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Abstract  
The mammalian ureter contains two main cell types: a multilayered water-tight epithelium called 

the urothelium, surrounded by smooth muscle layers which, by generating proximal to distal 

peristaltic waves, pump urine from the renal pelvis toward the urinary bladder. Here, we review 

the cellular mechanisms involved in the development of these tissues, and the molecules which 

control these processes. We consider the relevance of these biological findings for 

understanding the pathogenesis of human ureter malformations. 
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ALK Activin receptor-like kinase (growth factor receptor) 

AngII Angiotensin II (growth factor) 

BMP Bone morphogenetic protein (growth factor) 

DLGH Discs-large homolog (intracellular scaffolding protein) 

ERK Extracellular signal-regulated kinase (intracellular signaling molecule) 

ETV ETS transcription factor (transcription factor) 

FGFR Fibroblast growth factor receptor (growth factor receptor) 

FOX Forkhead box (transcription factor) 

FRAS Fraser syndrome (basement membrane molecule) 

FREM FRAS1-related extracellular matrix (basement membrane molecule) 

GDNF Glial cell line-derived neurotrophic factor (growth factor) 

GATA GATA-binding factor (transcription factor) 

GFR GDNF family receptor (growth factor receptor) 

HCN3 Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (ion 

channel) 

HNF1B Hepatocyte nuclear factor 1B (transcription factor) 

KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (growth factor receptor) 

MYOCD (transcription factor associated protein) 

PAX Paired box (transcription factor) 

PI3K Phosphatidylinositol 3-kinase (intracellular signaling molecule) 

PLC Phospholipase C (intracellular signaling molecule) 

PTCH Patched (growth factor receptor) 

RET Rearranged during transfection (growth factor receptor) 

ROBO Roundabout (growth factor receptor) 

ROCK Rho-associated protein kinase (intracellular signaling molecule) 

SMAD Homologs of drosophila protein, mothers against decapentaplegic and Caenorhabditis 

elegans protein SMA (intracellular signaling molecule) 

SHH Sonic hedgehog (growth factor) 

SLIT Slit homolog (growth factor) 

SOX SRY-related HMG-box (transcription factor) 

TBX T-box (transcription factor) 

TGF Transforming growth factor (growth factor) 

TSHZ Teashirt (transcription factor) 

UPK Uroplakin (urothelial membrane protein) 

VANGL Van gogh-like (planar cell polarity protein) 

 

Initiation of the ureteric epithelium 
(see Molecule Abbreviation Box) 
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The nephric (or Wolffian) ducts (NDs) are a pair of epithelial tubes, each of which runs along the 

intermediate mesoderm. Each ND gives rise to a ureteric precursor, the ureteric bud (UB), which 

grows into metanephric mesenchyme (MM) cells condensing out of intermediate mesoderm. 

Normally, a single bud emerges from each ND near its distal (caudal) end, a precision facilitating 

optimal interactions between UB and MM which are required to generate a single ureter-kidney 

functional unit, of normal shape and internal structure (Mackie and Stephens 1975; Kume et al 

2000; Ichikawa et al 2002). In principle, normal budding could be controlled either by pre-

patterning within the duct itself or by external signals. Experiments with explanted NDs provide 

no evidence for a strong intrinsic pre-pattern. Instead, any part of the duct, even the more 

proximal (cranial) section lying alongside the mesonephric kidney, can be stimulated to emit 

ectopic UBs by applying certain molecules (Sainio et al 1997; Davies et al 1999; Maeshima et al 

2006) the actions of which can be understood by considering intracellular pathways under their 

control (Davies 2002) (Figure 1).  

