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Golod-Shafarevich algebras, free subalgebras

and Noetherian images

Agata Smoktunowicz

Abstract

It is shown that Golod-Shaferevich algebras of a reduced number

of defining relations contain noncommutative free subalgebras in two

generators, and that these algebras can be homomorphically mapped

onto prime, Noetherian algebras with linear growth. It is also shown

that Golod-Shafarevich algebras of a reduced number of relations can-

not be nil.

2010 Mathematics subject classification: 16P40, 16S15, 16W50, 16P90, 16R10,

16D25, 16N40, 16N20.

Key words: Golod-Shaferevich algebras, free subalgebras, Noetherian alge-

bras, polynomial identity algebras, finitely presented algebras, Jacobson rad-

ical, nil rings.

Introduction

In 1964, Golod and Shaferevich proved the Golod-Shafarevich theorem, and

subsequently Golod constructed finitely generated nil and not nilpotent al-

gebras [9, 8]. Recall that an algebra is nil if every element to some power

is zero, and that finitely generated nil algebras have no infinite-dimensional

homomorphic images which are Noetherian, nor which satisfy a polynomial

identity [13]. Therefore, in general we cannot hope that Golod-Shafarevich
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algebras with an infinite number of defining relations can be mapped onto in-

finite dimensional Noetherian algebras, nor onto infinite dimensional algebras

satisfying a polynomial identity.

In this paper, we will show that the case where the number of defining

relations is finite is different; namely, that the following result holds:

Theorem 0.1. Let K be an algebraically closed field, and let A be the free

noncommutative algebra generated in degree one by elements x, y. Let ξ be

a natural number. Let I denote the ideal generated in A by homogeneous

elements f1, f2, . . . , fξ ∈ A. Suppose that there are exactly ri elements among

f1, f2, . . . , fξ with degrees larger than 2i and not exceeding 2i+1. Assume that

there are no elements among f1, f2, . . . , fξ with degree k if 2n+2n−1+2n−2 <

k < 2n+1 + 2n for some n. Denote Y = {n : rn 6= 0}. Suppose that for all

n ∈ Y , m ∈ {0} ∪ Y with m < n we have

23n+4
∏

i<n,i∈Y

r32i < rn < 22
n−m−3

.

Then A/I contains a free noncommutative graded subalgebra in two genera-

tors, and these generators are monomials of the same degree. In particular,

A/I is not Jacobson radical. Moreover, A/I can be homomorphically mapped

onto a graded, prime, Noetherian algebra with linear growth which satisfies a

polynomial identity.

For a more general result see Theorem 7.1. The following related question

remains open: Is there a finitely presented infinite dimensional nil algebra?

Note that, under the conditions of Theorem 0.1, the answer to this question

is negative. It was shown by Zelmanov that this question is strongly related

to the Burnside problem for finitely presented groups, namely: Are all finitely

presented torsion groups finite? It is also not known if the Jacobson radical of

a finitely presented algebra is nil. Zelmanov also asked whether an algebra in

d generators subject to d2

4
relations can be mapped onto infinite dimensional

polynomial identity algebras (with an affirmative answer possibly having

applications within group theory [22]). This question is related to Theorem
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0.1 since, by the Small-Warfield result [17], affine algebras with linear growth

are finite dimensional modules over their centers, with these centers being

Noetherian and containing subalgebras isomorphic to the polynomial ring

K[x].

We recall the definition of the aforementioned Golod-Shafarevich theo-

rem, see [9, 22, 19]. Golod-Shafarevich proved that if the series (1 − dt +
∑∞

i=2 rit
i)−1 has all coefficients nonnegative then all free algebras in d gener-

ators subject to arbitrary homogeneous relations f1, f2, . . . with ri relations

of degree i, are infinite dimensional. In [2] Anick asked if the converse of

the Golod-Shafarevich theorem is true i.e., if there is a finitely generated

algebra in d generators subject to ri homogeneous relations of degree i for

i = 2, 3, . . ., provided that the series (1 − dt +
∑∞

i=2 rit
i)−1 has a negative

coefficient. This question is still generally open, however the case of relations

of degree two is well understood [20], and the complete solution in the case

of quadratic semigroup relations was found in [10]. Another open question,

again related to Theorem 0.1, is whether finitely presented algebras with

exponential growth always contain free noncommutative subalgebras. Theo-

rem 0.1 shows that, under its assumptions, the answer is in the affirmative.

Anick proved that finitely presented monomial algebras with exponential

growth always contain free noncommutative subalgebras, and recently Bell

and Rogalski proved that quotients of affine domains with Gelfand-Kirillov

dimension two over uncountable, algebraically closed fields contain free non-

commutative subalgebras in two generators [11]. An open question by Anick

asks whether all division algebras of exponential growth contain free non-

commutative subalgebras in two generators [1]. Related questions concerning

Golod-Shafarevich groups have also been studied [7, 22]. In particular, Zel-

manov proved that a pro-p group satisfying the Golod-Shafarevich condition

contains a free non abelian pro p-group [21].
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0.1 Notation

In what follows, K is a countable, algebraically closed field and A is the

free K-algebra in two non-commuting indeterminates x and y. By a graded

algebra we mean an algebra graded by the additive semigroup of natural

numbers. The set of monomials in {x, y} is denoted by M and, for each

k ≥ 0, its subset of monomials of degree k is denoted by M(k). Thus,

M(0) = {1} and for k ≥ 1 the elements in M(k) are of the form x1 · · ·xk

with all xi ∈ {x, y}. The span of M(k) in A is denoted by A(k); its elements

are called homogenous polynomials of degree k. More generally, for any subset

X of A, we denote by X(k) its subset of homogeneous elements of degree

k. The degree deg f of an element f ∈ A is the least k ≥ 0 such that

f ∈ A(0) + · · · + A(k). Any f ∈ A can be uniquely written in the form

f = f0+f1+· · ·+fk with each fi ∈ A(i). The elements fi are the homogeneous

components of f . A (right, left, two-sided) ideal of A is homogeneous if it

is spanned by its elements’ homogeneous components. If V is a linear space

over K, we denote by dimV the dimension of V over K. A graded K-algebra

R has a linear growth if there is a number c such that dimR(n) ≤ c for all n.

We say that a graded infinite-dimensional algebra R has quadratic growth if

there is a number c such that dimR(n) ≤ cn for all n, and R does not have

linear growth. For more information about the growth of algebras, see [12].

1 General construction

Let K be a field and A be a free K-algebra generated in degree one by two

elements x, y. Suppose that subspaces U(2m), V (2m) of A(2m) satisfy, for

every m ≥ 1, the following properties:

1. V (2m) is spanned by monomials;

2. V (2m) + U(2m) = A(2m) and V (2m) ∩ U(2m) = 0;

3. A(2m−1)U(2m−1) + U(2m−1)A(2m−1) ⊆ U(2m);
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4. V (2m) ⊆ V (2m−1)V (2m−1), where for m = 0 we set V (20) = Kx+Ky,

U(20) = 0.

