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SUMMARY

Cilia have evolved hugely diverse structures and
functions to participate in a wide variety of develop-
mental and physiological processes. Ciliary speciali-
zation requires differences in gene expression, but
few transcription factors are known to regulate this,
and their molecular function is unclear. Here, we
show that the Drosophila Forkhead box (Fox) gene,
fd3F, is required for specialization of the mechano-
sensory cilium of chordotonal (Ch) neurons. fd3F
regulates genes for Ch-specific axonemal dyneins
and TRPV ion channels, which are required for
sensory transduction, and retrograde transport
genes,whichare required todifferentiate theirdistinct
motile and sensory ciliary zones. fd3F is reminiscent
of vertebrate Foxj1, a motile cilia regulator, but fd3F
regulates motility genes as part of a broader sensory
regulation program. Fd3F cooperates with the pan-
ciliary transcription factor, Rfx, to regulate its targets
directly. This illuminates pathways involved in ciliary
specialization and the molecular mechanism of tran-
scription factors that regulate them.

INTRODUCTION

The cilium commonly constitutes a cell’s organelle for environ-

mental sensing in a wide variety of contexts, from developmental

signaling pathways (such as Sonic hedgehog) to the specialized

receptor processes in sense organs of various sensory modali-

ties (Ishikawa and Marshall, 2011). In other situations, cilia are

motile and play many roles connected to fluid movement in the

airways, CNS, oviduct, and embryonic node. Despite this struc-

tural and functional diversity, cilia share a highly conserved

pathway of ciliogenesis, involving basal body docking, axoneme

extension, intraflagellar transport (IFT), and ciliary membrane

assembly (Silverman and Leroux, 2009). A major question is

how this common assembly program is adapted and modified

with cell-specific variations to generate cilia diversity (Silverman

and Leroux, 2009). It is likely that such specialization requires

cell-type-specific gene expression programs, but little is known

of the nature of these programs or of the transcription factors

that regulate them (Thomas et al., 2010).

In metazoans ciliogenesis broadly depends on regulatory

factor X (Rfx) transcription factors (Chu et al., 2010). Their targets

are well characterized in functional and bioinformatic studies on

C. elegans and Drosophila (Avidor-Reiss et al., 2004; Efimenko

et al., 2005; Laurençon et al., 2007), and include genes required

for ‘‘core’’ ciliogenesis processes such as anterograde IFT and

membrane assembly. If Rfx is required broadly for ciliogenesis,

what regulates cilium specialization? In fact Rfx targets include

genes restricted to subtypes of ciliated cell (Efimenko et al.,

2005), but it is not clear how it regulates such genes. It is spec-

ulated that Rfx cooperates with cell-type-specific factors (Silver-

man and Leroux, 2009; Thomas et al., 2010), but the nature of

this cooperation is uncharacterized.

Few cell-type-specific regulators of ciliogenesis have been

characterized. The most well known are members of the FoxJ

subfamily. In vertebrates, Foxj1 has been associated particularly

with the differentiation of motile ciliated cell types (Brody et al.,

2000; Jacquet et al., 2009; Stubbs et al., 2008; Yu et al., 2008).

For instance, Foxj1 knockout mice have left-right asymmetry

and airway defects (Brody et al., 2000). Target gene analyses

have shown that Foxj1 regulates, directly or indirectly, many

genes linked to ciliary motility, including axonemal dyneins, but

not core ciliogenesis, such as IFT factors (Jacquet et al., 2009;

Stubbs et al., 2008; Thomas et al., 2010; Yu et al., 2008).

However, very little is known of its molecular mode of action or

its relationship with Rfx function.

In Drosophila the only somatic cells with cilia are bipolar

sensory neurons, which have specialized ciliary dendrites for

sensory reception and transduction (Figures 1A–1C). Different

classes of such neurons have ciliary dendrites that have different

morphologies, express different sets of receptor molecules, and

respond to different sensory modalities. These neurons present

a useful model for investigating how ciliary diversity arises.

External sensory (ES) neurons have a short connecting cilium

leading to a distal sensory process with an irregular core of

microtubules. In contrast, proprioceptive and auditory chordoto-

nal (Ch) neurons have a long sensory cilium with a well-defined

9+0 axoneme (Figures 1B and 1C) (Eberl et al., 2000; Kernan

et al., 1994). The Ch cilium has several unique specializations.

First, its mechanosensory transduction mechanism uniquely

involves TRPV (transient receptor potential) channels encoded

by nanchung (nan) and inactive (iav) (Gong et al., 2004; Kim

et al., 2003). Second, it can be motile. In the auditory Ch neurons

of Johnston’s organ in the antenna (Figure 1B), motility arises

from the interplay between transduction channels and adapta-

tion motors (possibly axonemal dyneins). Sensory-induced
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motility is thought to underlie a mechanical amplification mech-

anism to increase auditory sensitivity (Göpfert et al., 2005;

Göpfert and Robert, 2003). Third, the Ch neuron cilium is divided

by a ciliary dilation into functionally distinct proximal (motile) and

distal (sensory) zones (Figure 1C) (Lee et al., 2008).

We asked, therefore, what regulates gene expression for Ch

neuron-specific ciliary specialization. Rfx is expressed in and

required for ciliogenesis in both ES and Ch neurons (Dubruille

et al., 2002; Laurençon et al., 2007), whereas Foxj1 homologs

are reportedly absent from Drosophila (Larroux et al., 2008;

Mazet et al., 2003). We recently reported, however, that the

Fox gene, fd3F, is required for Ch neuron function (Cachero

et al., 2011). Here, we show that fd3F does not regulate ciliogen-

esis per se but directly regulates the genes required for aspects

of Ch ciliary specialization. It appears that Fd3F cooperates

closely with Rfx to regulate this Ch-specific cohort of genes

and, therefore, it acts as a cell-type-specific modulator of Rfx

target gene specificity. Comparison with Foxj1 and its target

genes suggests that fd3F is a highly diverged relative of Foxj1.

RESULTS

fd3F Mutation Results in Uncoordinated Flies
with Nonfunctional Ch Neurons
Previously, a transcriptome analysis of embryonic Ch cells

revealed that fd3F (CG12632) was highly enriched in developing

Ch neurons, and RNA in situ hybridization and immunostaining

showed that fd3F is exclusively expressed in Ch cell lineages

during embryogenesis (Cachero et al., 2011) (Figures 1D and

1E). In larval imaginal discs, fd3F expression was confined

to locations of Ch precursors, including the femoral Ch precur-

sors in the leg disc (Figure 1F) and the Ch precursors of

Johnston’s organ in the antennal disc (data not shown). In

summary, fd3F expression is unique to developing and differen-

tiating Ch neurons.

