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Abstract

This paper investigates the properties of the most common form of reinforce-
ment learning (the “basic model” of Erev and Roth, American Economic Review,
88, 848-881, 1998). Stochastic approximation theory has been used to analyse the
local stability of fixed points under this learning process. However, as we show,
when such points are on the boundary of the state space, for example, pure strat-
egy equilibria, standard results from the theory of stochastic approximation do not
apply. We offer what we believe to be the correct treatment of boundary points,
and provide a new and more general result: this model of learning converges with
zero probability to fixed points which are unstable under the Maynard Smith or
adjusted version of the evolutionary replicator dynamics. For two player games
these are the fixed points that are linearly unstable under the standard replicator
dynamics.
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1 Introduction

Whilst equilibrium analysis has been the mainstay of economic theory for many years,
economists have more recently turned to non-equilibrium explanations of human be-
haviour based on learning models. This approach has found considerable success in
explaining how people behave in economic experiments (Roth and Erev, 1995; Erev and
Roth, 1998; Camerer and Ho, 1999). This in turn leads to the intriguing prospect of
using adaptive learning models in economic applications in the wider world outside the
laboratory, for example, to explain consumer behaviour (Erev and Haruvy, 2001; Hop-
kins, 2003) or to design economic mechanisms robust to bounded rationality (Sandholm,
2002). However, such applications are hampered by the fact that learning models are
more difficult to work with than equilibrium analysis: one has first to calculate the equi-
libria and then consider such issues as stability and convergence. Such difficulties are
compounded when one works with stochastic rather than deterministic systems. There-
fore, recent results that indicate that stochastic learning models can behave in the same
way, at least asymptotically, as deterministic models such as the evolutionary replicator
dynamics are particular valuable.1

In this paper, we highlight some previously hidden technical difficulties in the appli-
cation of this methodology, and offer some solutions. In particular, we show that two
important results in the theory of stochastic approximation cannot be easily applied to
the reinforcement learning model popularised by Erev and Roth (1998). This implies
that existing results cannot rule out the possibility that this learning process converges
to a state which is not a Nash equilibrium, something that is known to be impossible for
the deterministic replicator dynamics. Beggs (2002) makes significant progress on this
issue. He shows that for single person decision problems the process cannot converge
to a suboptimal action.2 We give a more general result applicable to all normal form
games and show that starting from a position where all strategies are played with pos-
itive probability this learning process will indeed converge with probability zero to any
point which is linearly unstable under the Maynard Smith or adjusted version of the evo-
lutionary replicator dynamics. This rules out survival of suboptimal actions in decision
problems and, in games, rules out convergence to points which are not Nash equilibria.
We go on to show how these results can be used in a simple practical application.

In this work we are able to clarify some earlier misunderstandings concerning the
convergence of reinforcement learning to boundary points. Stochastic approximation
examines the behaviour of a learning process by investigation of an ordinary differen-
tial equation or ODE derived from the expected motion of the learning process. One

1Analysis of single person decision making is found in Arthur (1993), Rustichini (1999) and Sarin
and Vahid (1999), for games in Börgers and Sarin (1997), Posch (1997), Ianni (2000) and Hopkins
(2002) and for both in Laslier et al. (2001) and Beggs (2002).

2He also proves that, in games, strategies which are dominated by a mixed strategy or removed
by iterated deletion of dominated strategies are eliminated by reinforcement learning. Additionally he
shows, for constant sum games, that in the limit the players play Nash.
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classic result is that if the ODE has a global attractor, the learning process converges
with probability one to that point. An example of such a result is Corollary 6 of The-
orem 4 of Benveniste et al. (1990, p45-6; see also Theorem 17, p239). However, the
evolutionary replicator dynamics, the system of ODE’s associated with the ER model,
strictly speaking do not have any global attractors. Proposition 3.2 in Rustichini (1999)
claims that in decision problems reinforcement learning converges to the optimal choice.
However, as already noted by Beggs (2002), the proof is incomplete, since it appeals
to Theorem 4 of Benveniste et al. (1990). Second, there exists a very general result in
the theory of stochastic approximation due to Pemantle (1990) that proves that there
is a zero probability of a stochastic process converging to an equilibrium point unstable
under the associated differential equation. However, it is difficult to use this result in
learning in games or decision problems as it does not apply at rest points where each
agent plays only one action. Therefore, Laslier et al. (2001, Proposition 9) are incorrect
to claim that in 2× 2 games Pemantle’s result ensures that reinforcement learning does
not converge to a point which is not a Nash equilibrium. In a similar way, Arthur (1993,
Lemma 1 and Theorem 2), in attempting to prove a result in single agent learning, uses
the result of Pemantle where it does not apply. Importantly, we do not claim that the
results we mention above are wrong. Indeed, our new result shows that this earlier work
was essentially correct. However, the methods of proof were not.

