB and HES. The
relative performance of HES and TSB depends on how they are tuned. If we
tune them using MMR then TSB beats HES under both the RGRMSE and
PB measures, but the best smoothing factors are erratic; while if we tune them
using U2 there is no significant difference between them, and the best smoothing
factors are small. We prefer to take the U2-based results, not because they are
better for our method but because they are more consistent with other work:
Teunter et al. found that small smoothing factors are best for stationary demand,
though admittedly this could simply be because they used another (unscaled)
mean squared error measure. Intuitively this makes sense, whereas using MMR
we found no consistent results for the best smoothing factors. [8] also recommend
tuning by U2. Thus we recommend tuning forecasting methods using U2 rather
than MMR, and when doing this small smoothing factors are best for stationary
demand. Under these conditions TSB and HES seem to be equally good under
two different measures, though they are slightly beaten by SB.

HES is more robust than TSB under changes to the smoothing factors, with
better worst-case behaviour as measured by both MMR and U2. We believe
that this is because HES’s hyperbolic decay between demands is slower than
TSB’s exponential decay, so large smoothing factors are less harmful. But on
non-stationary demand, with intervals increasing linearly or abruptly, TSB is
best followed by HES, with CR, SB and SY giving worse performance if we con-
sider the same range of smoothing factor settings. Here TSB’s greater reactivity
serves it well. As found by other researchers, and as is intuitively clear, large
smoothing factors are best at handling changes in demand pattern. However,
HES’s robustness means that we can recommend smoothing factors that behave
reasonably well on both stationary and non-stationary demand: α = β = 0.1.
The results in all cases are not much worse than with optimally-tuned factors.

4 Conclusion

We presented a new forecasting method called Hyperbolic-Exponential Smooth-
ing (HES), which is based on an application of Bayesian inference when no



demand occurs. We showed theoretically that HES is approximately unbiased,
and compared it empirically with Croston variants CR, SB, SY and TSB. On
stationary demand we found little difference between TSB and HES, though
HES was more robust under changes to smoothing factors, and both performed
well against other Croston methods. On non-stationary demand TSB performed
best, followed by HES.

Like TSB, HES has two smoothing factors α and β. In common with other
methods, HES performs best on stationary demand with small smoothing fac-
tors, and best on non-stationary demand with larger factors. Using smoothing
factors α = β = 0.1 gave reasonable results on a variety of demand patterns and
we recommend these values.
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A Results



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.015 1.219 0.717 -0.019 1.194 0.717 -0.001 1.207 0.717
0.20 0.20 0.033 1.249 0.730 -0.038 1.197 0.726 0.000 1.225 0.728
0.30 0.30 0.053 1.283 0.745 -0.057 1.200 0.735 0.003 1.247 0.741

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 -0.006 1.200 0.715 -0.008 1.198 0.715
0.10 0.02 -0.004 1.203 0.716 -0.006 1.200 0.715
0.10 0.03 -0.003 1.204 0.716 -0.004 1.202 0.715
0.10 0.04 -0.002 1.206 0.717 -0.004 1.203 0.716
0.10 0.05 -0.002 1.207 0.717 -0.003 1.204 0.716
0.10 0.10 -0.001 1.211 0.720 0.000 1.208 0.717
0.10 0.20 -0.001 1.223 0.726 0.006 1.217 0.720
0.10 0.30 0.000 1.236 0.732 0.013 1.229 0.723

0.20 0.01 -0.007 1.211 0.723 -0.009 1.210 0.722
0.20 0.02 -0.005 1.214 0.723 -0.007 1.211 0.723
0.20 0.03 -0.004 1.215 0.724 -0.006 1.213 0.723
0.20 0.04 -0.004 1.216 0.725 -0.005 1.214 0.723
0.20 0.05 -0.004 1.218 0.725 -0.005 1.215 0.724
0.20 0.10 -0.003 1.223 0.728 -0.002 1.219 0.725
0.20 0.20 -0.002 1.234 0.734 0.004 1.229 0.728
0.20 0.30 -0.002 1.247 0.741 0.011 1.240 0.732

0.30 0.01 -0.008 1.224 0.731 -0.009 1.222 0.731
0.30 0.02 -0.006 1.226 0.732 -0.008 1.224 0.731
0.30 0.03 -0.005 1.227 0.732 -0.006 1.225 0.732
0.30 0.04 -0.004 1.229 0.733 -0.005 1.226 0.732
0.30 0.05 -0.004 1.230 0.734 -0.005 1.227 0.732
0.30 0.10 -0.003 1.235 0.737 -0.002 1.232 0.734
0.30 0.20 -0.003 1.247 0.744 0.003 1.241 0.738
0.30 0.30 -0.002 1.259 0.751 0.011 1.253 0.742

Table 1. Logarithmic demand sizes with ℓ = 0.9, p0 = 0.5



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.027 1.651 0.707 0.000 1.617 0.707 0.005 1.624 0.707
0.20 0.20 0.053 1.695 0.714 -0.004 1.621 0.711 0.008 1.637 0.712
0.30 0.30 0.082 1.746 0.723 -0.008 1.626 0.717 0.013 1.654 0.719