Using the fly stock P{EP}fd3FEP1198, we generated a deletion

of 1.4 kb (fd3F1) that removes approximately 400 bp of the

30 end of the fd3FORF (see Figure S1A available online) (Cachero

et al., 2011). fd3FmRNAexpressionwas very strongly reduced in

homozygous mutant embryos (Figures S1B and S1C), suggest-

ing that the truncated fd3F transcripts are unstable and that the

mutation is close to a genetic null. Consistent with this, little

difference was observed between the phenotypes of fd3F1

homozygotes and hemizygotes over a deficiency (fd3F1/Df(1)

ED6716) in the analyses below.

fd3F1 homozygote flies are viable and fertile but are uncoordi-

nated (Cachero et al., 2011), and hence, the adult flies perform

very poorly in a climbing assay (Figure 2E). This suggests that

Ch neurons are defective in fd3Fmutants. However, Ch neurons

were present in fd3F1 embryos, larvae, and pupae and showed

little gross morphological defect (Figures 2A and 2B). When

marked by the expression of mCD8-GFP, the Ch sensory cilia
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Figure 1. fd3F Is Expressed Specifically in Developing Ch Neurons

(A) Schematic arrangement of ciliated sensory neurons in an embryonic abdominal segment. Ch neurons, green; ES neurons, blue.

(B) Schematic of the array of Ch neurons in the adult antenna that form Johnston’s organ.

(C) Schematic of a unit Ch organ from Johnston’s organ, housing two Ch neurons.

(D) fd3F mRNA in stage 14 embryos.

(E) Fd3F protein localized in a subset of sensory neurons (marked by 22C10) corresponding to Ch neurons (stage 15 embryo).

(F) Leg imaginal disc, Fd3F protein in Ch precursor cells of the femoral chordotonal organ (fco).

Scale bars, 100 mm (D and F) and 20 mm (E).
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were present and grossly normal (Figures 2C and 2D). To assess

the functional integrity of Ch neurons in fd3Fmutants, we exam-

ined the activity of the auditory Ch neurons of Johnston’s organ.

Compound action potentials (CAPs) were recorded in response

to auditory stimulus from the antennal nerve of adult flies. Unlike

wild-type flies, fd3Fmutant flies showed no sound-evoked CAPs

in the antennal nerve (Figure 2F). These data suggest that fd3F

regulates aspects of Ch neuronal differentiation that are essen-

tial for Ch neuron function.

fd3F Regulates a Subset of Ch-Specific Genes
As we previously reported (Cachero et al., 2011), fd3F is required

for the expression of the genes nan and iav, which encode

subunits of a TRPV cation channel uniquely localized to

Ch neuron cilia (Gong et al., 2004; Kim et al., 2003). To identify

other regulatory targets of fd3F, we began by examining

candidate Ch-expressed genes identified previously in our

transcriptome analysis (Cachero et al., 2011). Of 16 genes tested

initially, 6 showed reduced expression in fd3F mutant embryos
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Figure 2. Mutation of fd3F Results in Functionally Defective Ch Neurons

(A and B) Cell bodies and dendrites of Ch neuron group (lch5) in third-instar larvae stained with anti-HRP.

(C and D) Adult femoral Ch organ neurons showing sensory cilia (arrows) labeled with mCD8-GFP (elavGal4;UAS-mCD8-GFP).Scale bars, 5 mm.

(E) Climbing assay showing percentage of adult flies climbing above a threshold. Genotypes are wild-type (w1118), flies homozygous for the P element insert at

fd3F (p{EP}), fd3F1 heterozygotes (fd3F1/FM6 balancer), and fd3F1 homozygotes. Error bars are SD. ***p < 0.0001.

(F) Shown on the left are relative CAP amplitudes recorded from the projections of Johnston’s organ neurons in the antennal nerve (inset) as a function of the

sound particle velocity. Shown on the right are corresponding absolute values of the maximum CAP amplitudes (n = 5 flies per strain). Error bars are SD.

(G–L) Genes that show reduced expression in fd3F mutant embryos. Wild-type (left) and mutant (right) embryos showing mRNA expression of Ch-expressed

genes (named at left) are shown. Expression is either virtually absent (e.g., Dhc93AB) or reduced (e.g., CG11253). Scale bars, 100 mm.

See also Figure S1.
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(Figures 2G, 2H, and S1D; Table S1). Thus, fd3F does not

regulate all Ch neuron-specific genes. Instead, the nature of

the target genes suggests that fd3F regulates specific processes

in Ch sensory specialization.

fd3F Regulates Genes Required for Ch Ciliary Motility
The fd3F target, Dhc93AB (Figures 2G and 2H), encodes

an axonemal outer-arm dynein heavy chain (homolog of

human DNAH9/11). Axonemal dyneins form a large family of

multisubunit motors that are responsible for cilium motility. In

Drosophila embryos, Ch neurons bear the only cilia with

axonemal dynein arms, and correspondingly, Dhc93AB is ex-

pressed in a Ch-specific pattern. In Ch neurons of Johnston’s

organ, nonlinear mechanical amplification arises from the

motility of Ch cilia (Göpfert et al., 2005; Göpfert and Robert,

2003; Nadrowski et al., 2008). Axonemal dyneins are good

candidates to contribute to this process. Like vertebrate hair

cells, Ch neurons use mechanical amplification to augment the

tiny sound-induced vibrations that they transduce. Active ampli-

fication can be tested by examining the mechanical response

of the antennal sound receiver to tones of different intensities

(Göpfert et al., 2006). In wild-type flies this response displays

a compressive nonlinearity that enhances sensitivity about

10-fold when sound is faint (Figure 3A). This nonlinearity was

completely absent in fd3F mutant flies (Figures 3A and 3B),

demonstrating that Ch cilium motility is lost.