The case of single person decision problems has also been studied in two other very
different contexts. The first is adaptive sequential randomization schemes for clinical
trials. Durham et al. (1998) proposed the so called “randomized Pólya urn” rule for
sequential randomization of patients to different treatments. The randomization device
is an urn with different types of balls, corresponding to the treatments to be compared.
Patients sequentially enter the trial and for each patient a ball is drawn from the urn and
replaced. The patient gets the corresponding treatment. If it is a success another ball of
the type that was drawn is added to the urn. Otherwise, no balls are added to the urn.
This corresponds exactly to the reinforcement learning model of Erev and Roth (1998).
Durham et al. (1998) show that in the limit with probability one only the treatment with
the highest success probability is chosen. They take a different approach to prove their
results: embedding the urn process into a continuous time Markov branching process
(see Athreya and Ney, 1972) they use known results on these processes to determine the
urn dynamics. The other area where similar questions have been considered is in the
analysis of learning automata. Indeed, in this context, convergence to boundary points
in single agent decision problems has also recently been analysed by Lamberton, Pagès
and Tarrès (2002) and in Tarrès (2001).

In the next section, we give a heuristic treatment of the technical problems that
boundary rest points pose. In Section 3, we give the main result of this paper that
even in the case of boundary rest points, reinforcement learning does not converge to
points that are unstable under the replicator dynamics. In the final section, we give an
application of our results, showing that reinforcement learning converges to pure Nash
equilibria in rescaled partnership games.
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2 The Problem with Reinforcement Learning

In this section we introduce the model of reinforcement learning now often referred to
as the Erev-Roth (ER) model (after Roth and Erev, 1995; Erev and Roth, 1998), and
a variant on it due to Arthur (1993). We also give an introduction to the technical
problems that we address in this paper.

Consider N ≥ 1 agents who repeatedly play the same game over a number of time
periods indexed by n. We restrict our attention to finite games in the strategic form.
Denote agent i’s strategy set si = (si1, ..., s

i
mi), where mi is the number of strategies for

player i. For s ∈ ×Ni=1si the payoff of player i at round n is a random variable U in(s), with
E(U in(s)) = u

i(s) for some function ui(s). We assume that the random variables U in(s)
are independent and that there are constants M0,M1 such that a.s. 0 < M0 < U

i(·) <
M1. It is usually assumed that payoffs are a deterministic function of strategy choices.
However, this is a special case of the current setup which has the added advantage of
including single person decision problems by assuming that N = 1.

Under reinforcement learning, each agent i is assumed in each period to have a
propensity qijn for each action j out of the set of her possible actions. Let x

i
jn be the

probability placed by agent i on action j in period n. In the models of reinforcement
learning we consider these probabilities are determined by the following choice rule,

xijn =
qijnP
k q

i
kn

=
qijn
Qin

for j = 1, ...,mi, (1)

where Qin =
PN
k=1 q

i
kn. What is needed to complete the learning model is a means by

which to update propensities. In this simple model it takes the form that if agent i takes
action j in period n, then his jth propensity is increased by an increment equal to his
realised payoff. All other propensities are unchanged. Let U in denote the payoff obtained
by player i in period n. And let σijn denote the increment to player i’s jth propensity,
that is, U in if action j is chosen in period n and zero otherwise. Thus, we can write the
updating rule for the Erev-Roth model as

qijn+1 = q
i
jn + σijn for j = 1, ...,m

i. (2)

This updating rule reveals why in this model of reinforcement learning payoffs must be
positive, or there would be the possibility of propensities becoming negative and the
choice probabilities would be undefined.

An alternative formulation due to Arthur (1993) assumes that each agent’s step size
is renormalised every period. That is, as well as propensities being updated according to
the rule (2), all propensities are multiplied by the factor C(n+1)/Qin+1 for some C > 0.
That is, for each player i,

qijn+1 =
(qijn + σijn)C(n+ 1)

nC + U in
, for j = 1, ...,mi. (3)
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The effect of the renormalisation is that at each point Qin = nC for all i. We refer
to 1/Qin as agent’s i’s step size. Note that in the case of the Erev-Roth model, it is
stochastic and of order 1/n. However, the step size of the Arthur model is deterministic
and exactly proportional to 1/n.

To illustrate the problems we analyse in this paper, let us now consider an extremely
simple case. Two players play the following trivial game where both have a dominant
strategy.

U D
U 2, 2 2, 1
D 1, 2 1, 1

. (4)

It is tempting to conclude that under both reinforcement learning processes that, in
the limit, both players would learn to play their dominant strategies and play would
converge to the Nash equilibrium (U, U).