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.007 1.623 0.706 0.014 1.631 0.706
0.10 0.02 0.004 1.621 0.707 0.012 1.629 0.706
0.10 0.03 0.002 1.620 0.707 0.010 1.627 0.706
0.10 0.04 0.002 1.620 0.708 0.008 1.626 0.706
0.10 0.05 0.002 1.621 0.709 0.007 1.625 0.706
0.10 0.10 0.003 1.627 0.712 0.005 1.623 0.707
0.10 0.20 0.003 1.639 0.720 0.007 1.628 0.708
0.10 0.30 0.002 1.651 0.728 0.013 1.637 0.710

0.20 0.01 0.009 1.634 0.709 0.016 1.642 0.709
0.20 0.02 0.005 1.630 0.710 0.014 1.640 0.709
0.20 0.03 0.004 1.628 0.711 0.012 1.638 0.709
0.20 0.04 0.003 1.628 0.711 0.010 1.636 0.709
0.20 0.05 0.003 1.629 0.712 0.009 1.635 0.709
0.20 0.10 0.003 1.634 0.716 0.007 1.633 0.710
0.20 0.20 0.003 1.646 0.724 0.008 1.636 0.711
0.20 0.30 0.003 1.657 0.733 0.013 1.645 0.713

0.30 0.01 0.010 1.643 0.713 0.018 1.652 0.713
0.30 0.02 0.007 1.638 0.714 0.016 1.650 0.713
0.30 0.03 0.005 1.637 0.714 0.014 1.647 0.713
0.30 0.04 0.004 1.636 0.715 0.012 1.645 0.713
0.30 0.05 0.003 1.636 0.715 0.011 1.644 0.713
0.30 0.10 0.003 1.641 0.719 0.008 1.641 0.714
0.30 0.20 0.003 1.652 0.728 0.009 1.644 0.715
0.30 0.30 0.002 1.663 0.738 0.014 1.653 0.717

Table 2. Logarithmic demand sizes with ℓ = 0.9, p0 = 0.2



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.023 0.988 0.718 -0.029 0.989 0.717 -0.002 0.988 0.718
0.20 0.20 0.051 0.988 0.729 -0.055 0.989 0.725 0.001 0.989 0.728
0.30 0.30 0.080 0.989 0.741 -0.084 0.990 0.733 0.006 0.990 0.740

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 -0.008 0.987 0.710 -0.011 0.987 0.709
0.10 0.02 -0.004 0.988 0.711 -0.008 0.988 0.710
0.10 0.03 -0.003 0.988 0.713 -0.006 0.988 0.711
0.10 0.04 -0.003 0.988 0.715 -0.004 0.988 0.712
0.10 0.05 -0.002 0.988 0.717 -0.003 0.988 0.713
0.10 0.10 -0.002 0.988 0.726 0.000 0.988 0.718
0.10 0.20 -0.002 0.989 0.746 0.008 0.988 0.728
0.10 0.30 -0.001 0.989 0.768 0.018 0.989 0.740

0.20 0.01 -0.008 0.987 0.710 -0.011 0.987 0.709
0.20 0.02 -0.004 0.988 0.711 -0.008 0.988 0.710
0.20 0.03 -0.003 0.988 0.713 -0.006 0.988 0.711
0.20 0.04 -0.003 0.988 0.715 -0.004 0.988 0.712
0.20 0.05 -0.002 0.988 0.717 -0.003 0.988 0.713
0.20 0.10 -0.002 0.988 0.726 0.000 0.988 0.718
0.20 0.20 -0.002 0.989 0.746 0.008 0.988 0.728
0.20 0.30 -0.001 0.989 0.768 0.018 0.989 0.740

0.30 0.01 -0.008 0.987 0.710 -0.011 0.987 0.709
0.30 0.02 -0.004 0.988 0.711 -0.008 0.988 0.710
0.30 0.03 -0.003 0.988 0.713 -0.006 0.988 0.711
0.30 0.04 -0.003 0.988 0.715 -0.004 0.988 0.712
0.30 0.05 -0.002 0.988 0.717 -0.003 0.988 0.713
0.30 0.10 -0.002 0.988 0.726 0.000 0.988 0.718
0.30 0.20 -0.002 0.989 0.746 0.008 0.988 0.728
0.30 0.30 -0.001 0.989 0.768 0.018 0.989 0.740

Table 3. Logarithmic demand sizes with ℓ = 0.001, p0 = 0.5



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.026 1.635 0.711 -0.005 1.603 0.710 0.001 1.610 0.710
0.20 0.20 0.053 1.663 0.716 -0.011 1.597 0.714 0.003 1.611 0.715
0.30 0.30 0.086 1.697 0.724 -0.015 1.592 0.718 0.008 1.616 0.720

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.002 1.610 0.708 0.009 1.618 0.707
0.10 0.02 -0.001 1.607 0.710 0.007 1.616 0.707
0.10 0.03 -0.002 1.605 0.711 0.005 1.614 0.707
0.10 0.04 -0.002 1.605 0.713 0.004 1.613 0.708
0.10 0.05 -0.002 1.605 0.715 0.003 1.611 0.708
0.10 0.10 -0.001 1.605 0.724 0.001 1.609 0.710
0.10 0.20 -0.001 1.606 0.744 0.004 1.611 0.714
0.10 0.30 -0.001 1.606 0.765 0.010 1.617 0.718

