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Abstract

We study pre-marital investments in a large frictionless marriage market with non-
transferable utility. We assume stochastic returns to investment, which ensures unique-
ness of equilibrium. The equilibrium in our continuum agent model is the limit of the
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1 Introduction

We study the incentives of parents to invest in their children when these investments also
improve their marriage prospects. We assume a frictionless marriage market with non-
transferable utility. It has usually been thought that ex ante investments suffer from the
hold-up problem, since a parent will not internalize the effects of such investments in her
own child upon the welfare of the child’s future spouse. However, Peters and Siow (2002)
argue that in large marriage markets where the quality of one’s match depends on the level
of investment, a parent has an incentive to invest more in order to improve the match of her
offspring. They argue that the resulting outcome will be Pareto efficient. This is a remarkable
result, since they assume a marriage market without transferable utility. With transferable
utility, Cole et al. (2001) show that in large markets, prices can provide incentives for efficient
investment decisions.1

In this paper, we argue that the optimism of Peters and Siow (2002) must be somewhat
tempered. When the return to investment is deterministic, we show that there is a very
large set of equilibria. These include efficient outcomes, but also a continuum of inefficient
ones. In order to overcome this embarrassment of riches, we propose a model where the
returns to investment are stochastic. This is also realistic – talent risk is an important fact
of life.2 Equilibrium in this model is unique and we are therefore able to make determinate
predictions. The model also allows us to address several questions of normative importance
and social relevance. Are investments efficient, in the absence of prices? What are the
implications of biological or social differences between the sexes for investment decision?
What are the implications of sex ratio imbalances in countries such as China – Wei and
Zhang (2011) argue that marriage market competition for scarce women underlies the high
savings rate in China.

Our paper is related to the literature on matching tournaments or contests. This litera-
ture typically models a situation where there is a fixed set of prizes, and agents on the one
side of the market compete by making investments, with prizes being allocated to agents
according the rank order of their investments (see for example, Cole et al., 1992 and Hop-
kins and Kornienko, 2004, 2010). If the “prizes” derive no utility from these investments,
e.g. when the prize is social status, then an agent’s investment exerts a negative positional
externality on the other side of the market, so that there is over-investment. On the other
hand, if the “prizes”derive utility from these investments – for example, if men compete for
a set of women with fixed qualities, or students compete for university places – then either
over-investment or under-investment is possible, depending on how much these investments

1To appreciate the degree of transferability required, note that Mailath et al. (2013) show that one needs
“personalized prices”, which depend upon buyer characteristics as well as seller characteristics, in order
ensure efficiency of investments. Felli and Roberts (2001) show that even in large finite markets, the hold-up
problem may not disappear if the specificity of investments does not vanish.

2Recent studies of the inter-generational transmission of wealth, in the tradition of Becker and Tomes
(1979), find an inter-generational wealth correlation of 0.4 in the United States, which is far from 1.
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are valued (Cole et al., 2001; Hopkins, 2012).

In our context, investments are two-sided – the investments of men are valued by women
and symmetrically, the investments of women are valued by men. Men do not care directly
about how their investments are valued by women, they care only about the consequent
improvement in match quality that they get. Women are in a similar situation, since they
care only about the improvement in the quality of men that they might get. One might
expect therefore, that this could give rise to under-investment or over-investment, depending
on parameter values.

Surprisingly, our model yields clear conclusions. Under very special circumstances, when
the sexes are completely symmetric, with identical distributions of shocks and a balanced
sex ratio, investments will be efficient – not merely in the Pareto sense, but also from a
utilitarian standpoint. However, if there are any differences between the sexes, whether
it be differing returns to investments, different stochastic shocks or an unequal sex ratio,
investments are generically excessive, as compared to Pareto-efficient investments. Since the
intuition for the overinvestment result is somewhat subtle, and quite distinct from that in
one-sided tournaments with positional externalities, we defer explaining this until the model
is introduced.