Besides Dhc93AB, a number of other axonemal dynein

components are present in transcriptome of differentiating

embryonic Ch neurons (Cachero et al., 2011) (Table S1), and

several of these were confirmed to have Ch-specific expression

by in situ hybridization (Figures 3B, 3D, and 3F; Table S1). This

suggests that axonemal dyneins are important in embryonic

(proprioceptive) as well as antennal (auditory) Ch neurons. Of

these genes, almost all were strongly reduced or absent in

fd3F mutant embryos, including inner-arm dyneins Dhc16F

(human DNAH6) and Dhc62B (DNAH3/7), axonemal dynein light

chains CG8800 (DNAL1) and CG34192 (DNALRB2), light-

intermediate chain CG6971 (DNALI1), and intermediate chain

Figure 3. fd3F Regulates Genes Required for Ch Ciliary Motility

(A) Shown on the left is a tone-evoked antennal displacement amplitude as a function of the sound particle velocity at the arista tip (inset, red arrow). Green lines

indicate linearity, red lines nonlinearity. The orange arrows highlight the nonlinear sensitivity gain. Shown on the right is nonlinear sensitivity gain. A gain of one

(hatched horizontal line) signals the absence of amplification. Error bars are SD.

(B–G) mRNA expression of axonemal dynein genes in wild-type and fd3F mutant embryos.

(B, D, and F) In wild-type embryos, these genes are Ch specific but rather weakly expressed (Ch cell transcriptome analysis supports this, Table S1).

(C, E, and G) Expression is strongly reduced in fd3F mutant embryos.

(H and I) TEM of Ch cilium cross-sections from adult antennae (Johnston’s organ), showing the nine axonemal microtubule doublets. Axonemal dynein arms can

be seen in wild-type (H, arrows), but not in fd3F mutant (I). Insets show this phenotype schematically.

(J) Lower-magnification view of Ch units with the cilium in (I) ringed. The schematic shows the approximate location of the cross-sections.

(K–N) Expression of genes required for axonemal dynein assembly or function shows Ch-specific (albeit weak) expression (K and M) that is strongly reduced in

fd3F mutants (L and N).

Scale bars, 100 mm. See also Table S1.
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CG13930 (IC138, WDR78) (Figures 3B–3G; Table S1). Together,

these observations suggest that fd3F regulates axonemal

dynein genes in general. To check that this also pertains to the

Johnston’s organ, Ch neuron ultrastructure in the antenna was

examined by transmission electron microscopy (TEM). In trans-

verse sections of mutant ciliary dendrites, normal axoneme

arrangement and ultrastructure were observed, but dynein outer

and inner arms were missing from the proximal cilium (Figures

3H–3J). Loss of dyneins with consequent loss of motility can

account for the loss of mechanical amplification by Johnston’s

organ neurons in fd3F mutants, although fd3F might also

regulate genes of the sensory transduction apparatus that are

required for the process (Nadrowski et al., 2008).

Several genes have been implicated in axonemal dynein

assembly. tilB is required for transport or assembly of axonemal

dyneins (Kavlie et al., 2010), and CG14905 is similar to

Chlamydomonas ODA-1, which is required for axonemal dynein

assembly (Kamiya, 1988). Ch neuron expression of both genes

was reduced in fd3F mutant embryos (Figures 3K and 3L; data

not shown). Tektins are required for correct motility of cilia, prob-

ably by participating in dynein inner-arm assembly or attachment

(Amos, 2008). We found that Tektin-A (TEKT4 ortholog) is

expressed exclusively in Ch neurons and that its expression is

strongly reduced in fd3F mutants (Figures 3M and 3N). Thus,

fd3F regulates genes required for several aspects of dynein

arm formation.

Fd3F Regulates Retrograde Transport Genes to Form
Functionally Specialized Ciliary Zones
The fd3F target, CG3769 (Figures 2I and 2J), encodes the

ortholog of cytoplasmic dynein 2 light-intermediate chain

(DYN2LIC). Cytoplasmic dynein 2 is the motor for retrograde

IFT during ciliogenesis, and dynein 2 heavy chain (DYN2HC),

encoded by beethoven (btv), is required for Johnston’s organ

function (Eberl et al., 2000). Unlike axonemal dyneins, btv

expression is not strictly confined to Ch neurons: it is expressed

preferentially in Ch neurons but also at a lower level in ES

neurons (the so-called Ch-enriched pattern; Cachero et al.,

2011) (Figure 4A). This is consistent with retrograde transport

being required for ciliogenesis in both sensory neuron subtypes.

Like CG3769, btv mRNA is reduced in the Ch neurons of fd3F

mutant embryos (Figure 4B). However, some expression

remains in Ch neurons, and ES neuron expression appears

unaffected.

Retrograde transport also requires proteins of the IFT-A

complex, and we previously found that IFT-A genes are also

expressed in the Ch-enriched pattern (Cachero et al., 2011). In

fd3F mutant embryos, rempA (IFT140) and Oseg6 (IFT144)

mRNAs were both reduced in Ch neurons (Figures 4C and 4D;

data not shown). Oseg1 was also reduced in whole embryos

as shown by RT-PCR (data not shown). In contrast to retrograde

transport genes, the anterograde IFT-B genes, nompB (IFT88)

andCG15161 (IFT46), were not affected in fd3Fmutants (Figures

4E and 4F; data not shown).

InChlamydomonas and other models, disruption of retrograde

IFT causes a buildup of proteins at the tip of the cilium, which

then becomes swollen (Pazour et al., 1998). This phenotype

was present in fd3Fmutant Johnston’s organ dendrites: in trans-

verse sections the tips of the cilia fill the dendritic cap (Figures 4G

and 4H). However, the cilia did not appear truncated, as is seen

in rempA null mutants (Lee et al., 2008), consistent with only

a partial loss of retrograde IFT. A second feature of retrograde

transport mutants is the accumulation of IFT-B particles in the

ciliary tips (Hou et al., 2004). We observed a moderate accumu-

lation of NompB-GFP fusion protein in the tips of fd3F mutant

cilia (Figures 4I and 4J).

If fd3F is responsible for elevated expression of retrograde

transport genes in Ch neurons relative to ES neurons, this implies

that increased expression has a Ch neuron-specific function.

Indeed, although retrograde transport is required for ciliogenesis

generally, rempA has an additional Ch-specific role of creating

and maintaining the distinct proximal motile and distal nonmotile

ciliary zones, separated by the ciliary dilation (Lee et al., 2008)

(Figure 1A). These zones differ in ion channel composition, with

Nan and Iav (TRPV) localized to the proximal zone, whereas

the distal zone contains the candidate force-responsive ion

channel, NompC (TRPN1 homolog) (Cheng et al., 2010; Liang

et al., 2011) (Figures 4M and 4O). In fd3Fmutant embryos, defec-

tive ciliary dilation staining was observed similar to that reported

for btvmutants (Eberl et al., 2000) (Figures 4K and 4L). We inves-

tigated whether this reflects a disruption of ciliary compartmen-

talization. As noted above, proteins known to be restricted to the

proximal zone (axonemal dyneins, Nan, Iav) are themselves fd3F

targets, and so their localization cannot readily be analyzed.