We define a graded subspace E of A by constructing its homogeneous com-

ponents E(k) as follows. Given k ∈ N , let n ∈ N be such that 2n−1 ≤

k < 2n. Then r ∈ E(k) precisely if, for all j ∈ {0, . . . , 2n+1 − k}, we have

A(j)rA(2n+1 − j − k) ⊆ U(2n)A(2n) + A(2n)U(2n). More compactly,

E(k) = {r ∈ A(k) | ArA ∩A(2n+1) ⊆ U(2n)A(2n) + A(2n)U(2n)}. (1)

Set then E =
⊕

k∈N E(k).

Lemma 1.1. The set E is an ideal in A. Moreover, if all sets V (2n) are

nonzero, then algebra A/E is infinite dimensional over K.

Proof. The proof of the first claim is the same as in Theorem 5 in [14] (A(n)

is denoted as H(n) in [14]). Notice that we only need property 3 to prove

that E is an ideal.

Regarding the second claim, suppose on the contrary that A/E is a finite-

dimensional algebra. By the definition of E, we see that A/E is a graded

algebra, hence V (2n) ⊆ E for some n. Let r ∈ V (2n) ⊆ E, then by the defini-

tion of E we get that rA(2n+2−2n) ⊆ U(2n+2). Since V (2n)3 ⊆ A(2n+2−2n),

it follows that V (2n)4 ⊆ U(2n+2). By property 4, V (2n+2) ⊆ V (2n)4, hence

V (2n+2) ⊆ U(2n+2). By property 2, U(2n+2) ∩ V (2n+1) = 0, a contradiction,

hence A/E is infinite dimensional over K.

We now prove the following theorem.

Theorem 1.2. Let K be a field and A be a free K-algebra generated in

degree one by two elements x, y. Suppose that subspaces U(2m), V (2m) of

A(2m) satisfy properties 1-4 above, and moreover that there is n such that

dim V (2n) = 2 and V (2m+1) = V (2m)V (2m) for all m ≥ n. Then, the

algebra A/E contains a free noncommutative algebra in 2 generators, and

these generators are monomials of the same degree.
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Proof. Let V (2n) = Km1 +Km2 for some monomials m1, m2 ∈ A(2n). We

will show that images of m1 and m2 generate a free noncommutative subalge-

bra in A/E. Recall that E is a graded ideal; therefore, it is sufficient to show

that if f(X, Y ) ∈ K[X, Y ] is a homogeneous polynomial in two noncom-

muting variables X, Y , then f(m1, m2) /∈ E. Notice that f(m1, m2) ∈ A(t)

for some t divisible by 2n. Let m be such that 2m ≤ t < 2m+1 and let

j = 2m+2−t
2n

. Observe that f(m1, m2) ∈ V (2n)
t

2n , since m1, m2 ⊆ V (2n),

and so f(m1, m2)m1
j ∈ V (2n)2

m+2−n

. Observe that V (2n)2
m+2−n

= V (2m+2),

since by assumption V (2m+1) = V (2m)V (2m) for all m ≥ n. By property 3,

we get U(2m+2) ∩ V (2m+2) = 0. Therefore, f(m1, m2)m1
j /∈ U(2m+2), and

so f(m1, m2) /∈ E, as required, by the definition of E. This completes the

proof.

Theorem 1.3. Let K be a field and A be a free K-algebra generated in

degree one by two elements x, y. Suppose that subspaces U(2m), V (2m) of

A(2m) satisfy properties 1-4 above and moreover that there is α such that

dim V (2m) = 1 for all m ≥ α. Then V (2m+1) = V (2m)V (2m) and U(2m+1) =

U(2m)A(2m) + A(2m)U(2m) for all m ≥ n.

Proof. Observe that by property 4, V (2m+1) ⊆ V (2m)V (2m), and by assump-

tion dimV (2m+1) = dimV (2m)V (2m) for all m ≥ α. Therefore, V (2m+1) =

V (2m)V (2m).

Fixm ≥ α. We will now prove that U(2m+1) = T where T = U(2m)A(2m)+

A(2m)U(2m). Notice that T ⊆ U(2m+1) by property 3. On the other

hand, V (2m+1) = V (2m)V (2m) and property 2 imply that T + V (2m+1) =

A(2m+1). Therefore, dimT = dimA(2m+1) − dimV (2m+1). By property 2,

dimU(2m+1) = dimA(2m+1)− dimV (2m+1), so dimT = dimU(2m+1). Since

T ⊆ U(2m+1), it follows that U(2m+1) = T .

We will now review some concepts introduced in [14]. We will adhere to

the notation used in [19].

We extend the definition of U(2n), V (2n) to dimensions that are not pow-

ers of 2. In [14], Section 4 the sets (2–5) are named respectively S,W,R and
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Q.

Let k ∈ N be given. We write it as a sum of increasing powers of 2,

namely k =
∑t

i=1 2
pi with 0 ≤ p1 < p2 < . . . < pt. Set then

U<(k) =

t∑

i=0

A(2p1 + · · ·+ 2pi−1)U(2pi)A(2pi+1 + · · ·+ 2pt), (2)

V <(k) = V (2p1) · · ·V (2pt), (3)

U>(k) =
t∑

i=0

A(2pt + · · ·+ 2pi+1)U(2pi)A(2pi−1 + · · ·+ 2p1), (4)

V >(k) = V (2pt) · · ·V (2p1). (5)

Lemma 1.4 ([14], pp. 993–994). For all k ∈ N we have A(k) = U<(k) ⊕

V <(k) = U>(k)⊕ V >(k).

For all k, ℓ ∈ N we have A(k)U<(ℓ) ⊆ U<(k + ℓ) and U>(k)A(ℓ) ⊆

U>(k + ℓ).

Proposition 1.1 (Theorem 11,[14]). For every k ∈ N we have

dimA(k)/E(k) ≤

k∑

j=0

dimV <(k − j) dimV >(j),

where we set dimV >(0) = dimV <(0) = 1.

Proof. The proof is the same as the proof of Theorem 11 in [14], or the proof

of Theorem 5.2 in [15].

Lemma 1.5 (Lemma 3.2, [15]). For any m ≥ n and any 0 ≤ k < 2m−n,

H(k2n)U(2n)H((2m−n − k − 1)2n) ⊆ U(2m).