 

 
 
Figure 1. Intracellular pathways modulating UB emergence from the ND.  
Pathways that encourage (green) and pathways that inhibit (red) bud emergence are depicted. (see also 

Molecule Abbreviation Box) 

 

UB emergence is antagonized by SMAD signaling but favored by ERK, PI3K and PLC activation 

(Costantini 2010). NDs express activin A which acts in an autocrine manner to activate SMADs 

and prevent budding (Maeshima et al 2006). However, when an isolated ND is treated with both 

an activin antagonist and a growth factor that activates ERK, PI3K and PLC pathways, multiple 

buds emerge along its length (Maeshima et al 2006). In such experiments, numerous normal 

diameter buds rather than one large cyst are generated, implying a yet-be-be defined lateral 

inhibition mechanism whereby bud tip cells direct their immediately-neighbors to remain 

quiescent.  
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ND cells express various cell surface receptors, each of which binds pro- or anti-branching 

factors. RET and FGFR2 receptor tyrosine kinases, and their GFRα and sulphated 

glycosaminoglycan co-receptors, bind GDNF and FGFs, activating ERK, PI3K and PLC 

pathways and driving UB emergence (van Weering 1998; Eswarakumar et al 2005). Expression 

of such receptors depends on duct cells expressing the GATA3 transcription factor (Grote et al 

2008), and β-catenin, a multifunctional intracellular protein, (Marose et al 2008; Michos 2009), 

and on nearby stromal cells synthesizing retinoic acid, an effector metabolite of vitamin A 

(Rosselot et al 2010). The extent of intracellular signaling triggered by receptor tyrosine kinases 

is limited by the cytoplasmic protein sprouty-1, without which the ND produces multiple ectopic 

buds (Basson et al 2005). Additionally, signaling between SLIT2 and ROBO2 (Grieshammer et 

al 2004; Lu et al 2007), members of molecular families first implicated in neural guidance, 

together with expression of FOXC1 transcription factor (Kume et al 2000), guard against UB 

ectopia by limiting the cranial extent of the GDNF expression domain within intermediate 

mesoderm. As alluded to above, bud emergence is also antagonized by TGFβ family members 

(e.g. activins and BMPs), autocrine and paracrine factors which bind ALK receptor threonine 

kinases, activating the SMAD pathway (Michos et al 2007). Normally, in vivo, SMAD activation is 

favored along most of the ND (Bush et al 2004). By contrast, near the duct’s caudal end, MM 

secretes the BMP antagonist Gremlin-1 (Michos et al 2007) and the RET agonist GDNF and 

these, together with ANGII-mediated Sprouty-1 downregulation (Yosypiv et al 2006 and 2008), 

favor formation of a solitary, correctly-placed UB (Figure 2). An autocrine loop involving 

neuropeptide Y may enhance the commitment of these ND cells to budding (Choi et al 2009).  

 

 

 
 
Figure 2. Growth factors controlling UB emergence from the ND.  
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The caudal part of the embryo, with the cloaca/urogenital sinus, is on the left of the diagram. Except near 

the MM, inhibitory signals such as BMP4 and activin dominate the molecular landscape. MM produces 

activators such as GDNF in addition to gremlin-1 (Grem1) and follistatin which respectively antagonize the 

anti-branching factors BMP4 and activin. At this precise point, the balance between activation and 

inhibition favors emergence of a single UB. (see also Molecule Abbreviation Box) 

 

 

ND budding is preceded by increased epithelial proliferation (Michael and Davies 2004) and 

thickening to a pseudostratified epithelium (Chi et al 2009). RET signaling leads to 

rearrangement of ND cells such that those with the greatest ERK/PI3K/PLC activation move 

together and produce the bud (Kuure et al 2010a). This movement is also modulated by ETV4 

and ETV5, transcription factors upregulated by GDNF/RET signaling (Kuure et al 2010a). During 