The seemingly obvious way to prove such a result would be to use techniques drawn
from stochastic approximation theory. The theory largely works by predicting the behav-
iour of stochastic processes by using an ordinary differential equation (ODE) formed by
taking the expected motion of the stochastic process. For example, consider a stochastic
process of the form

xn+1 − xn = γnf(xn) + ηn(xn) +O(γ
2
n) (5)

for xn ∈ IRn. We can think of η as the random component of the process with E[ηn|xn] =
0. γn is the step size of the process. Stochastic approximation theory obtains its strongest
results when this step size is of the order of 1/n. This paper concentrates on this case.3

The mean or averaged ordinary differential equations (ODE’s) derived from the sto-
chastic process above would be

ẋ = f(x). (6)

The ODE’s associated with the two processes, in this sense, are (variants on) the evo-
lutionary replicator dynamics (Lemma 2 below). But despite having ODE’s with the
same local stability properties, the two processes potentially have different asymptotic
behaviour. This crucially shows the limits to predicting the behaviour of a stochastic
process using the ODE alone.

The first possible method for a proof of such a result would be to use a classic result
in stochastic approximation. This states, informally, that if the ODE possesses a global
attractor, the stochastic process, if its step size is of order 1/n, will also converge to
that point with probability one. Let us examine the associated ODE, the replicator
dynamics, for the simple game (4). If x denotes the probability player 1 places on U

3Indeed, without this assumption, more or less anything is possible. Arthur (1993) showed that
if the step size is constant in single person decision problems then there is a positive probability of
convergence to any suboptimal action. In games, as Börgers and Sarin (1997) show, a learning process
with a constant step size may converge to a pure state that is not a Nash equilibrium.
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and y denotes the probability player 2 places on U, the standard replicator dynamics in
this case would be

ẋ = x(1− x), ẏ = y(1− y). (7)

Thus, the growth rates of x and y are clearly positive for any (x, y) ∈ (0, 1) × (0, 1).
However, (x, y) = (1, 1) is not strictly speaking a global attractor in that it does not
attract orbits with initial condition with either x = 0 or y = 0. It might be thought that
since (1,1) attracts all the interior, i.e. (0, 1)× (0, 1), this would be sufficient. But, by
constructing a counterexample (see Proposition 1 below), we show that this is not the
case.

The second possible strategy involves two stages. The first is to establish the existence
of a globally applicable Liapunov function for the ODE. Then, by Corollary 6.6 (Benaïm,
1999) the stochastic process must converge to a fixed point of the ODE.4 One might
then hope to apply the theorem of Pemantle (1990) to show that the probability of
convergence to a fixed point unstable under the ODE is zero, implying that the process
must converge to a stable fixed point. Unfortunately, this theorem cannot be applied as
the three unstable fixed points of the replicator dynamics in this case, (0,0), (0,1) and
(1,0), are on the boundary of the state space, which invalidates one crucial technical
condition of Pemantle’s theorem.

It might be hoped that a new result could be derived of similar generality to Pe-
mantle’s but applicable to boundary points. This hope is unlikely to be realised as the
following result establishes that there is a stochastic learning process that converges with
positive probability to a fixed point that is unstable with respect to its associated ODE.

Proposition 1 In the game (4), if C < 1 the Arthur model of reinforcement learning
defined by choice rule (1) and updating rule (3) converges with positive probability to one
of the unstable fixed points of the replicator dynamics (7).

Proof: This is a special case of Proposition 5 in Posch (1997).

Posch (1997) also establishes that for the Arthur model, if the constant C is greater
than any of the possible payoffs in any 2× 2 game then such convergence to an unstable
fixed point is not possible. Our main result here shows that the Erev-Roth model never
converges to equilibria which are linearly unstable under the replicator dynamics. So,
for example, in the game (4) reinforcement learning does not converge to the corner
points (0,0), (0,1) or (1,0). More generally, reinforcement learning will not converge to
any point that is not a Nash equilibrium, or in single person decision problems, any
point that is not optimal.

4If the number of fixed points is finite and certain other technical assumptions are met. Note that
in the absence of a global Liapunov function convergence of the solutions of the ODE to an equilibrium
does not necessarily imply convergence of the stochastic process. See, e.g., example 5.1 in Benaïm
(1999).
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3 The Main Result

In this section, we state and prove Theorem 1, that the Erev- Roth (ER) model of
reinforcement learning converges with probability zero to a point that is linearly unstable
under the adjusted or Maynard Smith form of the evolutionary replicator dynamics
(defined below). This is proved through a series of intermediate results. In particular,
Proposition 2 shows the ER model cannot converge to a Nash equilibrium unstable
under the replicator dynamics. Then, Proposition 3 establishes that the ER model
cannot converge to a rest point that is not a Nash equilibrium. In single person decision
problems this result implies that the learning process will not converge to an action that
is suboptimal.

We now develop our analysis of reinforcement learning on a more formal level. Both
forms of the reinforcement model define Markov processes on IRm where m =

PN
i=1m

i.
The state of the system can be summarised by a vector qn = (q1n, ..., q

N
n ) with q

i
n =

(qi1n, ..., q
i
min). However, the real interest is in the evolution of each player’s mixed

strategy xin ∈ Smi, where Smi is the simplex {y = (y1, ..., ymi) ∈ IRmi
: Σyk = 1, yk ≥ 0}.