2 Algebras satisfying polynomial identities

Throughout this section, K is a field and A is a free K-algebra generated in

degree 1 by two elements x, y. Also in this section we assume that subspaces

U(2m), V (2m) of A(2m) satisfy properties 1-4 from the beginning of Section

1, and that there is α such that dimV (2m) = 1 for all m ≥ α.
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Lemma 2.1. There is a natural number c, such that for every n the dimen-

sion of the space Tn =
∑n

i=0 V
<(i)V >(n− i) is less than c.

Proof. By assumption, there is a monomial v of degree 2α such that V (2α) =

Kv. Observe that by assumption V (2α+i) = Kv2
i

. By the definition, the

spaces V <(i) and V >(i) are contained in the appropriate products of spaces

V (2k). It follows that the space Tn has a basis consisting of elements of the

form qvir where q and r are monomials of degrees not exceeding 2α, and i is

such that the total degree of qvir is n. It follows that dimT (n) ≤ 22
2α+2

, as

required.

We now recall the definition of the Capelli Polynomial (see pp. 8, [11];

pp. 141, [6]).

dn(x1, x2, . . . , xn; y1, y2, . . . , yn) =
∑

σ∈S{1,2,...,n}

(−1)σxσ(1)y1xσ(2)y2 . . . xσ(n)yn

where S{1, 2, . . . , n} is the set of all permutations of the set {1, 2, . . . , n}.

Lemma 2.2. Let c be as in Lemma 2.1. Let n be a natural number and

m1, . . . , mc+1 ∈ M(n), and r1, r2, . . . , rc+1 ∈ M be such that deg(ri) + n is

divisible by 2α for all i ≤ c+ 1. Then

dc+1(m1, m2, . . . , mc+1; r1, r2, . . . , rc+1) ∈ E.

Proof. Denote P = dc+1(m1, m2, . . . , mc+1; r1, r2, . . . , rc+1). Observe that

P ∈ A(γ) where γ = 2αq for some q. Let s be such that 2s ≤ γ < 2s+1,

so clearly α < s + 1. We will show that, for any t > 0 and any 0 < i ≤ 2α,

we have A(2αt− i)PA∩A(2s+2) ⊆ U(2s+1)A(2s+1) +A(2s+1)U(2s+1). Then,

because i, t were arbitrary, and by the definition of E, we would get P ∈ E.

Fix 0 < i ≤ 2α. We will show now that A(2αt − i)PA ∩ A(2s+2) ⊆

U(2s+1)A(2s+1)+A(2s+1)U(2s+1). By Lemma 1.3, U<(i)A(n−i)+A(i)U>(n−

i) + V <(i)V >(n − i) = A(n). By Lemma 2.1, there are βi ∈ K such that
∑c+1

j=1 βjmj ∈ U<(i)A(n − i) + A(i)U>(n − i). We can assume that mc+1 =
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∑
i≤cmiγi+ d for some γi ∈ K and some d ∈ U<(i)A(n− i)+A(i)U>(n− i).

After substituting the expression for mc+1 into the expression for P , we get

P ∈
∑

k=0,1,2,...

A(2αk)(U<(i)A(n− i) + A(i)U>(n− i))A(2α(q − k)− n).

Note that, since degP is divisible by 2α, we get A(2αt−i)PA∩A(2s+2) ⊆

A(2αt− i)PA(i)A. Therefore, A(2αt− i)PA∩A(2s+2) ⊆
∑

k=0,1,2,...A(2
α(k+

t− 1))A(2α − i)(U<(i)A(n− i) + A(i)U>(n− i))A(2α(q − k)− n)A(i)A.

Observe now that the following holds:

a. By Lemma 1.3, we get A(2α − i)U<(i) ⊆ U(2α). Recall that U(2α) =

U>(2α). Hence, A(2α(k+ t−1))A(2α− i)(U<(i)A(n− i))A(2α(q−k)−

n)A(i)A ⊆ A(2α(k + t− 1))U>(2α)A.

b. By Lemma 1.3, we get U>(n−i)A(2α(q−k)−(n−i)) ⊆ U>(2α(q−k)).

Therefore, A(2α(k + t − 1))A(2α − i)(A(i)U>(n − i))A(2α(q − k) −

n)A(i)A ⊆ A(2α(k + t))U>(2α(q − k))A.

Using a. and b. we get

A(2αt− i)PA ∩ A(2s+2) ⊆
∑

k,j=0,1,2,...

A(2αk)U>(2α(j + 1))A.

By assumptions from the beginning of this section, we get dimV (2α+i) =

1 if i ≥ 0. By Theorem 1.3, U(2α+i+1) = U(2α+i)A(2α+i) + A(2α+i)U(2α+i)

for all i ≥ 0. Applying this property several times, we get that for all natural

j > 0 we have U>(2αj) =
∑

i=0,1,...,j−1A(2
αi)U(2α)A(2α(j − i − 1)). It

follows that A(2αt− i)PA∩2s+2 ⊆
∑

i,j=0,1,...A(2
αi)U(2α)A(2αj). Therefore,

by Lemma 1.4 and because s+1 > α, we get that A(2αt− i)PA∩A(2s+2) ⊆

A(2s+1)U(2s+1) + A(2s+1)U(2s+1).

Lemma 2.3. Let c be as in Lemma 2.1. Let β > 2α(c + 1). Let n be a

natural number, m1, . . . , mβ ∈ M(n) and let r1, r2, . . . , rβ ∈ M . Then

dβ(m1, m2, . . . , mβ; r1, r2, . . . , rβ) ∈ E.
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Proof. Denote Z = dβ(m1, m2, . . . , mβ; r1, r2, . . . , rβ). We will show that Z

is in the ideal generated by elements of the same form as P , in Lemma

2.2. Consider elements e(1) = deg r1 + n, e(2) = deg r1 + deg r2 + 2n, . . . ,

e(i) =
∑i

k=1 deg rk + ni. There are c + 1 elements i1, i2, . . . , ic+1 such that

e(i1), e(i2), . . . , e(ic+1) give the same remainder modulo 2α. Denote Z(t, i) =

dβ−1(m1, . . . , mi−1, mi+1, . . . , mβ; r1, . . . , ri−2, rt−1mirt, ri+1, . . . , rβ). Observe

that, for every t ≤ n, Z is a linear combination of such elements, namely Z ∈
∑

i=1,...,β KZi,t. We will call this construction specializing at place t. We can

repeat this construction to expressions Zi,t instead of Z. After repeating this

construction several times and specializing at suitable places, we get that Z is

a linear combination of elements of the form q(dc+1(M1, . . . ,Mc+1; q1, . . . , qc+1))

where {M1, . . . ,Mc+1} ⊆ {m1, . . . , mβ}, and q ∈ A, q1, . . . , qc+1 ∈ M are such

that n + qi is divisible by 2α for each i ≤ c + 1, and q ∈ A. By Lemma 2.2,

all such elements are in E, and hence Z ∈ E.