However, distally localized NompC protein could be examined

because its transcription is independent of fd3F (data not

shown). In fd3F mutant larvae and adult antennae, NompC

protein was not restricted distally but was instead spread along

the length of the cilium, suggesting a disruption of ciliary

compartmentalization (Figures 4M–4P). Consistent with this,

the axonemal ultrastructure of the mutant proximal cilium

appears to resemble that of the distal cilium (a dense core is

seen in only one microtubule of the doublets) (Figure 3I; data

not shown). The RempA-YFP protein itself normally concen-

trates in the region of the ciliary dilation (Lee et al., 2008)

(Figure 4Q). However, in fd3F mutant neurons, RempA-YFP

was dispersed along the proximal cilium (Figure 4R). In conclu-

sion, fd3F not only regulates genes whose products are localized

to the proximal motor zone (axonemal dyneins, Iav, Nan) but also

upregulates genes required to form and maintain the distinct

zones (cytoplasmic dynein 2, IFT-A components) (Figure 4S).

Direct Regulation of nan and iav by Fd3F
We examined the cis regulation of nan and iav. For nan a 557 bp

upstream fragment (�561 to �4, relative to ATG) drives GFP

reporter expression specifically in embryonic Ch neurons

(nan-GFP) (Kim et al., 2003) (Figures 5A and 5B). In fd3F1 mutant

embryos, nan-GFP expression was abolished (Figure 5D),

showing that this enhancer is responsive to fd3F. Similarly, for

iav a 597 bp upstream fragment was able to drive Ch-specific

GFP expression in an fd3F-dependent manner (Figures 5A, 5C,

and 5E). Fox factors of several subfamilies bind to a common

sequence in vitro, RYMAAYA (Benayoun et al., 2011). The nan

and iav enhancers contain several such motifs. Mutation of the

Fox motifs closest to the iav and nan translational start sites

(iav-F1 and nan-F1) abolished iav-GFP and nan-GFP reporter

gene expression (Figures 5F and 5G). In contrast, mutation of

Fox motifs slightly further upstream (F2 in Figure 5A) had no
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Figure 4. fd3F Regulates Genes Required for Ciliary Compartmentalization

(A–D)mRNA expression of retrograde IFT-related genes in wild-type and fd3Fmutant embryos. These genes show aCh-enriched expression pattern of which the

Ch neuron component (ringed and marked with arrows) is reduced in fd3F mutants.

(E and F) The expression of an anterograde IFT gene, CG15161 (in a pattern consistent with expression in all ciliated sensory neurons), is unaffected in fd3F

mutant embryos. Scale bars, 20 mm.

(G and H) TEM cross-section of the tip of a Ch organ unit from adult antennal Johnston’s organ. The Ch cilium tips (ci) are housed within the dendritic cap (c)

(schematic shows the location of the cross-section). As shown in (G), the cilium tips are enlarged to fill the cap in the fd3F mutant antenna (H).

(I and J) NompB-GFP fusion protein accumulates at the tips of Johnston’s organ Ch neurons in fd3F mutant pupal antennae (cell bodies counterstained

with 22C10).

(K) In wild-type embryonic Ch neurons, anti-HRP marks the Ch cilia including the ciliary dilation (arrowheads).

(L) The dilation is not apparent in Ch cilia from fd3F mutant embryos (arrowheads indicate the expected location of the dilation).

(M–P) NompC protein is localized to the distal Ch cilia in wild-type neurons (M and O) but becomes dispersed along the cilium in fd3Fmutant neurons (N and P).

Lines indicate the approximate extent of the cilium.

(Q) RempA-YFP protein is localized in the vicinity of the ciliary dilation in wild-type Ch cilia.

(R) In fd3F mutant cilia, RempA-YFP protein becomes dispersed.

(S) Schematic summary of protein localizations in wild-type and mutant Ch neuron cilia.

Scale bars, 4 mm (I, J, and O–R) and 5 mm (K–N). See also Table S1.
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effect on reporter gene expression (data not shown). To test

whether Fd3F can bind to these F1 motifs, the DNA binding

Forkhead domain of Fd3F (Fd3FFkd) was expressed as a GST

fusion protein and isolated from bacterial cells. When used in

an in vitro gel mobility shift assay, GST-Fd3FFkd was able to

bind specifically to the F1 sites of both nan and iav (Figure 5H).

Coregulation of Ciliary Specialization Genes by Fd3F
and Rfx Transcription Factors
Typically, Rfx factors regulate target genes via a single upstream

binding site (X box) (Efimenko et al., 2005; Laurençon et al.,

2007). The iav and nan enhancer sequences contain an X box

motif similar to that determined biochemically for human Rfx1

(GTNRCCN{0-3}RGYAAC; Emery et al., 1996), very close to

the functional Fd3F binding sites (Figure 5A). This raises the

possibility that although Rfx is a pan-ciliary transcription factor

required for both Ch and ES neurons (Dubruille et al., 2002), it

contributes to the regulation of Ch-specific Fd3F target genes.

Indeed, both nan and iav expression were strongly reduced

in Rfx mutant embryos (Figures 5I and 5J; data not shown). In

both cases mutation of the X box in the reporter constructs

largely abolished enhancer activity (Figures 5K–5N). We

therefore conclude that an X box/Fox motif combination is

required for nan and iav regulation in Ch neurons and that most

likely these sites are bound by Rfx and Fd3F. In support of the

conclusion that these transcription factors are coregulators, we
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XF 

F F   F 

1kb 
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          F2                      X box
CTGGTCTCATTGGTTTGGCTGGGTGGGTGGGGTTACCAGGACAACGAGCT
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                                   F1
GGCTTCCTGCCTCTTGATATCATGGGTCATCGAACAAACAAGCCGAGAAG
* *   **  *  *     **   ** **************      ***

      F2                               X box
ACAGCGTAAACAAAGCAAAGGAGCTCAAGTTCAGCTGTTGCATTGGCAAC
  ** ******* *  ** *******************************
                       F1
GGACGTGCACGGAAATGTTTTATCAATAGCCACCAATGGACAAGGACCTC
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Figure 5. Fd3F Directly Regulates nan and iav with Rfx

(A) Schematics of the nan and iav genes showing locations of Foxmotifs (F) and X boxes (X) in their upstream regions. The sequences surrounding the X boxes are

shown, with asterisks representing identity in D. pseudoobscura.