Let x = (x1, ...., xN) ∈ ∆ where ∆ = ×Ni=1Smi. Let x−i = (x1, ..., xi−1, xi+1, ..., xN).
Then, denote the vector of expected payoffs for player i conditional on the other players’
mixed strategies as ui(x−i).

We can write the standard evolutionary replicator dynamics as

ẋij = f
i
j(x) = x

i
j(u

i(sj, x
−i)− xi · ui(x−i)). (8)

They can also be written in vector form as

ẋi = f i(x) = R(xi)ui(x−i), (9)

where R(xi) is a symmetric matrix for which Rjj = xij(1− xij) and Rjk = −xijxik. One
can verify that if each element of xi is strictly positive, then R is positive semi definite
and that z · R(xi)z > 0 for all z ∈ IRmi

0 = {z ∈ IRmi :
P
zi = 0} (see Hofbauer

and Sigmund (1998, Chapter 9.6)). We also consider a variant known as the adjusted
or Maynard Smith version of the replicator dynamics (see, for example, Hofbauer and
Sigmund (1998, Chapter 11) or Weibull (1995, Chapter 5.2)) which have the form

ẋij =
f ij(x)

xi · ui(x−i) =
xij(u

i(sj, x
−i)− xi · ui(x−i))

xi · ui(x−i) . (10)

It is easily verified that the set of rest points under the standard and adjusted replicator
dynamics are identical. However, as we will see, the stability properties of these equilibria
may be different under the two dynamics. We will need the following definition.5

5The requirement for a fixed point to be linearly unstable is slightly stronger than requiring it
to be unstable (in the sense of Liapunov). The latter, informally put, requires that there exists a
neighbourhood of the fixed point such that one can find orbits starting arbitrarily close to the fixed
point which leave this neighbourhood. It is possible for a fixed point, if it has one or more eigenvalues
with zero real part and hence is non-hyperbolic, to be unstable without being linearly unstable. However,
linear instability implies instability.
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Definition 1 A rest point x̄ is linearly unstable with respect to a dynamic process ẋ =
g(x) if its linearisation Dg(x) evaluated at x̄ has at least one eigenvalue with positive
real part.

We can now state our main result.

Theorem 1 Let x̄ ∈ ∆ be a rest point for the replicator dynamics (8), or equivalently
the adjusted replicator dynamics (10). If, either A) x̄ is not a Nash equilibrium; or B) x̄
is a Nash equilibrium linearly unstable under the adjusted replicator dynamics (10); or C)
N = 2 and x̄ is a Nash equilibrium linearly unstable under the replicator dynamics (8),
then, for the reinforcement learning process defined by the choice rule (1) and updating
rule (2), from any initial condition with all propensities positive, that is qij0 > 0 for each
player i and all strategies j, Pr(limn→∞ xn = x̄) = 0.

The theorem thus links the behaviour of the ER model of reinforcement learning
with that of the adjusted or Maynard Smith replicator dynamics.6 It is possible to
show that in two player games (Lemma 4 below) a fixed point is linearly unstable
under the standard replicator dynamics (8) if and only if it linearly unstable under the
adjusted version (10). This result allows, at least in two player games, the analysis of
reinforcement learning using the more common standard replicator dynamics, which are
also somewhat simpler than the adjusted version.

Proof of the main theorem will take the rest of this section. As a first step we relate
the expected motion of reinforcement learning to the replicator dynamics. Let Fn denote
the σ-algebra generated by {q1, q2, . . . , qn}.

Lemma 1 The expected change in xin under the basic reinforcement model is

E[xij (n+1)|Fn]− xijn =
xijn(u

i(sj, x
−i
n )− xin · ui(x−in ))
Qin

+O(
1

(Qin)
2
). (11)

Under the Arthur version it is

E[xij (n+1)|Fn]− xijn =
xijn (u

i(sj, x
−i
n )− xin · ui(x−in ))
nC

+O(
1

(nC)2
) (12)

Proof: See Lemma 1 in Hopkins (2002) and Posch (1997).

One implication of this Lemma is that the expected motion of both forms of rein-
forcement learning is related to the evolutionary replicator dynamics. The difference

6Beggs (2002) was the first to make this connection. His approach is slightly different from ours but
equally effective.
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between the two different forms of learning lies in their different step sizes. While in the
Arthur model, each player has the same step size of 1/(nC), in the Erev-Roth model,
each player has a different step size which is determined by her payoff experience. This
means that in order to predict the behaviour of the Erev-Roth learning process, one
has to correct the replicator dynamics for the differing learning speeds of the different
players. This can be done by first taking the step size of the learning process to be
γn = 1/n. Second, we introduce N new variables µin = n/Q

i
n that account for the vary-

ing step sizes. Then the dynamics for the basic reinforcement model can be written as
dynamics with constant step size

xij(n+1) = xijn +
1

n
µin{xijn[ui(sj, x−in )− xin · ui(x−in )]}+

1

n
ξin(xn) +O(

1

n2
)

µin+1 = µin +
1

n
µin(1− µin xin · ui(x−in )) +

1

n
ζin(xn) +O(

1

n2
),

where ξin(xn), ζ
i
n(xn) are sequences of uniformly bounded random variables withE(ξ

i
n(xn)|Fn) =

E(ζin(xn)|Fn) = 0. Note that by definition the µin are uniformly bounded away from 0.