Lemma 2.4. Let K be a field, and let R be an infinite-dimensional, graded,

finitely generated K-algebra. Then R can be homomorphically mapped onto

a prime, infinite-dimensional, graded algebra. Moreover, if R has quadratic

growth and satisfies a polynomial identity, then R can be homomorphically

mapped onto a prime, graded algebra with linear growth.

Proof. We first construct a prime homomorphic image of R. Let B(R) be

the prime radical of R, then R/B(R) is semiprime. Observe that B(R) is ho-

mogeneous, since R is graded. Therefore, R/B(R) is graded. Consequently,

as a graded ring, R/B(R) is either infinite dimensional or nilpotent. It

cannot be nilpotent, because it is semiprime. Hence P = R/B(R) is infinite-

dimensional, graded and semiprime. Note that since the prime radical of

P is zero, the intersection of all prime ideals in P (which equals the prime

radical) is zero, hence there is a prime ideal Q in P which is not equal to P .

Note that the largest homogeneous subset, call it M , contained in Q is also

a prime ideal in P . Now, P/M is prime and non-zero and graded, hence it

is infinite dimensional, as required.

Suppose now that R satisfies a polynomial identity. We will now show
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that P can be homomorphically mapped onto a prime, graded algebra with

linear growth. Since P is prime and satisfies a polynomial identity, by

Rowen’s theorem [16] it has a non-zero central element z = z1 + ... + zm,

where zi has degree i and zm is nonzero and m ≥ 1. Notice that zm is cen-

tral, since if r is a homogeneous element of degree d then [r, z] = [r, zm] + e

where e consists of lower degree terms. Observe that zm is regular as P is

prime.

Let S = P/zmP . Then dimS(n) = dimP (n) − dimP (n −m), since zm

is regular, homogeneous and of degree m. Since P is graded with quadratic

growth we have some C such that dimP (n) < Cn for all n. Thus we have
∑n

i=0 dimS(i) <
∑n

i=0 dimP (n)−dimP (n−m) <
∑m

i=0 dimP (n−i) ≤ Cmn.

By [17], and since m and C are constant, we see that S has at most linear

growth.

If P has linear growth then the proof is finished, as P has linear growth

and is a homomorphic image of R.

If P has greater than linear growth then S is infinite dimensional, and

so by the first part of our theorem S has prime infinite dimensional image,

with linear growth (which is also a homomorphic image of R).

Theorem 2.5. The algebra A/E can be homomorphically mapped onto a

graded, Noetherian, prime algebra with linear growth.

Proof. By Lemma 2.4, A/E has a prime, graded, infinite dimensional image

which is graded by natural numbers; call it P . We will now show that P

satisfies a polynomial identity. The extended centroid of a prime ring is a

field (see page 70, line 16 [3]). Let C be the extended centroid of P , then

the central closure CP of P has at most linear growth (as an algebra over

the field C), as there is less than βn elements of degree not exceeding n

linearly independent over C, by Lemma 2.3 and Theorem 2.3.7 [3]. By the

Small-Stafford-Warfield theorem, every algebra with linear growth satisfies a

polynomial identity, therefore CP satisfies a polynomial identity [18]. It is

known that the extended closure CP of a prime ring P is prime (see [5], pp.

238), and hence by [17] the algebra CP is finite-dimensional over its center.
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By Lemma 1.21 in [11], we see that CP satisfies a Capelli identity, therefore

P is a polynomial identity algebra.

Let c be as in Lemma 2.1. By Proposition 1.1, we have dimA(k)/E(k) ≤
∑k

j=0 dimV <(k−j) dimV >(j) < (k+1)c, and so A/E has at most quadratic

growth. Notice that P has growth smaller than A/E. By Bergman’s Gap

theorem, P has either linear or quadratic growth. If the latter holds then we

are done. Suppose that A/E has quadratic growth; then by Lemma 2.4, P has

a homomorphic image with linear growth. By the Small-Warfield theorem

[17], prime, finitely generated algebras with linear growth are Noetherian;

this completes the proof.

3 Constructing algebras satisfying given re-

lations

Here we give the criteria for when an element f ∈ A is in the ideal E.

Theorem 3.1. Let n be a natural number. Suppose that subspaces U(2m), V (2m)

of A(2m) satisfying properties 1-4 (from Section 1) were constructed for all

n. Let f ∈ A(k), where 2n ≤ k < 2n+1. Suppose that

AfA ∩ A(2n+1) ⊆ A(2n)U(2n) + U(2n)A(2n).

Suppose, moreover, that for all i, j ≥ 0 with i + j = k − 2n we have f ∈

A(i)U(2n)A(j) +U<(i)A(k − i) +A(k − j)U>(j), with the sets U<(i), U>(i)

defined as in Section 1. Then f ∈ E.

Proof. To show that f ∈ E, it suffices to prove that A(i)fA(j) ⊂ T :=

A(2n+1)U(2n+1) + U(2n+1)A(2n+1) for all i, j ∈ N with i+ j + k = 2n+2.

If i ≥ 2n+1, we get A(i − 2n+1)fA(j) ⊆ A(2n)U(2n) + U(2n)A(2n) ⊆

U(2n+1), so A(i)fA(j) ⊆ T . Similarly, if j ≥ 2n+1, we get A(i)fA(j−2n+1) ⊆

U(2n+1), so A(i)fA(j) ⊆ T . If i, j ≥ 2n, then A(i − 2n)fA(j − 2n) ⊆

A(2n)U(2n) + U(2n)A(2n), so A(i)fA(j) ⊆ T .
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If i < 2n and j < 2n+1, then f ∈ A(2n − i)U(2n)A(2n+1 − j) + U<(2n −

i)A(2n+1+2n−j)+A(2n+1−i)U>(2n+1−j) by the assumption, so A(i)fA(j) ⊆

A(2n)U(2n)A(2n+1)+T ⊆ T , because A(i)U<(2n−i) ⊆ U(2n) and U>(2n+1−

j)A(j) ⊆ U(2n+1), by Lemma 1.3. The case i < 2n+1, j < 2n is handled

similarly. We may now conclude that f = 0 holds in A/E.

4 Constructing U(2n), V (2n) from F (2n)

In this section we introduce sets F (2n), which will later be used to show that

the algebra A/E satisfies given relations. Roughly speaking, the relations

which we want to hold in A/E will be contained in the sets F (2n). For more

details about the properties and construction of the sets F (2n), see Section

6.

We begin with a modification of Theorem 3 from [14]. Let rn be as in

Theorem 0.1. Let Y = {n : rn 6= 0} and a sequence of natural numbers

{e(n)}n∈Y be given,

S =
⊔

k∈Y

{k − e(k)− 1, . . . , k − 1} (6)

and assume that the union defining S is disjoint and S is a subset of natural

numbers (we assume that zero is a natural number). Let supY denote the

largest element in Y if Y is finite.