0.20 0.01 0.002 1.611 0.708 0.009 1.618 0.707
0.20 0.02 -0.001 1.607 0.710 0.007 1.616 0.707
0.20 0.03 -0.001 1.606 0.711 0.006 1.614 0.707
0.20 0.04 -0.002 1.605 0.713 0.004 1.613 0.708
0.20 0.05 -0.001 1.605 0.715 0.003 1.612 0.708
0.20 0.10 -0.001 1.605 0.724 0.001 1.609 0.710
0.20 0.20 -0.001 1.606 0.744 0.004 1.611 0.714
0.20 0.30 -0.001 1.606 0.766 0.010 1.617 0.718

0.30 0.01 0.002 1.611 0.708 0.010 1.618 0.707
0.30 0.02 0.000 1.607 0.710 0.008 1.616 0.707
0.30 0.03 -0.001 1.606 0.711 0.006 1.614 0.708
0.30 0.04 -0.001 1.605 0.713 0.004 1.613 0.708
0.30 0.05 -0.001 1.605 0.715 0.003 1.612 0.708
0.30 0.10 0.000 1.606 0.724 0.001 1.609 0.710
0.30 0.20 -0.001 1.606 0.744 0.004 1.611 0.714
0.30 0.30 -0.001 1.606 0.766 0.010 1.617 0.718

Table 4. Logarithmic demand sizes with ℓ = 0.001, p0 = 0.2

ℓ p0 αTSB βTSB αHES βHES RGRMSE PB

MMR-best factors

0.900 0.5 0.1 0.01 0.1 0.01 1.630 35
0.900 0.2 0.1 0.03 0.1 0.06 2.578 20
0.001 0.5 0.1 0.01 0.1 0.01 1.001 50
0.001 0.2 0.1 0.03 0.1 0.06 1.015 50

U2-best factors

0.900 0.5 0.1 0.01 0.1 0.01 0.996 53
0.900 0.2 0.1 0.01 0.1 0.01 1.011 47
0.001 0.5 0.1 0.01 0.1 0.01 1.001 50
0.001 0.2 0.1 0.01 0.1 0.01 1.016 47

Table 5. Comparison of HES and TSB on logarithmic demand sizes



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.021 1.169 0.713 -0.013 1.150 0.712 0.005 1.160 0.712
0.20 0.20 0.038 1.190 0.723 -0.033 1.149 0.719 0.005 1.171 0.722
0.30 0.30 0.056 1.212 0.735 -0.054 1.147 0.726 0.006 1.184 0.732

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.001 1.156 0.710 0.000 1.156 0.710
0.10 0.02 0.003 1.157 0.711 0.002 1.156 0.710
0.10 0.03 0.004 1.158 0.711 0.003 1.157 0.710
0.10 0.04 0.004 1.159 0.712 0.004 1.158 0.711
0.10 0.05 0.004 1.160 0.713 0.004 1.158 0.711
0.10 0.10 0.004 1.165 0.716 0.006 1.161 0.712
0.10 0.20 0.003 1.176 0.724 0.010 1.168 0.716
0.10 0.30 0.003 1.188 0.733 0.016 1.176 0.720

0.20 0.01 0.001 1.163 0.716 0.000 1.162 0.716
0.20 0.02 0.003 1.164 0.717 0.002 1.163 0.716
0.20 0.03 0.004 1.165 0.717 0.003 1.164 0.716
0.20 0.04 0.004 1.166 0.718 0.003 1.164 0.717
0.20 0.05 0.004 1.167 0.719 0.004 1.165 0.717
0.20 0.10 0.004 1.171 0.722 0.006 1.168 0.718
0.20 0.20 0.003 1.182 0.731 0.010 1.174 0.722
0.20 0.30 0.003 1.194 0.740 0.016 1.183 0.726

0.30 0.01 0.001 1.170 0.723 0.000 1.170 0.722
0.30 0.02 0.003 1.171 0.723 0.001 1.170 0.723
0.30 0.03 0.003 1.172 0.724 0.002 1.171 0.723
0.30 0.04 0.003 1.173 0.725 0.003 1.172 0.723
0.30 0.05 0.004 1.174 0.725 0.004 1.172 0.724
0.30 0.10 0.003 1.179 0.729 0.006 1.175 0.725
0.30 0.20 0.003 1.189 0.738 0.009 1.182 0.729
0.30 0.30 0.002 1.201 0.747 0.015 1.190 0.733

Table 6. Geometric demand sizes with g = 0.8, p0 = 0.5



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.041 1.668 0.714 0.012 1.633 0.713 0.018 1.640 0.713
0.20 0.20 0.067 1.708 0.721 0.007 1.633 0.718 0.020 1.649 0.719
0.30 0.30 0.097 1.754 0.731 0.003 1.634 0.724 0.024 1.662 0.726