Lemma 2 The ODE associated with the Arthur model of reinforcement learning is the
evolutionary replicator dynamics (9). The ODE associated with the Erev-Roth model is
the following modification of the replicator dynamics:

ẋi = µiR(xi)ui(x−i), µ̇i = µi(1− µixi · ui(x−i)) (13)

If x̄ is a rest point for (9) then (x̄, µ̄), with µ̄i = 1/(x̄i · ui(x̄−i)), is a rest point for
(13). If x̄ is linearly unstable under the adjusted replicator dynamics (10), then (x̄, µ̄) is
linearly unstable under (13).

Proof: The first claim, that (x̄, µ̄) is a rest point for (13) is easily verified. The
second claim follows from the linearization of (13) at any fixed point being of the formÃ

J 0
dµ̇/dx dµ̇/dµ

!
, (14)

where J is the Jacobian of the equations ẋi = µiR(xi)ui(x−i). Because of the block
of zeros to the upper right, it can be shown that every eigenvalue of a matrix of the
above form is an eigenvalue for either J or dµ̇/dµ (see, for example, Hopkins (2002,
Proposition 5)). Hence, if J has one or more positive eigenvalues, the equilibrium point
is unstable for the joint dynamics. But because the equilibrium value of each µi is exactly
1/(x̄i · ui(x̄−i)), J is identical to the Jacobian for the adjusted replicator dynamics (10)
and the result follows.

The behaviour of the replicator dynamics has been investigated for many years now.
For example, for generic games the number of fixed points of the replicator dynamics

8



(standard or adjusted) is finite and consists of the Nash equilibria of the game but also
points which are Nash equilibria with respect to the strategies in their support. This
includes therefore all points representing pure strategy profiles. See, for example, Weibull
(1995, Section 3.3.1). Rest points that are not Nash equilibria are always unstable,
whereas rest points that are Nash equilibria can be stable or unstable.

For some equilibrium point x̄ ∈ ∆, its support K is the set of strategies given
positive support at x̄, or K = ×Ni=1Ki, with x̄ij > 0 if and only if j ∈ Ki. Let I be the
complement of K and we write ∆(K) for the face of ∆ where only strategies in K have
positive representation. The next lemma summarises some properties of the replicator
dynamics.

Lemma 3 Let x̄ ∈ ∆ be a fixed point of either the replicator dynamics (8) or the
adjusted replicator dynamics (10) with support K. Then if x̄ is a Nash equilibrium and
it is linearly unstable, the eigenvectors corresponding to the positive eigenvalues of Df(x̄)
are contained in ∆(K). If x̄ is not a Nash equilibrium, then it is linearly unstable under
the dynamics (8) and (10).

Proof: Every face of ∆ is invariant under both forms of the replicator dynamics
(8) and (10). Therefore the Jacobian evaluated at boundary rest points will have two
distinct sets of eigenvectors, the first set spanning ∆(K), the second the rest of ∆. More
specifically, as Hofbauer and Sigmund (1998, Chapter 13) note, the Jacobian for the
replicator dynamics (8) will possess eigenvalues of the form ui(sj, x̄

−i)− x̄i · ui(x̄−i) for
each i ∈ I. These eigenvalues are called “transversal” by Hofbauer and Sigmund as
each has a corresponding (left) eigenvector ei (that is, the vector with 1 at position i
and zero elsewhere) that points away from ∆(K). Now, x̄i · ui(x̄−i) is the payoff for
player i at x̄, and if x̄ is a Nash equilibrium, then ui(sj, x̄−i) the payoff to strategy j
that is not in the support of the equilibrium cannot be higher and so these eigenvalues
are non-positive. Hence, if this Nash equilibrium is unstable, then the eigenvectors
corresponding to positive eigenvalues must be contained in ∆(K). To establish the
second claim, consider that if x̄ is not a Nash equilibrium, it must be true that for
some player i and some j ∈ Ii that ui(sj, x̄−i) > ui(sk, x̄−i) for k ∈ Ki, which by the
above argument would give rise to positive eigenvalues. Both results also hold for the
adjusted replicator dynamics (10) as the transversal eigenvalues are in that case equal
to (ui(sj, x̄−i)− x̄i · ui(x̄−i))/x̄i · ui(x̄−i), and so are non-positive for a Nash equilibrium
and positive otherwise.