Theorem 4.1. Let Y , S and {e(n)}n∈Y be as above. Let an integer n be

given. Suppose that, for every m ≤ n, we are given a subspace F (2m) ⊆

A(2m) with dimF (2m) ≤ (22
e(m)

)2 − 2 and that, for every m < n, we are

given subspaces U(2m), V (2m) of A(2m) with

1. dimV (2m) = 2 if m /∈ S and m ≤ supY if Y is finite;

2. dimV (2m−e(m)−1+j) = 22
j

for all m ∈ Z and all 0 ≤ j ≤ e(m);

3. V (2m) is spanned by monomials;

4. F (2m) ⊆ U(2m) for every m ∈ Y , and F (2m) = 0 for every m /∈ Y ;
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5. V (2m)⊕ U(2m) = A(2m);

6. A(2m−1)U(2m−1) + U(2m−1)A(2m−1) ⊆ U(2m);

7. V (2m) ⊆ V (2m−1)V (2m−1).

8. Moreover, if Y is finite and m > supY , then V (2m) = 1.

Then there exist subspaces U(2n), V (2n) of A(2n) such that the extended col-

lection U(2m), V (2m)m≤n still satisfies conditions 1-8.

Proof. For properties 1 − 7, the proof is the same as in [14] when we use

e(n) instead of log(n). The detailed proof with the same notation can be

found in [19]. We can use this proof to define inductively V (2i), U(2i) for all

i ≤ supY . Denote t = supY . By definition of S and Y , and by property 1

from Theorem 4.1, we get that V (2t) = Km1 + Km2 for some m1 and m2

in A(2t). Then define V (2t+1) = Km1m1, U(2t+1) = (U(2t) +Km2)A(2
t) +

A(2t)(U(2t) + Km2). Now define inductively for all i > 0, V (2t+i+1) =

V (2t+i)V (2t+i) = Km2i+1

1 and U(2t+i+1) = U(2t+i)A(2t+i) + A(2t+i)U(2t+i).

In this way we constructed sets U(2n), V (2n) for all n > t = supY , satisfying

property 8, and properties 3, 5, 6, 7. We set F (2m) = 0 for all m > t, so

property 4 holds. The properties 1, 2 don’t apply for m > t. Recall that we

already constructed sets V (2i), U(2i) for all i ≤ supY , using the same proof

as in [14] or [19]. The proof is finished.

Theorem 4.2. The above theorem is also true when, instead of property 8,

we put the following property:

8’. If Y is finite and k ≥ supY , then V (2k+i+1) = V (2k+i)V (2k+i) for all

i ≥ 0.

Proof. Define inductively V (2i), U(2i) for all i ≤ supY as in Theorem 4.1.

Denote t = supY . By property 1 from Theorem 4.1, V (2t) = Km1+Km2 for

some m1 and m2 in A(2t). Now define inductively, for all i ≥ 0, V (2t+i+1) =

V (2t+i)V (2t+i) and U(2t+1+1) = U(2t+i)A(2t+i)+A(2t+i)U(2t+i). In this way

we constructed sets U(2n), V (2n) for all n > t = supY , satisfying property
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8’, and properties 3, 5, 6, 7. We set F (2m) = 0 for all m > t, so property

4 holds. The properties 1, 2 don’t apply for m > t. Recall that we already

constructed sets V (2i), U(2i) for all i ≤ supY , using the same proof as in

[14] or [19]. The proof is finished.

5 Growth of subspaces

In this section we generalize results from Section 2 in [19]. To lighten nota-

tion, we write [X ] = dimX for the dimension of a subspace X ⊆ A. Suppose

that sets V (2n), U(2n), F (2n) satisfy properties 1 − 8 of Theorem 4.1, with

{e(i)}i∈Y , S, Y defined as in Section 4. The results from this section will

be mainly used in Section 6. We begin with a lemma about the dimensions

V >(k) and V <(k), continuing with the notation from [19].

Lemma 5.1. Let α be a natural number with binary decomposition α =

2p1 + · · ·+ 2pt. Suppose pi /∈ S, for all i = 1, . . . , t. Then [V >(α)] ≤ 2α.

Proof. The same as the proof of Lemma 2.1 in [19], but we repeat it for the

convenience of the reader. If pi /∈ S, then [V (2pi)] ≤ 2 by assumption, so

[V >(α)] =

t∏

i=1

[V (2pi)] = 2t ≤ 2log(α)+1 ≤ 2α.

Lemma 5.2. Let α be a natural number with binary decomposition α =

2p1 + · · · + 2pt. Suppose that there is k ∈ Y such that pi ∈ {k − e(k) −

1, . . . , k − 1} for all i = 1, . . . , t. Then [V >(α)] ≤ 22
e(k)+1

. More precisely,

[V >(α)] = 2α/2
k−e(k)−1

.

Proof. The same as the proof of Lemma 2.2 in [19]. Recall that, by Theo-

rem 4.1(2), we have [V (2i)] = 22
i−(k−e(k)−1)

for all i ∈ {k−e(k)−1, . . . , k−1}.
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Then

log[V >(α)] = log
t∏

i=1

[V (2pi)] = log
t∏

i=1

22
pi−(k−e(k)−1)

=

t∑

i=1

2pi−(k−e(k)−1) =
α

2k−e(k)−1

≤ 2e(k)+1.

Proposition 5.1. Let α = 2p1 + · · ·+ 2pt be a natural number in the binary

form. Then [V >(α)] < 2α
∏

i≤m,i∈Y 22
e(i)+1

, where m is maximal such that
∑

pi∈{m−e(m)−1,...,m−1} 2
pi is nonzero.

Proof. Write α = 2p1 + · · · + 2pt in binary. Write again Sk = {k − e(k) −

1, . . . , k − 1}. For all k ∈ Y , set αk =
∑

pi∈Sk
2pi. Let m be maximal such

that αm 6= 0. Set γ =
∑

k≤m αk and δ =
∑

pi /∈S
2pi so that α = γ + δ. By

definition of the sets V >(i), we have [V >(α)] = [V >(γ)][V >(δ)]. By Lemma

5.2,

[V >(γ)] =
∏

k≤m,k∈Y

[V >(αk)] <
∏

k≤m,k∈Y

22
e(k)+1

.

Finally, by Lemma 5.1, we have [V >(δ)] ≤ 2α. Putting everything together,

we get [V >(α)] < 2α
∏

i≤m,i∈Y 22
e(i)+1

.

Lemma 5.3. Let α, β be natural numbers such that α + β ≤ 2n−1 + 2n−2,

for some n ∈ Y . Then

[V <(α)][V >(β)] ≤ 22n(
∏

k<n,k∈Y

22
e(k)+1

)2[V (2n−1)]2/22
e(n)−1

.