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.020 1.641 0.712 0.023 1.645 0.712
0.10 0.02 0.017 1.639 0.713 0.024 1.645 0.712
0.10 0.03 0.016 1.639 0.714 0.023 1.644 0.712
0.10 0.04 0.015 1.639 0.715 0.022 1.643 0.712
0.10 0.05 0.014 1.639 0.716 0.021 1.642 0.712
0.10 0.10 0.012 1.641 0.720 0.019 1.641 0.713
0.10 0.20 0.010 1.648 0.731 0.020 1.646 0.716
0.10 0.30 0.009 1.655 0.743 0.025 1.655 0.718

0.20 0.01 0.021 1.646 0.715 0.025 1.650 0.714
0.20 0.02 0.019 1.644 0.716 0.025 1.650 0.715
0.20 0.03 0.017 1.643 0.717 0.024 1.649 0.715
0.20 0.04 0.016 1.643 0.718 0.023 1.648 0.715
0.20 0.05 0.015 1.643 0.718 0.022 1.648 0.715
0.20 0.10 0.012 1.644 0.723 0.020 1.646 0.716
0.20 0.20 0.010 1.650 0.734 0.021 1.651 0.718
0.20 0.30 0.009 1.657 0.746 0.026 1.660 0.721

0.30 0.01 0.022 1.650 0.718 0.025 1.653 0.717
0.30 0.02 0.019 1.647 0.719 0.025 1.653 0.717
0.30 0.03 0.018 1.647 0.720 0.024 1.652 0.718
0.30 0.04 0.016 1.646 0.721 0.023 1.652 0.718
0.30 0.05 0.016 1.646 0.721 0.022 1.651 0.718
0.30 0.10 0.012 1.647 0.726 0.020 1.649 0.719
0.30 0.20 0.009 1.651 0.737 0.022 1.654 0.722
0.30 0.30 0.008 1.658 0.750 0.026 1.663 0.724

Table 7. Geometric demand sizes with g = 0.8, p0 = 0.2



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.021 1.014 0.716 -0.022 1.013 0.715 0.000 1.013 0.716
0.20 0.20 0.043 1.018 0.727 -0.045 1.014 0.724 0.001 1.017 0.726
0.30 0.30 0.067 1.029 0.739 -0.070 1.016 0.731 0.003 1.024 0.737

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.002 1.011 0.710 0.003 1.010 0.710
0.10 0.02 0.001 1.012 0.712 0.001 1.011 0.710
0.10 0.03 0.001 1.013 0.713 0.001 1.011 0.711
0.10 0.04 0.000 1.013 0.715 0.001 1.012 0.712
0.10 0.05 0.000 1.014 0.716 0.001 1.012 0.713
0.10 0.10 0.000 1.016 0.723 0.002 1.014 0.716
0.10 0.20 0.000 1.021 0.738 0.007 1.016 0.724
0.10 0.30 0.000 1.029 0.753 0.016 1.020 0.732

0.20 0.01 0.002 1.011 0.713 0.003 1.010 0.713
0.20 0.02 0.001 1.012 0.715 0.001 1.011 0.713
0.20 0.03 0.001 1.013 0.716 0.001 1.011 0.714
0.20 0.04 0.000 1.014 0.718 0.001 1.012 0.715
0.20 0.05 0.000 1.014 0.719 0.001 1.012 0.715
0.20 0.10 0.000 1.017 0.726 0.002 1.014 0.719
0.20 0.20 0.000 1.024 0.741 0.007 1.018 0.727
0.20 0.30 0.000 1.034 0.757 0.016 1.023 0.735

0.30 0.01 0.001 1.012 0.716 0.003 1.011 0.716
0.30 0.02 0.001 1.013 0.718 0.001 1.011 0.716
0.30 0.03 0.000 1.014 0.719 0.001 1.012 0.717
0.30 0.04 0.000 1.015 0.721 0.001 1.013 0.718
0.30 0.05 0.000 1.016 0.722 0.001 1.013 0.718
0.30 0.10 0.000 1.020 0.729 0.001 1.016 0.722
0.30 0.20 0.000 1.028 0.744 0.007 1.021 0.730
0.30 0.30 0.000 1.039 0.760 0.015 1.026 0.738

Table 8. Geometric demand sizes with g = 0.2, p0 = 0.5



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.032 1.631 0.715 0.001 1.599 0.714 0.008 1.606 0.714
0.20 0.20 0.056 1.655 0.720 -0.008 1.589 0.718 0.006 1.604 0.719
0.30 0.30 0.085 1.683 0.728 -0.015 1.580 0.722 0.008 1.604 0.724

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.007 1.606 0.713 0.001 1.599 0.712
0.10 0.02 0.007 1.604 0.714 0.004 1.602 0.712
0.10 0.03 0.004 1.602 0.715 0.006 1.605 0.712
0.10 0.04 0.002 1.599 0.717 0.008 1.606 0.713
0.10 0.05 0.001 1.598 0.718 0.009 1.607 0.713
0.10 0.10 0.000 1.594 0.725 0.008 1.606 0.714
0.10 0.20 -0.001 1.593 0.741 0.007 1.604 0.717
0.10 0.30 -0.001 1.593 0.759 0.011 1.607 0.721