U D B
U 4, 4 2, 2 2, a
D 2, 2 4, 4 2, a
B a, 2 a, 2 a, a

. (15)

This lemma enables us to classify boundary rest points unstable under the replicator
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dynamics into those that are Nash equilibria and those that are not. We can illustrate
the distinction using another simple game (15). The first type are Nash equilibria of the
game of the whole. For example, in (15) if a = 1 then B is dominated for both players,
and the replicator dynamics will approach the face where only U and D are represented.
However, we want to exclude the possibility of convergence to points such as the mixed
Nash equilibrium which places probability 1/2 on both U and D as this point is unstable
under the replicator dynamics for the game where U and D are the only strategies. This
is relatively easy to do.

We employ a theorem due to Brandière (1998), that generalises the earlier results by
Pemantle (1990) and Arthur et al. (1988). The result of Pemantle, stated informally, is
that the stochastic process should diverge from an unstable fixed point of the ODE if the
stochastic process has positive variance in every direction around that fixed point. This
is what makes it inappropriate for use with boundary rest points of the Erev-Roth model.
Because if play is at a boundary fixed point, it cannot enter the interior as strategies that
start with a zero propensity are never played. Importantly for our purposes, in contrast
Brandière (1998) has the weaker condition that there should be positive variance of the
stochastic process in unstable directions.

Proposition 2 Let x̄ ∈ ∆ be a Nash equilibrium that is linearly unstable under the ad-
justed replicator dynamics (10). Then, for the reinforcement learning process defined by
the choice rule (1) and updating rule (2), from any initial condition with all propensities
positive, that is qij0 > 0 for each player i and all strategies j, Pr(limn→∞ xn = x̄) = 0.

Proof: Any rest point linearly unstable under the replicator dynamics (10) is linearly
unstable under the modified dynamics (13) by Lemma 2. By Lemma 3, the eigenvectors
corresponding to the positive eigenvectors of x̄ are contained in ∆(K) where K is the
support of x̄. The result then follows from Theorem 5 of Brandière (1998).

In the case of two player games, we can extend Proposition 2. FromLemma 3 we know
that pure Nash equilibria are never linearly unstable. However, mixed Nash equilibria
may be stable or unstable and, in N−player games the exact stability properties are
potentially different under the standard and adjusted replicator dynamics. We can,
nonetheless, establish the following equivalence when N = 2. This result, together with
Proposition 2, of course implies that in two player games reinforcement learning will
never converge to a Nash equilibrium linearly unstable under the standard replicator
dynamics.

Lemma 4 For N = 2, that is for two player games, a rest point x̄ of the replicator
dynamics (8) is linearly unstable if and only if it is linearly unstable for the adjusted
replicator dynamics (10).

Proof: If x̄ is not a Nash equilibrium the statement follows from Lemma 3. It is
left to show that if the linearisation of the original replicator dynamics at any Nash

10



equilibrium has positive eigenvalues so will the adjusted version. If N = 2, at any mixed
Nash equilibrium, we can write J , the Jacobian of the adjusted replicator dynamics (10)
as

J =MRU =

Ã
µ1 0
0 µ2

!Ã
R(x1) 0
0 R(x2)

!Ã
0 u12
u21 0

!
, (16)

where uij = ∂ui(x−i)/∂xj. The eigenvalues of RU in this case are the square roots of
the eigenvalues of the matrix R(x1)u12R(x2)u

2
1 (see, for example, Hofbauer and Hopkins,

2004). Therefore, the eigenvalues of J are only different by the positive multiple
√
µ1µ2

(note that since all payoffs are strictly positive it follows that for all solutions of (13)
with x(0) ∈ ∆, µi(0) > 0, i = 1, . . . , n the terms µi(t), i = 1, . . . , n are uniformly
bounded away from zero). We can extend this result to unstable partially mixed Nash
equilibria by noting that by Lemma 3, we can partition the Jacobian into two sections
corresponding to K and I. By Lemma 3, the positive eigenvalues will be contained in
the section corresponding to K, which will have the same structure as (16) as x̄ is a fully
mixed Nash equilibrium with respect to its support K. Hence, it is still the case that
RU has positive eigenvalues if and only if MRU has them also.

The second type of boundary rest points are only Nash equilibria with respect to
strategies in their support. Hence, there is at least one other strategy which gives a
higher payoff. Consider the pure profile (U,U) in game (15). Deviations to D make
either player worse off, so that on the face of ∆ where only U and D are represented,
(U,U) will be asymptotically stable. However, if for example a = 5 then, from any initial
conditions which give positive representation to B, the replicator dynamics will diverge
from (U,U).