Proof. Write α = 2p1 + · · · + 2pt in binary. Write again Sk = {k − e(k) −

1, . . . , k− 1} and αk =
∑

pi∈Sk
2pi. Set now γ =

∑
k<n αk and δ =

∑
pi /∈S

2pi;

we get α = γ+ δ+αn, and by definition of the sets V >(n), we get [V >(α)] =

[V >(γ)][V >(δ)][V >(αn)]. By previous Lemmas,

[V >(γ)] =
∏

k<n,k∈Y

[V >(αk)] <
∏

k<n,k∈Y

22
e(k)+1

.
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By Lemma 5.1, we get

[V >(δ)] ≤ 2δ ≤ 2α.

Lemma 5.2 gives

[V >(αn)] = 2αn/2n−e(n)−1

≤ 2α/2
n−e(n)−1

.

Therefore,

[V >(α)] ≤ 2α(
∏

k<n,k∈Y

22
e(k)+1

)2α/2
n−e(n)−1

.

By the definition of sets V < and V >, we get [V <(α)] = [V >(α)], so

[V <(α)][V >(β)] ≤ 4(αβ)(
∏

k<n,k∈Y

22
e(k)+1

)22
α+β

2n−e(n)−1 .

Since α + β ≤ 2n−1 + 2n−2, so αβ ≤ 22n−2. Observe that 2
α+β

2n−e(n)−1 ≤

2
2n−1+2n−2

2n−e(n)−1 = 22
e(n)+2e(n)−1

, and recall that 22
e(n)+2e(n)−1

= [V (2n−1)][V (2n−2)].

It follows that

[V <(α)][V >(β)] ≤ 22n(
∏

k<n,k∈Y

22
e(k)+1

)2[V (2n−1)][V (2n−2)].

Recall that 22
e(n)−1

= [V (2n−2)] and [V (2n−2)]2 = [V (2n−2)]. We now see that

[V <(α)][V >(β)] ≤ 22n(
∏

k<n,k∈Y

22
e(k)+1

)2[V (2n−1)]2/22
e(n)−1

.

6 Constructing sets F (2n)

In this section we assume that ri and Y , f1, f2, . . . are as in Theorem 0.1.

We moreover assume that there are natural numbers {e(i)}i∈Y which satisfy

the following conditions for all n ∈ Y : 1 ≤ e(n) ≤ n − 1, sets Sn = {n −

1 − e(n), n − 1} are disjoint and rn ≤ 2t(n) where t(n) = 2e(n)−1 − 3n − 4 −
∑

k∈Y,k<n 2
e(k)+2.

We will construct sets F (2n) ⊆ A(2n) which let us apply Theorem 4.1.

We begin with the following lemma, which generalizes Lemma 3.1 from [19].
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Lemma 6.1. Let n be a natural number. Suppose that, for all m < n,

we constructed sets V (2m), U(2m) which satisfy properties 1− 8 of Theorem

4.1, with {e(i)}i∈Y defined as above. Consider all f ∈ A(k) ∩ {f1, . . . , fξ}

with 2n + 2n−1 ≤ k ≤ 2n + 2n−1 + 2n−2. Then there exists a linear K-space

F ′(2n) ⊆ A(2n) with the following properties:

• 0 < dimF ′(2n) ≤ 1
2
dimV (2n−1)2;

• for all i, j ≥ 0 with i+j = k−2n and for every f ∈ A(k)∩{f1, . . . , fξ},

we have f ∈ A(i)F ′(2n)A(j) +U<(i)A(k− i) +A(k− j)U>(j) with the

sets U<(i), U>(i) defined in Section 1.

Proof. By Lemma 1.3, we have U<(i)⊕ V <(i) = A(i) and U>(j)⊕ V >(j) =

A(j). Therefore, A(i)A(2n)A(j) = (U<(i) ⊕ V <(i))A(2n)(U>(j) ⊕ V >(j)).

Consequently, A(i+ 2n + j) = T ′ + T , where

T = U<(i)A(k − i) + A(k − j)U>(j), T ′ = V <(i)A(2n)V >(j).

Hence, dimA((i+2n+j)) = dimT+dim T ′−dim T∩T ′. Observe that T∩T ′ =

0, since dimA(i+2n+j) ≥ dimT +dimT ′, because T = U<(i)A(2n)U>(j)+

V <(i)A(2n)(U>(j) + U<(i))A(2n)V >(j), so dimT ≤ dimA(i + 2n + j) −

dim V <(i)A(2n)V >(j)) = dimA(i + 2n + j) − dim T ′. It follows that A(i +

2n + j) = T ′ ⊕ T .

Consider f ∈ A(k) ∩ {f1, . . . , fξ} with 2n + 2n−1 ≤ k ≤ 2n + 2n−1 + 2n−2.

We can write f in the form f = f̃ + g, with g ∈ T and f̃ ∈ T ′, where

f̃ =
∑

c∈V <(i),d∈V >(j)

czc,d,fd, zc,d,f ∈ A(2n).

Also for the given f , we restrict the c, d above to belong to a basis, and

let T (i, j, f) ⊆ A(2n) be the subspace spanned by all the zc,d,f above. We then

have dim T (i, j, f) ≤ dimV <(i) dimV >(j). Observe also f ∈ A(i)T (i, j, f)A(j)+

U<(i)A(k − i) + A(k − j)U>(j). Define

F ′(2n) =
2n+2n−1+2n−2∑

k=2n+2n−1

∑

f∈A(k)∩{f1,...,fξ}

∑

i+j=k−2n

T (i, j, f).
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We have 2n−1 ≤ i+j ≤ 2n−1+2n−2, so by Lemma 5.3 we have dim T (i, j, f) ≤

[V <(α)][V >(β)] ≤ 22n(
∏

k<n,k∈Y 22
e(k)+1

)2[V (2n−1)]2/22
e(n)−1

. Hence,

dimF ′(2n) ≤ rn2
3n[V (2n−1)]2

∏

k<n,k∈Y

22
e(k)+2

/22
e(n)−1

.

To show that

dimF ′(2n) ≤
1

2
dimV (2n−1)2

it suffices to show that rn2
3n
∏

k<n,k∈Y 22
e(k)+2

≤ 1
2
22

e(n)−1
, which follows from

assumption rn ≤ 2t(n) with t(n) = 2e(i)−1−3n−4−4
∑

k∈Y,k<n 2
e(k) from the

beginning of this section.

In this section we will use the following lemma from [19].

Lemma 6.2 (Lemma 3.3, [19]). Let K be an algebraically closed field, n be

a natural number, and let T ⊆ A(2n) and Q ⊆ A(2n+1) be K-linear spaces

such that dimT + 4dimQ ≤ dimA(2n) − 2. Then there exists a K-linear

space F ⊆ A(2n) of dimension at most dimA(2n)− 2 such that T ⊆ F and

Q ⊆ FA(2n) + A(2n)F .