UB branching, epithelial cells become wedge-shaped, implicating cytoskeletal changes involving 

actin microfilaments. Indeed, mutation of genes coding for the actin depolymerizing factors 

cofilin 1 and destrin affect branching (Kuure et al 2010b), as does inhibition of ROCK, a 

molecule driving actin rearrangements (Michael et al 2005; Meyer et al 2006). ROCK is itself 

modulated by the planar cell polarity protein VANGL2 (Yates et al 2010). In vitro, UB epithelia 

undergo apoptotic death if physically separated from MM, and mesenchymal-derived factors 

such as GDNF may facilitate UB survival as well as emergence (Towers et al 1998). The PAX2 

transcription factor is normally expressed in the ND and the emerging bud and is anti-apoptotic 

in the UB/collecting duct lineage (Torban et al 2000; Dziarmaga et al 2006). Prominent ND/UB 

apoptosis and impaired UB formation occurs in embryos lacking HNF1B (also known as vHNF) 

(Lokmane et al 2010). This transcription factor is normally expressed in the ND/UB where it may 

directly upregulate PAX2 (Lokmane et al 2010). 

 

What happens to the top and bottom of the bud? 
 

Once the UB’s enters the MM, it begins to branch to produce kidney collecting ducts. 

Consideration of these events is beyond the remit of the current review and has been covered 

elsewhere (Davies & Fisher 2002; Michos 2009). It is unclear how similar are the mechanisms of 

UB emergence to its subsequent arborisation. Interestingly, the UB’s proximal-distal axis does 

not initially restrict the branching ability of its cells because, experimentally, a collecting duct tree 

can be generated from either end of the nascent ureter (Sweeney et al 2008).  

 

The just-formed ureter is separated from the urogenital sinus, the bladder precursor, by a length 

of ND extending beyond the point of UB emergence (Chia et al 2011). When development is 

complete, however, the ureter connects directly to the bladder, an anatomical change requiring 

substantial remodeling. Previous teaching postulated that the caudal-most ND cells migrated 

into the base of the bladder where they formed the urothelium of the trigone, the triangular zone 
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between the ureteric orifices and the urethral outlet of the bladder; as this occurred, the 

ureter/ND junction would approximate to the bladder wall. Lineage tracing of genetically-labeled 

ND cells shows that the first part of this model is incorrect (Mendelsohn 2009). In fact, the 

caudal-most part of the ND involutes by apoptosis induced by signals from the forming bladder 

(Batourina et al 2005). The vesicoureteric junction then becomes physically separated from the 

opening of the ND, maintained in males as the ejaculatory duct, as they are pushed apart by 

growth of the bladder wall.   

 

Further growth and differentiation of ureteric epithelia 
 

The shaft of the UB, between the kidney and the ND, grows and differentiates to become the 

mature ureter. In contrast to UB initiation, less is known about the cell biology of ureteric growth. 

Once emerged, the bud runs straight to the MM but the guidance mechanisms are not 

understood. When extra UBs are induced with beads soaked in stimulatory growth factors, they 

do not always grow towards the beads (Davies et al 1999), arguing against simple chemotaxis. 

Initial extension of the emerging UB depends on its epithelia expressing FRAS1 (McGregor et al 

2003). This basement membrane protein acts in a complex with two related molecules, FREM1 

and FREM2, probably optimizing presentation of MM-derived growth factors to the bud (Pitera et 

al 2008) and also physically stabilizing UB/MM interactions by binding integrin α8 (Kiyozumi et al 

2005). A similar lack of UB progression occurs in mutant mice lacking this matrix receptor which 

is normally expressed on the surfaces of MM cells (Muller et al 1997).  

 

As it extends, the bud becomes thinner than the zone of ND that produced it, suggesting cell 

rearrangements involving convergent extension, which is known to drive the remarkable 

longitudinal growth of Malpighian kidney tubules in fly embryos (Jung et al 2005). Ureters are 

shorter than normal in TBX18 null mutant mice (Airik et al 2006). This transcription factor is 

normally expressed in mesenchymal cells surrounding the urothelial stalk and its absence is 

associated with decreased epithelial proliferation (Airik et al 2006). Once initiated, further 

longitudinal growth occurs in isolated wild-type embryonic ureters maintained in organ culture 

(Caubit et al 2008) and in ureters of certain mutant embryos lacking kidneys (Bush et al 2006). 