(B and C) Stage 16 embryos showing expression of GFP in Ch neurons for nan-GFP (B) and iav-GFP (C) reporter genes.

(D and E) Expression of both reporter genes is lost in fd3F mutant embryos.

(F and G) Expression of both reporter genes is abolished upon mutation of a single Fox motif (F1) in either upstream region.

(H) Gel mobility shift assay with oligonucleotide probes (*) containing the nan-F1 or iav-F1 Fox motifs and purified Fd3F forkhead domain polypeptide (Fd3FFkh).

TheDNA-Fd3FFkh complexes are indicated. Addition of 100-fold excess of cold competitor oligonucleotide (nan-F1, iav-F1) reduces complex formation, but when

the Fox motif is mutated (nan-F1m, iav-F1m), the cold competitor has no effect on complex formation.

(I and J) Embryonic expression of iav in Ch neurons (I) is lost in Rfx49 homozygous mutant embryo (J) (embryos stained in parallel).

(K–N) Two abdominal segments from stage 16 embryos stained with anti-GFP (green) and 22C10 (magenta). Ch neuron expression of nan-GFP (K) and iav-GFP

(M) reporter genes is abolished when the upstream X box is mutated (L and N).

Scale bars, 100 mm (B–J) and 20 mm (K–M). See also Table S1.
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found no evidence of a regulatory hierarchy between Rfx and

fd3F: in embryos we found that fd3F transcription does not

depend on Rfx function and vice versa (data not shown).

When we examined a selection of other fd3F target genes

(including Dhc93AB, rempA), we found that their expression

was also strongly reduced in Rfx mutant embryos (Table S1).

Moreover, we observed that almost all fd3F target genes contain

a closely spaced combination of conserved Fox and X box

motifs, usually within 50 bp of the transcriptional or translational

start site (Figure 6A; Table S2). Some of these genes were

suspected Rfx direct targets from other bioinformatic analyses

(Avidor-Reiss et al., 2004; Laurençon et al., 2007) (Table S2).

However, most of these genes were not previously predicted

to be Rfx targets, partly due to the fact that the X box motif often

does not conform completely to the palindromic consensus

sequence previously considered for Drosophila targets:

GTTGCCATGGCAAC (Avidor-Reiss et al., 2004); GYTRYYN(1-3)

RRHRAC (Laurençon et al., 2007) (Figure 6B). The juxtaposition

of Fox motifs and X boxes suggests that Fd3F and Rfx

are coregulators of a subset of Ch ciliary genes. Subsequent to

the bioinformatic analysis, we confirmed that the regulation of

Dhc93AB indeedmirrors that of nan and iav. An 820 bp promoter

fragment supports Ch neuron-specific reporter gene expression,

and mutation of the proximal-most X box and Fox motifs

reduced this expression. However, in this case expression

was not completely abolished, possibly due to redundancy

with other binding sites that are present in this longer enhancer

(Figures 6C–6F).

Target Genes Are Ectopically Activated upon Fd3F
Misexpression
Using flies transgenic for an inducible UAS-fd3F construct, we

ectopically expressed Fd3F in embryonic sensory precursor

cells using a scaGal4 neuroectodermal driver line (Figures 7A

and 7B). This induced the misexpression of several fd3F target

genes in ES neurons, including CG8800 (DNAL1), Tektin-A,

CG11253, and CG31320 (Figures 7C–7H; data not shown). In

addition the nan, iav, and Dhc93AB GFP reporter gene

constructs were all ectopically expressed upon fd3Fmisexpres-

sion (Figures 7I–7L; data not shown). Thus, fd3F is sufficient to

activate aspects of Ch-specific gene expression in other sensory

neurons. Interestingly, although scaGal4 drives expression

widely in neuroectodermal cells, misexpression of target genes

appears to be confined to ES neurons (Figures 7K and 7L).

This is consistent with the idea that Fd3F function is limited to

cells expressing its coregulator, Rfx.

DISCUSSION

Fd3F is a cell-type-specific transcriptional regulator of ciliary

sensory specialization. It is exclusively expressed in mechano-

sensory Ch neurons where it regulates aspects of Ch neuron

ciliogenesis and ciliary function. Fd3F is not a Ch neuron identity

factor or ‘‘master regulator’’ of Ch neuron differentiation: neural

differentiation and ciliogenesis occur largely normally in fd3F

mutant Ch neurons as attested by general morphology, and

many Ch-specific genes are fd3F independent. Instead, fd3F

regulates a program of gene expression for mechanosensory

specialization that is unique to Ch neuron cilia and is absolutely

required for their response to sensory stimulation. Specifically,

fd3F targets are concerned with the structurally and functionally

distinct ciliary zones of Ch neuron dendrites: fd3F regulates

genes for both the machinery for construction and delineation

of the zones (retrograde transport) and the proteins that populate

the specialized proximal motor zone (axonemal dyneins, tektin,

TRPV proteins). fd3F mutation has two consequences: ciliary

motility of JO neurons is lost (reflected by loss of mechanical

amplification), and sensory transduction is lost (reflected by

loss of electrical response to stimulus). Effects on sensory

transduction are both direct (loss of TRPV expression) and indi-

rect (disrupted localization of candidate force-gated channel,

TRPN1). Loss of axonemal dyneins might underlie the loss of

motility directly, or their role may be indirect through their poten-

tial function as adaptation motors in sensory transduction

(Nadrowski et al., 2008).

Mutation of fd3F does not lead to transformation of Ch cilium

morphology to that expected for ES neurons—only motility and

compartmentalization-related specializations are lost. Similarly,

fd3F misexpression does not convert ES cilia to a Ch cilium

morphology (unpublished data). We suggest that ES and

Ch neuron cilia are both specialized derivatives of a default

‘‘nonspecialized’’ cilium structure, such that loss of fd3F results

only in loss of specific Ch ciliary specializations. There may be

other aspects of specialization regulated by other factors in

both Ch neurons and other sensory neurons.