0.20 0.01 0.009 1.608 0.714 0.002 1.602 0.713
0.20 0.02 0.008 1.607 0.715 0.005 1.604 0.713
0.20 0.03 0.006 1.604 0.717 0.008 1.607 0.714
0.20 0.04 0.004 1.602 0.718 0.010 1.609 0.714
0.20 0.05 0.003 1.600 0.719 0.011 1.610 0.714
0.20 0.10 0.001 1.596 0.726 0.010 1.609 0.716
0.20 0.20 0.000 1.594 0.743 0.009 1.606 0.718
0.20 0.30 0.000 1.594 0.760 0.013 1.609 0.722

0.30 0.01 0.010 1.609 0.715 0.003 1.602 0.714
0.30 0.02 0.009 1.608 0.716 0.006 1.605 0.714
0.30 0.03 0.006 1.605 0.718 0.008 1.607 0.715
0.30 0.04 0.005 1.602 0.719 0.010 1.609 0.715
0.30 0.05 0.003 1.600 0.720 0.011 1.610 0.715
0.30 0.10 0.001 1.596 0.728 0.011 1.609 0.717
0.30 0.20 0.000 1.594 0.744 0.010 1.607 0.720
0.30 0.30 0.000 1.595 0.762 0.013 1.610 0.723

Table 9. Geometric demand sizes with g = 0.2, p0 = 0.2

g p0 αTSB βTSB αHES βHES RGRMSE PB

MMR-best factors

0.900 0.5 0.1 0.01 0.1 0.01 1.727 40
0.900 0.2 0.1 0.02 0.1 0.06 3.248 20
0.001 0.5 0.1 0.01 0.1 0.01 0.983 50
0.001 0.2 0.1 0.07 0.1 0.01 1.565 39

U2-best factors

0.900 0.5 0.1 0.01 0.1 0.01 1.001 51
0.900 0.2 0.1 0.01 0.1 0.01 1.004 50
0.001 0.5 0.1 0.01 0.1 0.01 1.000 51
0.001 0.2 0.1 0.01 0.1 0.01 1.000 52

Table 10. Comparison of HES and TSB on geometric demand sizes



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.165 1.785 0.722 0.139 1.736 0.719 0.150 1.754 0.720
0.20 0.20 0.138 1.735 0.728 0.089 1.642 0.721 0.108 1.676 0.724
0.30 0.30 0.134 1.737 0.738 0.061 1.599 0.725 0.090 1.651 0.731

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.240 1.958 0.734 0.293 2.089 0.748
0.10 0.02 0.178 1.812 0.723 0.257 2.001 0.738
0.10 0.03 0.139 1.723 0.718 0.230 1.936 0.732
0.10 0.04 0.113 1.666 0.715 0.209 1.886 0.728
0.10 0.05 0.095 1.627 0.714 0.191 1.846 0.725
0.10 0.10 0.051 1.540 0.714 0.139 1.729 0.718
0.10 0.20 0.025 1.502 0.720 0.096 1.637 0.715
0.10 0.30 0.015 1.499 0.727 0.078 1.603 0.716

0.20 0.01 0.242 1.973 0.744 0.295 2.105 0.759
0.20 0.02 0.180 1.825 0.731 0.259 2.017 0.749
0.20 0.03 0.141 1.735 0.725 0.232 1.951 0.742
0.20 0.04 0.114 1.677 0.722 0.210 1.901 0.737
0.20 0.05 0.096 1.638 0.720 0.193 1.861 0.734
0.20 0.10 0.052 1.550 0.720 0.140 1.742 0.725
0.20 0.20 0.026 1.511 0.726 0.098 1.650 0.722
0.20 0.30 0.016 1.508 0.734 0.080 1.615 0.723

0.30 0.01 0.243 1.986 0.754 0.297 2.120 0.771
0.30 0.02 0.180 1.837 0.739 0.260 2.031 0.760
0.30 0.03 0.141 1.746 0.732 0.233 1.965 0.752
0.30 0.04 0.115 1.688 0.729 0.211 1.914 0.746
0.30 0.05 0.097 1.648 0.727 0.194 1.873 0.742
0.30 0.10 0.053 1.560 0.726 0.141 1.754 0.733
0.30 0.20 0.027 1.520 0.732 0.099 1.662 0.729
0.30 0.30 0.017 1.516 0.741 0.081 1.627 0.729

Table 11. Decreasing demand with ℓ = 0.9, p0 = 0.5



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.208 2.460 0.713 0.185 2.386 0.711 0.189 2.399 0.711
0.20 0.20 0.185 2.378 0.714 0.141 2.237 0.710 0.149 2.260 0.711
0.30 0.30 0.178 2.354 0.718 0.114 2.146 0.711 0.126 2.181 0.712

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.192 2.409 0.711 0.262 2.666 0.721
0.10 0.02 0.142 2.226 0.707 0.247 2.610 0.718
0.10 0.03 0.111 2.114 0.705 0.233 2.561 0.716
0.10 0.04 0.090 2.041 0.705 0.222 2.517 0.715
0.10 0.05 0.075 1.991 0.705 0.211 2.479 0.713
0.10 0.10 0.042 1.878 0.708 0.173 2.341 0.709
0.10 0.20 0.022 1.820 0.716 0.131 2.190 0.706
0.10 0.30 0.015 1.805 0.725 0.109 2.111 0.706