More generally, if a rest point is not a Nash equilibrium of the game as a whole, then it
must be true that for some player i and some j ∈ I i that ui(sj, x̄−i) > ui(sk, x̄−i) for k ∈
Ki. Then by the definition of the replicator dynamics (8), there exists a neighbourhood
U of x̄, and a number d > 0 such that

f ij(x) > dx
i
j ∀x ∈ U. (17)

In single person decision problems, this condition will hold in the neighbourhood of any
profile that places probability one on an action that does not have the highest expected
return. So, while we state the following result in terms of Nash equilibria, it equally
implies that in single person decision problems, reinforcement learning cannot converge
to a point that is not optimal.7

Proposition 3 Let x̄ be a fixed point of the replicator dynamics (8) which is not a Nash
equilibrium. Then, for the reinforcement learning process defined by the choice rule (1)
and updating rule (2), from any initial condition with all propensities positive, that is
qij0 > 0 for each player i and all strategies j, Pr(limn→∞ xn = x̄) = 0.

7This result for single person decision problems and games with a unique pure Nash equilibrium can
be inferred from the results of Laslier et al. (2001) and Beggs (2002). However, our general result on
fixed points that are not Nash equilibria is new.
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Proof. A proof can be adapted from Theorem 2 of Posch (1997), which establishes a
similar result for reinforcement learning with normalisation and is based on the con-
struction of a supermartingale. Similar arguments have also been used in Pemantle and
Volkov (1999), Beggs (2002), and Lamberton et al. (2002). Suppose that, first, by re-
labelling if necessary, x̄11 = 0 and that (17) holds for i = j = 1 and some d > 0 in a
neighbourhood U of x̄. We have, E[u1n|Fn] = x1n · u1(x−1n ), E[σ11n|Fn] = x11nu1(s11, x−1)
and f11 (x) = E[σ

1
1n − x11u1n|Fn].

The proof is by contradiction. Suppose that in fact Pr(limn→∞ x11n = 0) > 0. Then
one can choose an L > 0 such that

Pr
µ
{ lim
n→∞x

1
1n = 0} ∩ {xl ∈ U,∀l > L}

¶
> 0 (18)

We have assumed that all payoffs are bounded above by M1. Note that, due to our
assumption that q1j0 > 0 for all j, x11n = q11n/Q

1
n ≥ q110/Q

1
n ≥ q110/(nM1 + Q

1
0) > 0.

Since, clearly,
P∞
n=0 q

1
10/(nM1 + Q

1
0) = ∞, we also have

P∞
n=0 x

1
1n = ∞. Hence, by

the conditional Borel-Cantelli lemma (see e.g. Durrett, 1991, p. 207), player 1 chooses
action 1 an infinite number of times and, consequently, Pr(limn→∞ q11n = ∞) = 1. Let
En = {q11n > (M1)

2/d}. Since by the above argument limn→∞ P (En) = 1 there is an L0
such that

Pr
µ
{ lim
n→∞x

1
1n = 0} ∩ {xl ∈ U,∀l > L} ∩EL0

¶
> 0 (19)

We define the stopping time

τ =

(
argminl>Lxl /∈ U if there is an l > L s.t. xl /∈ U
∞ otherwise

which is the first time after L that xl leaves U . Let Gn = {n < τ}∩EL0 denote the set of
all paths in EL0 for which the process stayed in U from time L until n. Since Gn ⊃ Gn+1
and since for n > L0 the sets Gn are Fn measurable we have for n > L0

E

"
1Gn+1

1

x11n+1
− 1Gn

1

x11n
|Fn

#
≤ 1Gn E

"
1

x11n+1
− 1

x11n
|Fn

#
= 1Gn E

"
Q1n + U

1
n

q11n + σ11n
− Q

1
n

q11n
|Fn

#

= 1Gn E

"
U1nq

1
1n − σ11nQ

1
n

q11n(q
1
1n + σ11n)

|Fn
#
≤ 1Gn

1

q11n

Ã
E[U1n|Fn]− E[σ11n|Fn]

Q1n
q11n +M1

!
= %.

Now, on U , from (17), we have E[σ11n|Fn] > (E[U1n|Fn] + d)x11n and substituting x11n
with q11n/Q

1
n,

% ≤ 1Gn
1

q11n(q
1
1n +M1)

³
E[U1n|Fn]M1 − d q11n

´
≤ 1Gn

1

q11n(q
1
1n +M1)

³
(M1)

2 − d q11n
´
.

On Gn the last term is negative for all n > L0 such that 1Gn 1/x
1
1n, n ≥ L0, is a non-

negative supermartingale. Hence, limn→∞ 1Gn 1/x
1
1n <∞ with probability one. But this

is a contradiction to (19).
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4 An Application

In this section we give an example of how our main result can be used to gain new
insights into the behaviour of reinforcement learning. The idea of rescaled partnership
games was introduced by Hofbauer and Sigmund (1998). These games can be considered
as a subset of the class of potential games identified by Monderer and Shapley (1996).
As the work of Sandholm (2002) shows, the convergence of evolutionary processes such
as learning in this type of game has a number of interesting economic applications
including congestion pricing. Partnership games are games of common interest and/or
coordination. Rescaled partnership games are games that can be made into partnership
games by simple linear transformations.