Consideration of fd3F target genes illuminates the outstanding

question of how ciliogenesis pathways are modulated to

produce specialized cilia. One might surmise that ciliary special-

ization requires subtype-restricted gene products. This is true to

some extent, as exemplified by the TRPV proteins and axonemal

dyneins. However, our findings suggest that quantitative differ-

ences in gene expression between sensory neuron subtypes

are also important for ciliary specialization. Compartmentaliza-

tion of Ch cilia into specializedmotile and sensory zones requires

retrograde transport proteins (Eberl et al., 2000; Lee et al., 2008).

Our results suggest that a ‘‘basal’’ level of retrograde transport

is sufficient for ciliogenesis in all sensory neurons (as is present

in ES neurons and fd3Fmutant Ch neurons), but compartmental-

ization of the Ch cilium requires a higher level of activity, as is

provided by fd3F regulation of the genes involved. Thus,

a quantitative difference in gene expression programs might

underlie a qualitative feature of Ch ciliary specialization. This

can be seen as a variation of the idea that differences in IFT

activity might contribute to ciliary specialization (Silverman and

Leroux, 2009).

One model for transcriptional regulation of ciliary specializa-

tion is that Rfx is required for pan-ciliary gene expression,

whereas other more restricted transcription factors regulate

subtype-specific gene expression (Silverman and Leroux,

2009). However, some targets of Rfx are expressed only in

subsets of ciliated cells (Efimenko et al., 2005), raising the ques-

tion of how a pan-ciliary factor can be responsible for subtype-

specific gene expression (Silverman and Leroux, 2009; Wang

et al., 2010). Rfx is required for all ciliated neurons in Drosophila,

but its target gene specificity is modulated in Ch neurons by fd3F

(Figure 7M). This suggests a general mechanism in which Rfx

cooperates with cell-type-specific transcription factors to regu-

late the genes required for cilia diversification. Most fd3F/Rfx
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targets have a conserved X box/Fox motif combination, demon-

strating that specificity factors (in this case Fd3F) may act in very

close molecular cooperation with Rfx, perhaps entailing cooper-

ative binding. Conversely, most if not all fd3F target genes are

also Rfx dependent, such that Rfx appears to be an obligate

cofactor of Fd3F. Interestingly, the X boxes associated with

Figure 6. Promoter Regions of Fd3F/Rfx Target Genes Contain a Paired Fox Motif/X Box Combination

(A) Schematics of example gene regions (first exons and upstream regions only) with locations of X box/Foxmotif pair. Below each is a screenshot from the UCSC

genome browser (http://genome.ucsc.edu/) representing the sequence alignment of 12 Drosophila species and showing degree of identity as a histogram.

X boxes and Fox motifs are outlined in blue and green, respectively.

(B) Sequence logos (http://weblogo.threeplusone.com) summarizing the alignment of X boxes (left) and Foxmotifs (right) from all identified fd3F target genes (see

Table S2). The representations of information content (bits) emphasize the fact that the X boxes often comprise one strong half-site and a more degenerate one.

(C–F) Embryos containing a Dhc93AB-GFP reporter gene.

(C) Stage 16 embryo showing specific expression of Dhc93AB-GFP in Ch neurons.

(D) Mutation of a proximal X box strongly reduces expression.

(E) Mutation of Fox motif F1 reduces expression.

(F) Mutation of Fox motif F2 has no discernable effect. Scale bars, 100 mm. See also Table S2.
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fd3F targets often do not conform to the classic palindromic Rfx

binding site (e.g., GTTGCCATGGCAAC; Avidor-Reiss et al.,

2004) but, instead, show a strong match in only one half-site

(RGYAAC). Half-sites and modified (nonpalindromic) X box sites

have been noted for a variety of other cilia genes and might be

especially associated with cell-type-restricted targets (Efimenko

et al., 2005; Piasecki et al., 2010).

Interestingly, the same X box/Fox site combination is shared

by both Ch-specific and Ch-enriched targets. Therefore, Fd3F

acts as an obligatory cofactor of Rfx for Ch-specific genes,

but for Ch-enriched genes it only enhances a basal level

of Rfx-dependent regulation that is already existent in Ch and

ES neurons (Figure 7M). To extend our model above, Rfx

regulates low-level retrograde transport activity sufficient for
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Figure 7. Ectopic Activation of Target Genes by Fd3F Misexpression

(A and B) Expression of Fd3F in embryos from control (UAS-fd3F, no driver) and misexpressing (scaGal4, UAS-fd3F) lines.

(C–H) Expression of fd3F target genes. In (H), some of the ES neurons exhibiting ectopic expression of Tektin-A are indicated (cf. Figure 1A).

(I and J) Expression of nan-GFP reporter gene.

(K and L) Expression of Dhc93AB-GFP reporter gene. ES neurons exhibiting ectopic expression are labeled in (L).

(M) Summary of target gene regulation by fd3F and Rfx is shown. In wild-type Ch neurons, Fd3F and Rfx cooperate to regulate a subset of Ch-specific and

Ch-enriched genes required for ciliary specialization. In ES neurons, and in fd3F mutant Ch neurons, Rfx does not activate the Ch-specific genes but is able to

activate Ch-enriched genes at a low level for ‘‘basal’’ retrograde transport. In Rfx mutants, Fd3F is unable to activate these genes alone. pan-ciliary genes are

regulated by Rfx in Ch and ES cells. Note that in addition to these interactions, it is possible that ES neurons express their own ciliary specialization regulators, so

that fd3F mutant Ch cilia do not ‘‘revert’’ to an ES cilium state.

Scale bars, 100 mm (A–J) and 20 mm (K and L).
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its ‘‘basal’’ ciliogenesis role, whereas fd3F/Rfx regulate the

higher activity in Ch neurons that is required for ciliary

compartmentalization.

In being required for Ch cilium motility, fd3F has a strikingly

similar role to vertebrate Foxj1 genes, albeit that Foxj1 muta-

tion has wider phenotypic consequences due to the many

roles performed by motile cilia in vertebrates. Is fd3F related

to Foxj1? The FoxJ subfamily is ancient, but bioinformatic

analyses previously detected no Drosophila or C. elegans or-

thologs, suggesting that FoxJ genes have been lost from

ecdysozoans (Mazet et al., 2003). Conversely, such analyses

also failed to assign fd3F to any Fox subfamily (Lee and

Frasch, 2004). However, a recent comprehensive analysis of

mosquito Fox genes tentatively placed fd3F and its mosquito

equivalent in the FoxJ subfamily (Hansen et al., 2007).