0.20 0.01 0.193 2.417 0.715 0.263 2.677 0.726
0.20 0.02 0.142 2.230 0.710 0.248 2.620 0.723
0.20 0.03 0.110 2.116 0.708 0.234 2.570 0.721
0.20 0.04 0.089 2.041 0.707 0.222 2.526 0.719
0.20 0.05 0.074 1.991 0.707 0.212 2.487 0.718
0.20 0.10 0.040 1.878 0.710 0.173 2.346 0.713
0.20 0.20 0.021 1.821 0.719 0.130 2.190 0.709
0.20 0.30 0.014 1.807 0.729 0.107 2.110 0.708

0.30 0.01 0.193 2.424 0.719 0.264 2.687 0.732
0.30 0.02 0.141 2.234 0.713 0.249 2.630 0.729
0.30 0.03 0.109 2.118 0.711 0.235 2.579 0.726
0.30 0.04 0.088 2.043 0.710 0.223 2.535 0.724
0.30 0.05 0.073 1.991 0.710 0.212 2.495 0.722
0.30 0.10 0.039 1.878 0.713 0.173 2.351 0.716
0.30 0.20 0.020 1.823 0.722 0.129 2.192 0.712
0.30 0.30 0.014 1.809 0.733 0.106 2.109 0.710

Table 12. Decreasing demand with ℓ = 0.9, p0 = 0.2



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.243 1.638 0.748 0.206 1.606 0.740 0.221 1.616 0.743
0.20 0.20 0.201 1.576 0.744 0.131 1.518 0.731 0.158 1.536 0.736
0.30 0.30 0.194 1.559 0.750 0.091 1.475 0.731 0.131 1.501 0.739

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.352 1.791 0.784 0.429 1.906 0.822
0.10 0.02 0.263 1.661 0.750 0.376 1.830 0.796
0.10 0.03 0.207 1.583 0.736 0.337 1.773 0.778
0.10 0.04 0.169 1.532 0.729 0.307 1.730 0.766
0.10 0.05 0.142 1.497 0.726 0.282 1.695 0.758
0.10 0.10 0.079 1.421 0.728 0.205 1.593 0.738
0.10 0.20 0.042 1.381 0.746 0.143 1.512 0.731
0.10 0.30 0.028 1.368 0.767 0.118 1.478 0.734

0.20 0.01 0.352 1.790 0.784 0.428 1.906 0.822
0.20 0.02 0.263 1.661 0.750 0.376 1.829 0.796
0.20 0.03 0.207 1.582 0.736 0.337 1.773 0.778
0.20 0.04 0.169 1.532 0.729 0.306 1.730 0.766
0.20 0.05 0.142 1.497 0.726 0.282 1.695 0.758
0.20 0.10 0.079 1.421 0.728 0.205 1.593 0.738
0.20 0.20 0.042 1.380 0.746 0.143 1.512 0.731
0.20 0.30 0.028 1.368 0.767 0.118 1.477 0.734

0.30 0.01 0.352 1.790 0.784 0.428 1.906 0.822
0.30 0.02 0.263 1.661 0.750 0.376 1.829 0.796
0.30 0.03 0.207 1.582 0.736 0.337 1.773 0.778
0.30 0.04 0.169 1.532 0.729 0.306 1.730 0.766
0.30 0.05 0.142 1.497 0.726 0.281 1.695 0.758
0.30 0.10 0.079 1.420 0.728 0.205 1.593 0.738
0.30 0.20 0.042 1.380 0.746 0.143 1.512 0.731
0.30 0.30 0.028 1.367 0.767 0.118 1.477 0.734

Table 13. Decreasing demand with ℓ = 0.001, p0 = 0.5



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.234 2.439 0.738 0.208 2.367 0.732 0.213 2.380 0.733
0.20 0.20 0.210 2.358 0.735 0.161 2.222 0.726 0.169 2.245 0.728
0.30 0.30 0.207 2.339 0.740 0.133 2.138 0.725 0.146 2.172 0.728

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.217 2.391 0.732 0.296 2.644 0.756
0.10 0.02 0.160 2.211 0.721 0.279 2.588 0.750
0.10 0.03 0.125 2.101 0.717 0.263 2.539 0.745
0.10 0.04 0.101 2.029 0.716 0.250 2.497 0.741
0.10 0.05 0.085 1.979 0.717 0.238 2.459 0.738
0.10 0.10 0.046 1.865 0.724 0.195 2.323 0.728
0.10 0.20 0.023 1.800 0.743 0.147 2.175 0.721
0.10 0.30 0.015 1.777 0.765 0.123 2.098 0.721

0.20 0.01 0.217 2.391 0.732 0.296 2.644 0.756
0.20 0.02 0.160 2.212 0.721 0.279 2.588 0.750
0.20 0.03 0.125 2.102 0.717 0.263 2.539 0.745
0.20 0.04 0.101 2.029 0.716 0.250 2.497 0.741
0.20 0.05 0.085 1.979 0.717 0.238 2.459 0.738
0.20 0.10 0.046 1.865 0.724 0.195 2.323 0.728
0.20 0.20 0.023 1.800 0.743 0.148 2.175 0.721
0.20 0.30 0.015 1.777 0.765 0.123 2.098 0.721