Proof. A sketch of a proof is included following [19]. Choose a K-linear

complement C ⊆ A(2n) to T ; we have

C ⊕ T = A(2n). (7)

Let {c1, . . . , cs} be a basis of C with s = dimA(2n)− dimT .

Let X, Y be two indeterminates. Let ηt ∈ K and ζt ∈ K, for all t =

1, . . . , s. Define a K-linear mapping Φ: C → KY +KZ by Φ(ct) = ηtY +ζtZ

for t = 1, . . . , s. Using C ⊕ T = A(2n), extend it to a mapping Φ: A(2n) →

KY + KZ by the condition T ⊆ ker Φ. Using Hilbert’s Nullstellensatz we

show that there are assignments ηt ∈ K and ζt ∈ K, for all t = 1, . . . , s, such

that the following hold.

a. There are u, v such that Φ(cu) = ηuY + ζuZ and Φ(cv) = ηvY + ζvZ

give two elements that are linearly independent over K.
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b. Q ⊆ A(2n) ker(Φ) + ker(Φ)A(2n).

We define F := ker Φ. Hence Q ⊆ FA(2n) + A(2n)F , as required. By con-

struction, we have T ⊆ ker Φ so T ⊆ F as required. Because Φ(cu) :=

ηuY + ζuZ and Φ(cv) := ηvY + ζvZ are K-linearly independent, we have

dimF ≤ dimA(2n)− 2 as required.

The following lemma is a generalisation of Lemma 3.4 from [19].

Lemma 6.3. Suppose that sets U(2m), V (2m) were already constructed for

all m < n, and satisfy the conditions of Theorem 4.1. Let F = {f1, f2, . . . , fξ}

be as in Theorem 0.1. Define a K-linear subspace Q ⊆ A(2n+1) as follows:

Q =
∑

f∈F :2n+2n−1≤deg f≤2n+2n−1+2n−2

∑

i+j=2n+1−deg f

V >(i)fV <(j).

Then dimQ ≤ 1
4
(1
2
dimV (2n−1)2 − 2).

Proof. By Lemma 5.3, the inner sum has dimension at most

22n(
∏

k<n,k∈Y

22
e(k)+1

)2[V (2n−1)]2/22
e(n)−1

.

Summing over all i + j = 2n+1 − deg f multiplies by a factor of at most

2n (because 2n+1 − deg f ≤ 2n−1); summing over all f ∈ {f1, . . . , fξ} with

degrees between 2n + 2n−1 and 2n + 2n−1 + 2n−2 multiplies by rn. Therefore,

dimQ ≤ rn2
3n(

∏

k<n,k∈Y

22
e(k)+1

)2[V (2n−1)]2/22
e(n)−1

.

By assumption on rn from the beginning of this section, we get dimQ ≤
1
16
dim V (2n−1)2.

Observe now that 1
4
dimV (2n−1)2 ≤ 1

2
dimV (2n−1)2−2, because V (2n−1)2 =

(22
e(n)

)2 ≥ 22
2
≥ 16. We get dimQ ≤ 1

4
(1
2
dimV (2n−1)2 − 2) as required.

We are now ready to construct the space F (2n). Assume U(2m), V (2m)

were already constructed for all m < n, and satisfy the conditions of Theo-

rem 4.1, and suppose that n ∈ Y .
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Proposition 6.1 (Proposition 3.5, [19]). Let K be an algebraically closed

field. With notation as in Lemma 6.1, there is a linear K-space F (2n) ⊆

A(2n) satisfying dimF (2n) ≤ dimV (2n−1)2 − 2 and

F ′(2n) ⊆ F (2n) + U(2n−1)A(2n−1) + A(2n−1)U(2n−1).

Moreover, for all f ∈ {f1, . . . , fξ} with deg f ∈ {2n + 2n−1, . . . , 2n + 2n−1 +

2n−2} we have

AfA ∩A(2n+1) ⊆ A(2n)F (2n) + F (2n)A(2n)

+ A(2n−1)U(2n−1)A(2n) + A(2n)U(2n−1)A(2n−1)

+ U(2n−1)A(2n + 2n−1) + A(2n + 2n−1)U(2n−1).

Proof. We outline the proof from [19]. Consider the space Q ⊆ A(2n+1)

defined in Lemma 6.3, and the space T := F ′(2n) + U(2n−1)A(2n−1) +

A(2n−1)U(2n−1) ⊆ A(2n), with F ′(2n) as in Lemma 6.1. Observe that

4 dimQ ≤ 1
2
dimV (2n−1)2 − 2 by Lemma 6.3, hence dimT ≤ dimF ′(2n) +

(dimA(2n)−dim V (2n−1)2) ≤ dimA(2n)−1
2
dimV (2n−1)2. Therefore, dimT+

4dimQ ≤ dimA(2n)− 2 and we may apply Lemma 6.2 to obtain a set F .

Let i, j, k ∈ N with i+ j + k = 2n+1, and consider f ∈ {f1, . . . , fξ} with

deg f = k. By Lemma 1.3, A(i)fA(j) = (U>(i)+V >(i))f(U<(j)+V <(j)) ⊆

V >(i)fV <(j) + U>(i)A(2n+1 − i) + A(2n+1 − j)U<(j). Hence,

A(i)fA(j) ∩ A(2n+1) ⊆ Q+ U>(i)A(2n+1 − i) + A(2n+1 − j)U<(j).

By assumption on k, we have i+j ≤ 2n−1, so Lemma 1.3 yields U>(i)A(2n+1−

i) = (U>(i)A(2n−1 − i))A(2n + 2n−1) ⊆ U(2n−1)A(2n + 2n−1), and similarly

A(2n+1 − j)U<(j) ⊆ A(2n + 2n−1)U(2n−1).

Then, Lemma 6.2 yields Q ⊆ A(2n)F + FA(2n). Consequently,

A(i)fA(j)∩A(2n+1) ⊆ A(2n)F+FA(2n)+U(2n−1)A(2n+2n−1)+A(2n+2n−1)U(2n−1).

Recall U(2n−1)A(2n−1) + A(2n−1)U(2n−1) ⊆ T ⊆ F . Let F (2n) ⊆ F be a

linear K-space satisfying F (2n)⊕ (U(2n−1)A(2n−1) + A(2n−1)U(2n−1)) = F .
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The last claim of the theorem holds when we substitute this equation into

the above equality.

Observe that dimF (2n) = dimF−dimU(2n−1)A(2n−1)+A(2n−1)U(2n−1),

so dimF (2n) ≤ dimA(2n)−2−(dimA(2n)−dim V (2n−1)2) ≤ dimV (2n−1)2−

2, so the first claim of our theorem holds. Since F ′(2n) ⊆ F = F (2n) +

U(2n−1)A(2n−1) + A(2n−1)U(2n−1), the proof is finished.