Although the sequence evidence is equivocal, we suggest

that fd3F is a highly diverged representative of the FoxJ

subfamily.

Support for this relationship comes from consideration of

target genes. Target gene analyses have indicated many

candidate direct or indirect targets for Foxj1 in mouse and

Xenopus (Jacquet et al., 2009; Stubbs et al., 2008). Several

fd3F target genes are homologs of Foxj1-dependent genes in

multiple vertebrate species (Thomas et al., 2010) (Table S1),

including Dhc93AB (DNAH9 in human), CG9313 (WDR66), tek-

tin-A (TEKT4), CG6971 (DNALI1), CG13930 (WDR78), Dhc62B

(DNAH3), Dhc16F (DNAH6), CG10064 (WDR16), and CG34192

(DNALRB2). The shared targets are all directly concerned with

motility, whereas retrograde transport genes are not Foxj1

targets in vertebrates. This suggests that regulation of axonemal

motor genes is an ancestral function of Foxj1/fd3F, whereas

regulation of retrograde transport was acquired later in the

Drosophila lineage, coinciding with the emergence of distinct

ciliary zones in the evolution of Ch neurons. Other fd3F target

genes have no known function: we suggest they provide a poten-

tial source of new ciliary motility genes.

Cilia are classically classified as either being sensory (primary)

with a 9+0microtubule axoneme or propulsive (motile) with a 9+2

axoneme. Ch cilia are 9+0 sensory cilia with a limited set of

motility-related features that are intimately linked to the Ch

sensory transduction mechanism. These cilia therefore differ

greatly from most propulsive cilia. Several Foxj1-dependent

cell types also bear 9+0 motile cilia somewhat reminiscent of

those on Ch neurons. These include the mouse embryonic

node, which is required for left-right asymmetry (Brody et al.,

2000), related cells in Xenopus and zebrafish (e.g., Kupffer’s

vesicle), and long 9+0 cilia of the neural tube floor plate in zebra-

fish (Stubbs et al., 2008; Yu et al., 2008).

In vertebrates, Rfx3 is required in many ciliated cells that

also require Foxj1, including the mouse embryonic node, CNS

ependymal cells (Baas et al., 2006), and chick neural tube floor

plate (Cruz et al., 2010). Moreover, in the embryonic node Rfx3

regulates genes involved not only with ciliogenesis but also

with cilium mobility (Bonnafe et al., 2004), and some Foxj1-

dependent genes are also affected in Rfx3 mutants, including

Dnahc9, the ortholog of Dhc93AB (El Zein et al., 2009). We

suggest that Rfx3/Foxj1 may work in combination to regulate

directly a subset of ciliary targets in the way we have identified

for Rfx/fd3F.

EXPERIMENTAL PROCEDURES

Fly Stocks

Flies were maintained on standard media at 25�C. We used w1118 as

wild-type control. The stocks elavGal4, UAS-mCD8-GFP, p{EP}fd3FEP1198,

Df(1)ED6716, ec1 were obtained from the Bloomington Stock Center

(Indiana University, Bloomington, IN, USA). Other stocks used were Rfx49

(Dubruille et al., 2002), rempA-YFP (Lee et al., 2008), and nompB-GFP

(Han et al., 2003).

Immunohistochemistry

Primary antibodies used were mAb-22C10 (1:200), RbAb-HRP (1:500), RbAb-

GFP (1:500) (Molecular Probes), and mAb-NompC (Liang et al., 2011). For

generating the Fd3F antibody, synthetic peptides matching the C-terminal

region of Fd3F were injected into two rabbits to produce anti-Fd3F antisera

(CovalAb/Eurogentec). The serum was purified using Melon Gel IgG Spin

Purification Kit (Thermo Scientific) and was used at 1:100. Secondary anti-

bodies were from Molecular Probes. mRNA in situ hybridizations to whole

embryos were by standard digoxigenin method. Gene fragments were ampli-

fied from genomic DNA by PCR (oligonucleotides shown in Supplemental

Experimental Procedures) and digoxigenin-labeled RNA probes prepared

using T7 RNA polymerase. For bright-field microscopy, embryos were

observed using an Olympus AX70 microscope and captured with a DP50

camera. For immunofluorescence microscopy, embryos were observed using

a Zeiss Pascal confocal microscope. Images were processed for contrast and

size in Adobe Photoshop.

Climbing Assay

A total of 20 mated female flies were placed in a measuring cylinder. After

a 1 min recovery period, the cylinder was banged firmly once on the bench,

and the percentage of flies passing a 10 cm threshold within 1 min of banging

was recorded. This was repeated five times each for four groups of flies from

each line.

Electron Microscopy

Whole-adult heads were removed and rinsed in 0.5% Triton X-100. The

proboscis was removed to facilitate infiltration of the fix, and the heads

were then fixed in 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1 M

phosphate buffer (pH 7.4) overnight at 4�C. Heads were then washed in

0.1 M phosphate buffer (pH 7.4), postfixed with OsO4, dehydrated in an

ethanol series, and embedded in Polybed812. Ultrathin (75 nm) sections of

the antennae were then stained with aqueous uranyl-acetate and lead citrate

and examined with a Hitachi 7000 electron microscope (Electron Microscopy

Research Services, Newcastle University Medical School).

Promoter Fusions

Fragments were amplified from genomic DNA and cloned into pHStinger GFP

reporter vector. Site-directed mutagenesis of these constructs was carried out

using the QuikChange II Kit (Stratagene). Fox motifs were changed from

RYMAAYA to RYMACGA, and X boxes were changed from GYNRCCN{1-3}

RGYAAC to GYNRAAN{1-3}RGYAAC, which disrupt DNA binding in vitro by

Fox and Rfx proteins, respectively (Iwama et al., 1999; Kaufmann et al.,

1995). Transformants were made by microinjection into syncytial blastoderm

embryos. Two to four independent transformant lines were tested in each

case, and in cases of position effect-induced variability, the pattern given by

the majority of lines was recorded. Confocal imaging was performed using

identical nonsaturating settings for mutated and control fusion lines for direct

comparison of expression levels.

Expression and Purification of Fd3F Forkhead Domain

Total RNA was extracted from 5–21 hr embryos using RNeasy kit (QIAGEN).