Both observations show that exposure to fetal urine is not needed for longitudinal growth, 

although these experiments do not rule out a more subtle, differentiation-optimizing influence 

conferred by urine flow which, in mice, probably begins several days after UB initiation when the 

metanephros has formed its first layers of vascularized glomeruli (Figure 3).  

 

Urothelia in both the ureter and bladder have evolved to stop movement of urine back into the 

body. Prevention of movement of water and solutes through the apical-most epithelial layer is 

mediated by plaques made of UPK protein heterodimers (Jenkins and Woolf 2007; Wu et al 
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2009). UPK expression occurs early in urinary tract development, being present in epithelia 

lining the urogenital sinus (Jenkins 2005 and 2007). In mutant mice lacking either UPK3A or 

UPK2 proteins, plaques are disorganized and urothelia are leaky. These animals also have 

malformed urinary tracts with gaping (instead of normal slit-like) vesicoureteric junctions, and 

dilated ureters associated with either reflux of urine from the bladder or occlusion by exuberant 

urothelial growth (Hi et al 2000; Kong et al 2004). These structural anomalies might simply be 

secondary disruptions following on from loss of the urothelial physical barrier. It has, however, 

been postulated (Jenkins and Woolf 2007) that they may also result from perturbed intracellular 

signaling by analogy with the proven role for uroplakin proteins in triggering embryogenesis in 

frog eggs. UPK expression is compromised in ureters of mouse embryos engineered to have 

downregulated BMP4 (Brenner-Anantharam et al 2007) or TBX18 (Airik et al 2006), both 

proteins being normally expressed in adjacent SM precursor cells. Furthermore, application of 

BMP4 to explanted metanephroi induces UPK expression in ureteric bud branch tips within the 

organ (Brenner-Anantharam et al 2007), suggesting that these UB descendants can be 

reprogrammed into a urothelial fate.  

 

Ureteric muscle formation and function 
 
The shaft of the embryonic ureter initially comprises an epithelial tube extending through loose 

mesenchyme. This epithelium acts as a paracrine signaling centre, driving surrounding cells to 

differentiate into SM (Lye et al 2010). The urothelium secretes SHH, a growth factor that binds 

to the PTCH1 receptor in immediately adjacent mesenchymal cells, stimulating them to 

proliferate (Yu et al 2002). Peri-urothelial mesenchymal cells are also stimulated to express 

BMP4 which itself effects their own differentiation into SM (Yu et al 2002; Brenner-Anantharam 

et al 2007). Here, BMP4 enhances intracellular levels of phospho-SMADs (Caubit et al 2008; 

Wang et al 2009) and upregulates TSHZ3, a transcription factor-like protein. TSHZ3 is needed 

for MYOCD expression within nascent ureteric SM cells. MYOCD is transcriptional co-activator 

then upregulates genes coding for muscle contractile proteins, such as a smooth muscle actin 

and myosin heavy chains (Caubit el al 2008; Lye et al 2010). Lack of another transcription 

factor, SOX9, which is, like TSHZ3, is normally expressed by mesenchyme aggregating around 

the urothelial ureteric tube, also leads to failed SM differentiation (Airik et al 2010). The 

aggregation of SM precursor cells around urothelia depends on mesenchymal expression of 

TBX18; in mice engineered to lack this transcription factor prospective SM precursors become 

mislocalized to the surface of the metanephric kidney (Airik et al 2006). Correct orientation of 

ureteric SM cells depends on DLGH1, an intracellular scaffolding protein highly expressed in 

urothelia and more weakly in nascent SM cells (Mahoney et al 2006). When DLGH1 is 

inactivated, circular muscle bundles misalign in a longitudinal orientation. In mutant embryos 

lacking this protein, the differentiation of stromal cells between the urothelium and SM layer is 
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perturbed, suggesting that stroma may somehow control SM bundle alignment. Cell lineage 