0.30 0.01 0.217 2.390 0.732 0.296 2.643 0.756
0.30 0.02 0.160 2.211 0.721 0.279 2.588 0.750
0.30 0.03 0.125 2.101 0.717 0.263 2.539 0.745
0.30 0.04 0.101 2.029 0.716 0.250 2.497 0.741
0.30 0.05 0.085 1.979 0.717 0.238 2.459 0.738
0.30 0.10 0.046 1.865 0.724 0.195 2.323 0.728
0.30 0.20 0.023 1.800 0.743 0.148 2.175 0.721
0.30 0.30 0.015 1.777 0.765 0.123 2.098 0.721

Table 14. Decreasing demand with ℓ = 0.001, p0 = 0.2



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.348 2.216 0.800 0.313 2.142 0.791 0.331 2.180 0.795
0.20 0.20 0.359 2.254 0.820 0.289 2.101 0.799 0.326 2.182 0.810
0.30 0.30 0.375 2.309 0.846 0.268 2.073 0.809 0.326 2.203 0.831

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.249 1.937 0.760 0.306 2.106 0.781
0.10 0.02 0.195 1.779 0.744 0.289 2.056 0.775
0.10 0.03 0.156 1.667 0.736 0.275 2.013 0.769
0.10 0.04 0.128 1.587 0.731 0.262 1.975 0.764
0.10 0.05 0.108 1.528 0.728 0.250 1.942 0.761
0.10 0.10 0.059 1.389 0.724 0.208 1.821 0.748
0.10 0.20 0.032 1.322 0.727 0.164 1.691 0.740
0.10 0.30 0.023 1.309 0.732 0.141 1.626 0.738

0.20 0.01 0.243 1.935 0.769 0.300 2.101 0.792
0.20 0.02 0.190 1.778 0.753 0.283 2.052 0.785
0.20 0.03 0.152 1.668 0.744 0.269 2.009 0.779
0.20 0.04 0.125 1.589 0.739 0.256 1.972 0.774
0.20 0.05 0.105 1.532 0.736 0.244 1.939 0.770
0.20 0.10 0.057 1.396 0.732 0.203 1.819 0.757
0.20 0.20 0.030 1.331 0.735 0.160 1.694 0.748
0.20 0.30 0.021 1.318 0.741 0.137 1.631 0.747

0.30 0.01 0.240 1.938 0.779 0.296 2.104 0.803
0.30 0.02 0.187 1.783 0.762 0.279 2.054 0.795
0.30 0.03 0.149 1.674 0.753 0.265 2.012 0.789
0.30 0.04 0.122 1.596 0.748 0.252 1.975 0.784
0.30 0.05 0.103 1.540 0.745 0.241 1.942 0.780
0.30 0.10 0.056 1.407 0.741 0.200 1.824 0.767
0.30 0.20 0.030 1.343 0.745 0.157 1.701 0.758
0.30 0.30 0.021 1.330 0.751 0.135 1.639 0.757

Table 15. Sudden obsolescence with ℓ = 0.9, p0 = 0.5



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.285 2.718 0.732 0.258 2.631 0.729 0.264 2.649 0.729
0.20 0.20 0.300 2.773 0.743 0.245 2.591 0.734 0.257 2.630 0.736
0.30 0.30 0.318 2.838 0.757 0.233 2.554 0.740 0.252 2.619 0.745

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.202 2.403 0.716 0.264 2.647 0.727
0.10 0.02 0.155 2.220 0.710 0.256 2.615 0.725
0.10 0.03 0.124 2.096 0.708 0.248 2.586 0.724
0.10 0.04 0.101 2.008 0.707 0.241 2.559 0.723
0.10 0.05 0.085 1.944 0.706 0.235 2.534 0.722
0.10 0.10 0.046 1.799 0.708 0.210 2.434 0.718
0.10 0.20 0.025 1.730 0.714 0.177 2.302 0.714
0.10 0.30 0.018 1.716 0.722 0.156 2.221 0.713

0.20 0.01 0.200 2.401 0.719 0.261 2.643 0.730
0.20 0.02 0.153 2.219 0.714 0.253 2.611 0.729
0.20 0.03 0.122 2.095 0.711 0.246 2.582 0.728
0.20 0.04 0.099 2.007 0.710 0.239 2.555 0.726
0.20 0.05 0.083 1.944 0.709 0.232 2.531 0.725
0.20 0.10 0.045 1.802 0.711 0.207 2.430 0.721
0.20 0.20 0.024 1.735 0.718 0.174 2.297 0.717
0.20 0.30 0.017 1.721 0.727 0.153 2.215 0.716

0.30 0.01 0.197 2.398 0.724 0.258 2.637 0.735
0.30 0.02 0.151 2.218 0.717 0.250 2.606 0.734
0.30 0.03 0.120 2.095 0.715 0.243 2.577 0.732
0.30 0.04 0.098 2.008 0.713 0.236 2.551 0.731
0.30 0.05 0.082 1.945 0.713 0.230 2.526 0.730
0.30 0.10 0.044 1.804 0.715 0.204 2.426 0.726
0.30 0.20 0.024 1.740 0.723 0.171 2.293 0.721
0.30 0.30 0.017 1.727 0.733 0.150 2.211 0.720