This RNA was reversed transcribed to produce total embryonic cDNA using

ImProm-II Reverse Transcription System (Promega). The forkhead box of

the gene (fd3Ffkh) was amplified from the cDNA and cloned in pGEX-2T

(Supplemental Experimental Procedures). The pGEX- fd3Ffkh plasmid was

used to transform BL21-pLysS E. coli. The cells were grown to OD550 of

0.35, and expression of Fd3Ffkh was then induced with 0.5 M IPTG for 2 hr

at 20�C. GST-Fd3Ffkh was purified from the soluble cell lysate using
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glutathione Sepharose beads and eluted with 50 mM reduced glutathione and

0.4% deoxycholate in 250 mM Tris-HCl (pH 8).

Gel Mobility Shift Assay

Oligonucleotides (Supplemental Experimental Procedures) were labeled with

[g33P]ATP (Amersham) using T4 polynucleotide kinase (New England Biolabs).

Unincorporated [g33P]ATP was removed using ProbeQuant G-50 microcol-

umns (GE Healthcare). g33P-labeled duplexes were used at 0.1 nM in 20 ml

reaction mixtures in binding buffer (10 mM Tris-HCl, 1 mM dithiothreitol,

1 mM EDTA, and 100 mM NaCl). The duplexes were incubated with purified

Fd3Ffkh (12.5 mM in binding buffer) for 20 min on ice. The reaction mixture

was then electrophoresed on a native 6% polyacrylamide gel in 0.53 TBE at

40 mA for 1 hr before exposure to a phosphoimager screen. For competition

assays 10 nM unlabeled DNA duplex wasmixed with 0.1 nM labeled DNA prior

to adding Fd3Ffkh.

Misexpression of Fd3F

The fd3F ORF was amplified by RT-PCR on embryonic mRNA using a primer

from the 50 noncoding exon and the 30 end of the annotated fd3FORF (Supple-

mental Experimental Procedures). This yielded a fragment of 2.5 kb, which is

1 kb larger than expected from current genome annotation (http://www.

flybase.org). Sequencing revealed a large ORF consisting of the coding

regions of both fd3F and CG32779, which is currently annotated as a separate

transcription unit within the first intron of fd3F. Inspection of fd3F orthologs

from other Drosophila species and other insects suggests that CG32779 is

indeed part of fd3F (unpublished data). This ORF was therefore inserted into

pUAS-attB, and transgenic flies were obtained by microinjection of syncytial

blastoderm embryos.

Electrophysiological and Biophysical Analyses

For evaluating Johnston’s organ function, flies were exposed to pure tones of

different intensities at the individual best frequency of their antennal sound

receiver (Göpfert et al., 2005), and the resulting mechanical displacements

and antennal nerve potentials were simultaneously recorded. Receiver

displacements weremeasuredwith anOFV-400 Polytec laser Doppler vibrom-

eter at the tip of the antennal arista. Nerve responses were recorded by insert-

ing an electrolytically tapered tungsten wire between the first antennal

segment and the head capsule, and an indifferent electrode placed in the

thorax (Effertz et al., 2011). Sound particle velocities were measured with an

Emkay NR 3158 pressure gradient microphone at the position of the fly.

SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure, two tables, and Supplemental

Experimental Procedures and can be found with this article online at

doi:10.1016/j.devcel.2012.05.010.

ACKNOWLEDGMENTS

For reagents, we are grateful to Maurice Kernan, Jonathan Howard, Bénédicte

Durand, and Johannes Bischof. We thank Lynn Powell for technical advice and

for the initial nan-GFP and iav-GFP reporters, and Tracey Davies of Newcastle

University Medical School Electron Microscopy Research Services for tech-

nical services. This work was funded by The Wellcome Trust (077266) and

supported by BBSRC studentships to F.G.N. and D.J.M. S.K. was supported

by a stipend from the Neurosenses program and, together with M.C.G., by

a research grant of the German Science Foundation (DFG Go1092/1-1, to

M.C.G.).

Received: September 6, 2011

Revised: March 9, 2012

Accepted: May 14, 2012

Published online: June 11, 2012

REFERENCES

Amos, L.A. (2008). The tektin family of microtubule-stabilizing proteins.

Genome Biol. 9, 229.

Avidor-Reiss, T., Maer, A.M., Koundakjian, E., Polyanovsky, A., Keil, T.,

Subramaniam, S., and Zuker, C.S. (2004). Decoding cilia function: defining

specialized genes required for compartmentalized cilia biogenesis. Cell 117,

527–539.

Baas, D., Meiniel, A., Benadiba, C., Bonnafe, E., Meiniel, O., Reith, W., and

Durand, B. (2006). A deficiency in RFX3 causes hydrocephalus associated

with abnormal differentiation of ependymal cells. Eur. J. Neurosci. 24,

1020–1030.

Benayoun, B.A., Caburet, S., and Veitia, R.A. (2011). Forkhead transcription

factors: key players in health and disease. Trends Genet. 27, 224–232.

Bonnafe, E., Touka, M., AitLounis, A., Baas, D., Barras, E., Ucla, C., Moreau,

A., Flamant, F., Dubruille, R., Couble, P., et al. (2004). The transcription factor

RFX3 directs nodal cilium development and left-right asymmetry specification.

Mol. Cell. Biol. 24, 4417–4427.

Brody, S.L., Yan, X.H., Wuerffel, M.K., Song, S.K., and Shapiro, S.D. (2000).

Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice.

Am. J. Respir. Cell Mol. Biol. 23, 45–51.

Cachero, S., Simpson, T.I., Zur Lage, P.I., Ma, L., Newton, F.G., Holohan, E.E.,

Armstrong, J.D., and Jarman, A.P. (2011). The gene regulatory cascade linking

proneural specification with differentiation in Drosophila sensory neurons.

PLoS Biol. 9, e1000568.

Cheng, L.E., Song, W., Looger, L.L., Jan, L.Y., and Jan, Y.N. (2010). The role of

the TRP channel NompC inDrosophila larval and adult locomotion. Neuron 67,

373–380.

Chu, J.S., Baillie, D.L., and Chen, N. (2010). Convergent evolution of RFX

transcription factors and ciliary genes predated the origin of metazoans.

BMC Evol. Biol. 10, 130.

Cruz, C., Ribes, V., Kutejova, E., Cayuso, J., Lawson, V., Norris, D., Stevens, J.,

Davey, M., Blight, K., Bangs, F., et al. (2010). Foxj1 regulates floor plate cilia

architecture and modifies the response of cells to sonic hedgehog signalling.

Development 137, 4271–4282.
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