experiments have shown that ureteric SM is distinct from muscle layers in the wall of the urinary 

bladder (Viana et al 2007). After the shaft of the ureter has become enveloped with SM, there 

appears to be a secondary wave of muscle differentiation at the proximal end (top) of the ureter 

where it merges into the renal pelvis. These events are mediated by the protein phophatase 

calcineurin (Chang et al 2004) and by ANGII signaling (Miyazaki et al 1998). Mice that are 

genetically engineered to lack key molecules in the ureteric SM-differentiation pathway have the 

common phenotype of hyroureter/hydronephrosis. The dilation arises not from anatomical 

obstruction but because of a back-up of urine in a functionally-obstructed tube lacking normal 

peristaltic waves.  
 

Forming a network within the SM layers are neural-like, KIT receptor tyrosine kinase-expressing 

cells that are required for generation of contraction waves beginning before birth (David et al 

2005). Notably, the explanted fetal ureter, even when physically disconnected from the kidney 

and bladder, undergoes regular peristalsis in a proximal to distal direction (Caubit et al 2008). In 

vivo, peristalsis is triggered by HCN3, a hyperpolarization-activated cation channel expressed in 

the renal pelvis/kidney junction (Hurtado et al 2010). When hedgehog signaling is experimentally 

downregulated in this region, expression of KIT and HCN3 are compromised and contractions 

are perturbed, even though SM cells themselves appear intact (Cain et al 2011). The mature 

ureter also contains adrenergic, cholinergic, nitrergic, and sensory nerves (Rolle et al 2008), the 

activities of which modify its contractility (Canda et al 2007).  

 

A theoretical scheme, in which the onset of fetal urine production by the kidney enhances 

ureteric SM differentiation and function, is depicted in Figure 3. 

 

HARMONISED FUNCTIONAL 
DEVELOPMENT OF THE KIDNEY 

AND URETERIC
Onset of urine production by fetal kidney

▼
Uroplakins sense a (yet-to-be defined) 

component of fetal urine 
▼

Urothelia differentiate and establish 
a paracrine signalling centre

▼
Urothelial growth factors

induce adjacent smooth muscle
▼

Ureteric peristalsis propels urine to the bladder  
 
Figure 3. Harmonised kidney and ureteric functional development 
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Implications for understanding human congenital ureter malformations 
 

The human ureter can be affected by several types of malformation (Williams et al 2008; 

Kerecuk et al 2008; Lye et al 2010), the. The most severe, and rarest (about 0.01-0.1% births), 

is its unilateral or bilateral absence, characteristically accompanied by kidney agenesis (Welch 

1958). Ureteric dilation associated with ureteropelvic junction obstruction or primary megaureter 

affects up to 0.2% births (reviewed in Lye et al 2010). Even more common is ureteric duplication 

(2% of the population); in its most severe form the kidney is also “duplex”, with the top part 

connected to an obstructed ureter with an ectopic termination in the urethra or vas deferens, and 

the bottom part connected to a refluxing ureter which inserts too laterally in the bladder wall 

(Mackie and Stephens 1975). Vescioureteric reflux affects at least 0.5% of births, with some 

estimates of incidence an order of magnitude higher (Williams et al 2008). Sometimes these 

malformations occur as part of a syndrome affecting other parts of the body (see Online 

Mendelian Inheritance in Man), while at other times, the renal lesions occur in isolation.  

 

A knowledge of how specific molecules controling ureter development help us understand why 

mutations of certain genes cause human disease. Fraser syndrome often features bilateral 

ureter and renal agenesis and can be caused by biallelic mutations of either FRAS1 or FREM2, 

each encoding a UB basement membrane protein (McGregor et al 2003; Jadeja et al 2005). 