The rest of the paper is set out as follows. Section 2 discusses the problems that arise in a
model with deterministic returns, and other related literature. Section 3 sets out the model
with noisy investments, and shows that a pure strategy equilibrium exists and is unique for
general quality functions. We then consider, in turn, additive and multiplicative shocks. Our
main finding is that investments are generically excessive, relative to Pareto efficiency. We
use our model to examine the observational implications of gender differences, and show that
if talent shocks are more dispersed for boys than for girls, then girls will invest more than
boys. We also examine the effects of sex ratio imbalances on investments, and show that
the more abundant sex invests more (otherwise, in most of the paper, we focus on the case
of a balanced sex ratio). Section 4 shows that when there are no gender differences, then
investments are efficient, even if there is heterogeneity within each sex. Section 5 provides
a finite agent justification for the continuum model that forms the bulk of the paper. We
examine a model with finitely many agents, where there is uncertainty as to whether men
will be excess, or women will be in excess. If the number of agents is large enough, there is
a unique equilibrium that converges to the equilibrium of the continuum model. The final
section concludes. The appendix contains proofs that are omitted in the text.

2 Motivation and Related Literature

The fundamental problem is the following: investment in a child benefits the child’s future
spouse, but the benefit to the spouse is not considered by the child’s parents. There is
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therefore a gap between the privately optimal investment in a child, which we denote x̄, and
the socially optimal level which is naturally greater. In the absence of prices, it is not clear
that there are incentives for efficient investment. Peters and Siow (2002) (PS, henceforth)
argue that nonetheless, equilibrium investments are socially efficient.

Let us consider the PS model, of investment with deterministic returns, but simplify by
assuming that families are identical rather than differing in wealth. Assume a unit measure
of boys, all of whom are ex ante identical, and an equal measure of girls, who are similarly
ex ante identical. Assume that the quality of the child, as assessed by a partner in the
marriage market, equals the level of parental investment, x. Suppose a boy is matched with
a girl. The utility of the boy’s parents is increasing in the investment level of the girl xG,
but they have to bear the cost of investment xB in their son. Thus, if they choose xB purely
to maximize their utility, they would choose only the privately optimal investment x̄B. But
the resulting investment levels (x̄B, x̄G) are inefficient. Both families would be better off if
they each raised their investments.

Suppose that the family of the boy believes that if they choose investment level xB,
the quality of their son’s partner is given by a smooth, strictly increasing function, φ(xB).
They would choose investments to maximize their overall payoff, given the return function
φ. Suppose also that the family of a girl believe that the match quality of their girl is also
an increasing function of their own investment level xG. Assume further that this return
function equals φ−1(xG), the inverse of that for the boys.3 Consider a profile of investments
(x∗∗B , x

∗∗
G ) such that x∗∗B maximizes the payoffs of the boy’s family given returns φ(xB), x∗∗G

maximizes the payoffs of the girl’s family given returns φ−1(xG), and x∗∗B = φ−1(x∗∗G ), i.e.
these expectations are actually realized. As PS argue, the profile (x∗∗B , x

∗∗
G ) must be such

that the indifference curves on the two sides of the market are mutually tangent, so that the
investment profile must be Pareto-efficient.

A problem with this approach is that, while the expectations φ(xB) are realized in equi-
librium, they cannot be realized if the family of a boy chooses xB 6= x∗∗B . In particular, if
a boy deviates and chooses xB < x∗∗B , the match φ(xB) < x∗∗G is not feasible since every
girl in the market has quality x∗∗G . In other words, while expectations are “rational” at the
equilibrium, they are not so for any investment level that is not chosen in equilibrium.