Table 16. Sudden obsolescence with ℓ = 0.9, p0 = 0.2



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.527 2.018 1.012 0.476 1.968 0.986 0.502 1.994 1.000
0.20 0.20 0.556 2.050 1.042 0.450 1.945 0.986 0.506 2.001 1.017
0.30 0.30 0.588 2.087 1.075 0.424 1.924 0.986 0.514 2.015 1.040

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.376 1.747 0.881 0.464 1.923 0.955
0.10 0.02 0.293 1.580 0.825 0.438 1.870 0.932
0.10 0.03 0.234 1.461 0.794 0.416 1.824 0.913
0.10 0.04 0.192 1.377 0.776 0.396 1.784 0.897
0.10 0.05 0.160 1.314 0.765 0.378 1.748 0.884
0.10 0.10 0.085 1.166 0.747 0.314 1.617 0.840
0.10 0.20 0.043 1.087 0.755 0.245 1.474 0.807
0.10 0.30 0.029 1.062 0.772 0.209 1.396 0.797

0.20 0.01 0.376 1.747 0.881 0.464 1.923 0.955
0.20 0.02 0.293 1.580 0.825 0.438 1.870 0.932
0.20 0.03 0.234 1.461 0.794 0.416 1.824 0.913
0.20 0.04 0.192 1.376 0.776 0.396 1.784 0.897
0.20 0.05 0.160 1.314 0.765 0.378 1.748 0.884
0.20 0.10 0.085 1.166 0.747 0.314 1.617 0.840
0.20 0.20 0.043 1.087 0.755 0.245 1.474 0.807
0.20 0.30 0.029 1.062 0.772 0.209 1.396 0.797

0.30 0.01 0.376 1.746 0.881 0.464 1.923 0.955
0.30 0.02 0.293 1.579 0.825 0.438 1.870 0.932
0.30 0.03 0.234 1.461 0.794 0.416 1.824 0.913
0.30 0.04 0.192 1.376 0.776 0.396 1.784 0.897
0.30 0.05 0.160 1.314 0.765 0.378 1.748 0.884
0.30 0.10 0.085 1.166 0.747 0.314 1.617 0.840
0.30 0.20 0.043 1.087 0.755 0.245 1.474 0.807
0.30 0.30 0.029 1.062 0.772 0.209 1.396 0.797

Table 17. Sudden obsolescence with ℓ = 0.001, p0 = 0.5



CR SB SY
α β MASE MMR U2 MASE MMR U2 MASE MMR U2

0.10 0.10 0.325 2.705 0.797 0.294 2.619 0.788 0.301 2.637 0.790
0.20 0.20 0.349 2.768 0.814 0.285 2.591 0.793 0.299 2.630 0.798
0.30 0.30 0.377 2.842 0.834 0.277 2.566 0.798 0.300 2.629 0.808

TSB HES
α β MASE MMR U2 MASE MMR U2

0.10 0.01 0.229 2.391 0.753 0.301 2.636 0.783
0.10 0.02 0.176 2.208 0.737 0.291 2.604 0.778
0.10 0.03 0.139 2.082 0.730 0.282 2.574 0.775
0.10 0.04 0.113 1.993 0.726 0.274 2.547 0.772
0.10 0.05 0.094 1.928 0.725 0.267 2.522 0.769
0.10 0.10 0.049 1.774 0.727 0.238 2.422 0.758
0.10 0.20 0.024 1.692 0.744 0.201 2.288 0.748
0.10 0.30 0.016 1.666 0.765 0.177 2.203 0.744

0.20 0.01 0.229 2.391 0.753 0.301 2.636 0.782
0.20 0.02 0.176 2.208 0.737 0.291 2.604 0.778
0.20 0.03 0.139 2.082 0.730 0.282 2.574 0.775
0.20 0.04 0.113 1.993 0.726 0.274 2.547 0.771
0.20 0.05 0.095 1.928 0.725 0.267 2.522 0.769
0.20 0.10 0.049 1.774 0.727 0.238 2.422 0.758
0.20 0.20 0.024 1.692 0.744 0.201 2.288 0.748
0.20 0.30 0.016 1.666 0.765 0.177 2.203 0.744

0.30 0.01 0.229 2.391 0.753 0.301 2.636 0.782
0.30 0.02 0.176 2.208 0.737 0.291 2.604 0.778
0.30 0.03 0.139 2.082 0.730 0.282 2.574 0.775
0.30 0.04 0.113 1.993 0.726 0.274 2.547 0.771
0.30 0.05 0.094 1.928 0.725 0.267 2.522 0.769
0.30 0.10 0.049 1.774 0.727 0.238 2.422 0.758
0.30 0.20 0.024 1.692 0.744 0.201 2.288 0.748
0.30 0.30 0.016 1.666 0.765 0.177 2.203 0.744

Table 18. Sudden obsolescence with ℓ = 0.001, p0 = 0.2
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