Furthermore, mutations of RET have been implicated in humans with similarly severe renal tract 

malformations (Skinner et al 2008). Mutations in ROBO2 have been reported in individuals born 

with refluxing and/or duplicated ureters (Lu et al 2007). Congenitally-dilated ureters can occur in 

humans who have mutations of SOX9 (in Campomelic dysplasia) or GLI3 (Pallister-Hall 

syndrome), encoding a transcription factor involved in SHH signaling. By analogy with the 

mouse models described earlier, one may postulate that such ureters may be functionally-

obstructed because of poorly formed an/or poorly functioning MS bundles. In the uro-facial 

syndrome, dilated ureters occur together with vesicoureteric reflux and dysfunctional urinary 

tract contractions (Daly et al 2010). These individuals have mutations of HPSE2, the gene 

coding for heparanase-2, an endogenous inhibitor of classical heparanse (Levy-Adam et al 

2010). Both molecules are expressed in the developing ureter (Daly et al 2010) where they may 

mediate neuro-muscular functional differentiation. UPK3A mutations have been reported in 

humans born with ureteric malformations (Jenkins et al 2005) resembling those described in 

mice genetically engineered to lack the encoded urothelial plaque protein. Genes coding for 

several of other proteins (e.g. PAX2, GATA3, HNF1B) implicated in ureter development have 

been found to be mutated in humans renal tract malformations (Bilous et al 1992; Sanyanusin et 

al 1995; Adalat et al 2009). In some instances, the gene in question is also expressed in, and 

has intrinsic roles in, the kidney itself. Accordingly, the manifest renal malformation may reflect 
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multiple primary aberrations of upper and lower renal tract development. Good examples are 

HNF1B, where human mutations can cause ureteric atresia and cystic dysplastic kidneys 

(Adalat et al 2009), and PAX2, where human mutations are associated with vesicoureteric relfux 

and kidney hypoplasia  (Sanyanusin et al 1995).  

 

Ongoing discovery of novel or unsuspected ureter development genes 
 

The genetic search for new human ureteric malformation genes continues, with numerous loci 

suggested by genome-wise analyses (e.g. Kelly et al 2007; Weng et al 2009; Cordell et al 2010). 

Fortunately for human geneticists, and also those researching the basic mechanisms of renal 

tract development, there is open access to a resource that makes high-throughput analyses of 

gene expression freely available to all. The GenitoUrinary Development Molecular Anatomy 

Project (GUDMAP) database holds information on RNA array analyses from microdissected 

tissues in the developing murine urogenital system (Harding et al 2011). At the time of writing, 

there are also over 1450 in situ hybridization entries showing gene expression in the developing 

ureter. Examples of transcripts which have a with particularly strong and specific ureter 

expression are shown in Table 1. Cross-referencing with OMIM, to ascertain whether any have 

been associated with human disease and/or might fit into what is already known about the 

biology of ureter development, revealed the following points. HOXA1 mutation is associated with 

a brainstem dysgenesis syndrome, although the state of the renal tract was not reported; ISL1 is 

a known activator of BMP4 expression; MNX1/HLXB9 mutations are implicated in  Currarino 

syndrome, characterised by anorectal and sacral malformations and which can sometimes 

feature duplex ureter, hydronephrosis, vesicoureteric reflux; and Nrap encodes a protein 

implicated in achoring of myofibrillar proteins.  

 
Table 1.  
Transcripts with strong and specific ureteric expression in developing mice, as reported 
in the GUDMAP database. 
 
Esrrb (estrogen-related receptor-β) 
Hnf4g hepatocyte nuclear factor 4γ 
Hoxa1 (Homeobox1α) 
Isl1 (Isl LIM homeobox-1) 
Lhx6 (Lim Homeobox gene 6) 
Lix1 (Limb expression 1) 
Mbd1 (Methyl-CpG-binding domain protein 1) 
Neurod4 (Neuorgenic differentiation 4) 
Nrap (Nebulin related anchoring protein) 
Spdef (SAM pointed domain-containing ETS transcription factor) 
Tox3 (Tox high mobility group box family member 3) 
Zfhx4 (Zinc finger homeobox 4) 
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