Definition 2 A two player game with payoff matrices (A,B) is a partnership game if
A = BT . It is a rescaled partnership game if there exist constants cj, di and α > 0, β > 0
such that

a0ij = α aij + cj, b
0
ji = β bji + di. (20)

and the resulting transformed game (A0, B0) is a partnership game.

Hofbauer and Sigmund, (1998, Theorem 11.2.2)) show that rescaled partnership
games possess a potential, given by V (x) = x1 · A0x2, which they use to show that
for these games the standard replicator dynamics will converge to a Nash equilibrium.
As Monderer and Shapley (1996) show, fictitious play also must converge in potential
games. Using the results of the previous section, we are able to show a new and slightly
stronger result for rescaled partnership games. Because we can rule out convergence to
any mixed strategy equilibria, including those with less than full support found on the
boundary, reinforcement learning must converge to a pure strategy equilibrium.8

Proposition 4 In generic rescaled partnership games, reinforcement learning defined by
choice rule (1) and updating rule (2), from any fully mixed initial conditions converges
with probability one to a pure Nash equilibrium.

Proof: Generic partnership games have a finite number of Nash equilibria, at least
one of which is pure (this follows from Lemma 2.1 of Monderer and Shapley, 1996). So,
the rest points of the replicator dynamics will also be finite in number. It is easy to verify
from the definition (20) that αR(x1)Ax2 = R(x1)A0x2. That is, the replicator dynamics
for the original game are the same as for its rescaling up to a positive multiplicative
constant. Taking the function V (x) we have for the modified dynamics (13), given that
R(·) is positive semi definite,

V̇ (x) = µ1A0x2·R(x1)Ax2+µ2x1A0·R(x2)Bx1 = µ1

α
A0x2·R(x1)A0x2+µ

2

β
A0Tx1·R(x2)A0Tx1 ≥ 0

8A similar result for stochastic fictitious play is in Hofbauer and Hopkins (2004). These predictions
are tested experimentally in Duffy and Hopkins (2004).

13



with equality only at the fixed points of the replicator dynamics. Thus, V (x) is a
Liapunov function for those dynamics. Then by Corollary 6.6 (Benaïm, 1999), the
learning process converges with probability one to one of these equilibrium points. It
remains to establish that it does not converge a) to any mixed strategy equilibria or b)
any pure strategy profiles that do not represent pure Nash equilibria.

The linearisation of the adjusted replicator dynamics (10) at a mixed equilibrium will
have the form (16). Hofbauer and Hopkins (2004) show that at any mixed equilibrium
of a partnership game the matrices of the form RU have both positive and negative
eigenvalues. This implies that any mixed equilibrium of a rescaled partnership game is
a saddlepoint for the standard replicator dynamics. Then by Lemmas 2 and 4, it is also
unstable for the augmented dynamics (13).

We can extend this argument to any partially mixed equilibrium with less than full
support. Note that if each player i uses k < mi strategies with positive probability,
the resulting game is also a partnership game. Hence any mixed strategy equilibrium
is a saddlepoint by the above argument. So, by Proposition 2 it is a limit point for
reinforcement learning with probability zero. Finally, by Proposition 3, the learning
process does not converge to any vertex which is not a Nash equilibrium.

2 × 2 games, that is, two player games with two strategies per player, have been
the class of games subject to the most analytical and experimental investigation in the
recent literature. Behaviour in these simple games under other learning models has been
well understood for some time. For example, Ellison and Fudenberg (2000) summarise
the known results for stochastic fictitious play. They note that generically 2× 2 games
fall into one of two classes, in our current terminology, rescaled partnership games and
rescaled zero sum games.9 The latter are games that can be made into zero sum games
by linear transformations of the form (20). In 2× 2 games, they are those games which
have a unique Nash equilibrium in mixed strategies. In 2×2 games, stochastic fictitious
play always converges to a rest point corresponding to a Nash equilibrium.

Since we have just established a result for rescaled partnership games, it might seem
that it would be possible to obtain a similar convergence result for reinforcement learning.
This hope is reinforced by Beggs’ (2002) recent result that the ERmodel of reinforcement
learning must converge to the Nash equilibrium in 2 × 2 constant sum games with a
unique equilibrium. It would seem a simple matter to extend his result to rescaled zero
sum games. Unfortunately, this is not the case. The standard replicator dynamics (8)
are not affected by rescaling, but this is not true for the adjusted version (10) or indeed
for the dynamic system (13). Thus, though the results in this paper have extended our
understanding of reinforcement learning, we still lack complete results on its behaviour
in quite simple cases. There is still much to learn.

9Ellison and Fudenberg (2000) use the terms “games of conflict” and “games of coordination”.
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