7 Free subalgebras and Noetherian images

Theorem 7.1. Suppose that the assumptions of Theorem 0.1 hold, and that

we use the same notation as in Theorem 0.1. Assume that for each n ∈ Y

there is a natural number 1 ≤ e(n) ≤ n − 1 such that, for all n ∈ Y , sets

Sn = {n− 1− e(n), n− 1} are disjoint and

rn2
3n+4

∏

k<n,k∈Y

22
e(k)+2

≤ 22
e(n)−1

.

Then A/I contains a free noncommutative graded subalgebra in two genera-

tors, and these generators are monomials of the same degree. In particular,

A/I is not Jacobson radical. Moreover, A/I can be homomorphically mapped

onto a prime, infinite dimensional, Noetherian, graded algebra with linear

growth.

Proof. We will first show that A/I contains a free noncommutative subalge-

bra. We will construct sets U(2n), V (2n), F (2n) satisfying properties 1 − 7

and 8′ from Theorem 4.2 applied to e(n) as in the assumptions of our the-

orem. The union in (6) is disjoint by the assumptions. We may therefore

start the induction with U(20) = F (20) = 0 and V (20) = Kx +Ky. Then,

assuming that we constructed U(2m), V (2m) for all m < n, if n ∈ Y we

construct F (2n) using Proposition 6.1 and if n /∈ Y we set F (2n) = 0. We

then construct U(2n), V (2n) using Theorem 4.2. Let E be defined as in

Section 1. By Lemma 1.1, the set E is an ideal in A and A/E is an in-

finite dimensional algebra. By Theorem 1.2, the algebra A/E contains a
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free noncommutative subalgebra in two generators, and these two genera-

tors are monomials of the same degree. We will now show that A/E is a

homomorphic image of A/I. We need to show that I ⊆ E, that is that

elements f1, f2, . . . , fξ ∈ E. Let f ∈ A(k) be one of these elements for some

2n + 2n−1 ≤ k ≤ 2n + 2n−1 + 2n−2. By Lemma 6.1 and Proposition 6.1, we

get that F ′(2n) ⊆ F (2n)+U(2n−1)A(2n−1)+A(2n−1)U(2n−1) ⊆ U(2n). Con-

sequently, again by Lemma 6.1 and Proposition 6.1, we get that f satisfies

the assumptions of Lemma 3.1. Therefore, and by thesis of Lemma 3.1, we

have f ∈ E, as required.

We will now prove that A/I can be mapped onto a prime, graded and

infinite dimensional algebra which satisfies a polynomial identity. We will

construct sets U(2n), V (2n), F (2n) satisfying properties 1− 8 from Theorem

4.1, applied for e(n) as in the assumptions of our theorem. We start the in-

duction with U(20) = F (20) = 0 and V (20) = Kx+Ky. Then, assuming that

we constructed U(2m), V (2m) for all m < n, if n ∈ Y we construct F (2n) us-

ing Proposition 6.1, and if n /∈ Y we set F (2n) = 0. We then construct U(2n),

V (2n) using Theorem 4.1 applied for e(i) as in the assumptions. Let E be de-

fined as in Section 1. By Lemma 1.1, the set E is an ideal in A and A/E is an

infinite dimensional algebra. By Theorem 2.5, the algebra A/E has a graded,

prime, Noetherian, infinitely dimensional homomorphic image with linear

growth; call this R. We will now show that R is a homomorphic image of A/I.

We need to show that I ⊆ E, that is that elements f1, f2, . . . , fξ ∈ E (these

elements are as in Theorem 0.1). Let f ∈ A(k) be one of these elements, for

some 2n +2n−1 ≤ k ≤ 2n + 2n−1 +2n−2. By Lemma 6.1 and Proposition 6.1,

we get that F ′(2n) ⊆ F (2n) + U(2n−1)A(2n−1) + A(2n−1)U(2n−1) ⊆ U(2n).

Consequently, and again by Lemma 6.1 and Proposition 6.1, we get that f

satisfies the assumptions of Lemma 3.1. Therefore, and by thesis of Lemma

3.1, we have f ∈ E, as required.

Lemma 7.2. Let Y be a subset of the set of natural numbers and let {ri}i∈Y

be a sequence of natural numbers which satisfy assumptions of Theorem 0.1.

Then there are natural numbers e(i) for i ∈ Y such that 1 ≤ e(n) ≤ n − 1
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and such that, for all n ∈ Y , sets Sn = {n− 1− e(n), n− 1} are disjoint and

rn2
3n+4

∏
k<n,k∈Y 22

e(k)+2
≤ 22

e(n)−1
.

Proof. For each i, let e(i) be such that 22
e(i)−3

≤ ri < 22
e(i)−2

. Note that

such e(i) satisfy e(i) ≥ 1, because ri ≥ 2. By the assumptions, ri < 22
i−j−3

for all i ∈ Y , j ∈ Y ∪ {0}. Observe then that e(i) − 3 < i − j − 3 for all

j < i, j ∈ Y ∪{0}, therefore e(i) < i− j, hence e(i) ≤ i− j− 1. This implies

e(i) ≤ i−1 and i−e(i)−1 > j−1. Therefore, sets S(n) = {n−e(n)−1, n−1}

are disjoint for all n ∈ Y .

We will now show that rn ≤ 2t(n), where t(n) = 2e(i)−1 − 3n − 4 −
∑

k∈Y,k<n 2
e(k)+2. Since rn < 22

e(n)−2
, it suffices to show that 2e(n)−2 ≤ 2e(n)−1−

3n− 4−
∑

k∈Y,k<n 2
e(k)+2. Hence, it suffices to prove that

3n + 4 +
∑

k∈Y,k<n

2e(k)+2 ≤ 2e(n)−2.

Since rn < 22
e(n)−2

, it suffices to show that 23n+4+
∑

k∈Y,k<n 2e(k)+2

≤ rn.

Observe first that
∏

i<n,i∈Y 22
e(i)+2

≤
∏

i<n,i∈Y r32i , because by the defi-

nition of e(i), 22
e(i)+2

= (22
e(i)−3

)
32

≤ r32i . Hence, it suffices to show that

23n+4
∏

i<n,i∈Y r32i ≤ rn. This follows from the assumptions of Theorem

0.1.

Proof of Theorem 0.1 By Lemma 7.2, we can find e(i) satisfying the

assumptions of Theorem 7.1, and by the thesis of Theorem 7.1 we get the

desired result. The last part of the thesis follows from the Small-Warfield

theorem [17], which says that prime affine algebras with linear growth are

finite dimensional modules over its center.
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