We shall be explicit in this paper about the matching process that follows a profile of
investments. Specifically, we will require the matching to be feasible, to be stable (in the
sense of Gale and Shapley, 1962) and to be measure preserving. Despite these restrictions on
matching off the equilibrium path, in terms of equilibria there is an embarrassment of riches,
and a large set of equilibria. Let (xB, xG) be a pair of investments that are weakly greater

3If the return function for the girls is the inverse of that for the boys, then whenever a boy raises his
investment from xB to x′B and finds that his partner quality rises from xG to x′G, it must also be the case
that when a girl raises her investment from xG to x′G, her partner quality increases from xB to x′B . This
property ensures efficiency of investments.
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than the individually optimal investments (x̄B, x̄G), and where the payoff of gender i from
being matched with a partner with investment level xj is weakly greater than the payoff
from choosing the individually optimal investment level x̄i and being unmatched. Any such
pair can be supported as an equilibrium, by specifying that any agent who deviates to a
lower investment level will be left unmatched. In the PS equilibrium, an individual making
an efficient investment can expect to be matched with someone who invests similarly, there
is in effect symmetry. However, here, if the parent of a boy deviates upwards, and chooses
a higher level of investment, his son cannot realize a higher match quality, since all the girls
are choosing xG. We therefore have a “folk theorem”– any pair of investments satisfying
the above conditions is an equilibrium. Efficient investments are an equilibrium, but so are
inefficient ones.4

Turning now to the original PS environment where families differ in wealth, and thereby
in their marginal costs of investment, we still find a continuum of inefficient equilibria. The
equilibria we have constructed in the homogenous case are strict equilibria – any individual
who invests differently does strictly worse. If we perturb wealth levels slightly, and wealth
affects payoffs continuously, then these equilibria will continue to be strict. The only thing
that is required is that the distribution of wealth is not too dispersed, so that there is
a common level of investment x̂ that is not so low that it is below the richest family’s
privately optimal investment and not so high that the poorest family would prefer to deviate
downwards and be unmatched. None of these equilibria are efficient. In fact, for all of them,
a measure zero of agents make an efficient investment. If x̂ is relatively low then all agents
underinvest. If x̂ is higher, some agents underinvest and some overinvest. One can also
construct inefficient equilibria, with a heterogeneity of investment levels, even when wealth
is more widely dispersed.5

Our paper shows that these problems can be resolved if we augment the model by
adding an idiosyncratic element of match quality. This ensures that there is always an non-
degenerate distribution of qualities on both sides of the market, thereby providing incentives
to invest. Furthermore, equilibrium is unique, under some regularity conditions. Before
proceeding to the model, we review some of the related literature not already discussed in
the introduction.

Peters (2007) investigates two sided investments with finitely many agents. He assumes
that individuals on the long side of the market may drop out of the market with some small
probability,6 and solves for an equilibrium in mixed strategies. Peters (2009) assumes that

4Equilibrium multiplicity also holds if the deviator is left unmatched with probability one-half, rather
than for sure. This matching rule can be justified in a large finite model (see Section 5).

5For example, we may divide families into two groups, rich and poor, each of which has a common level of
investment. The matching rule matches those families with sons who choose investment x̂L to those families
with daughters with the same investment, and matches those who choose x̂H to daughters with the same
investment.

6This works in a similar way to the uncertainty over participant numbers assumed in Section 5 of the
current paper.
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there is ex ante heterogeneity, rather than the noisy returns assumed in this paper. In both
papers equilibrium investments are bounded away from the efficient level even as the number
of participants goes to infinity.

Hoppe et al. (2009) analyze a signaling model of matching, where an agent cares about
his or her match partner’s underlying characteristic which is private information. Again there
is ex ante heterogeneity rather than stochastic returns. Since investments are not directly
valued, they are inherently wasteful, although they may improve allocative efficiency in the
matching process. They also obtain a interesting comparative statics results, on gender
differences and on the numbers of participants, that we relate to our own results. Hopkins
(2012) finds that with one-sided investments, the level of investment can be inefficiently low.

Our approach differs from most of the theoretical literature on investments, which usually
assumes ex ante heterogeneity or incomplete information (Hoppe et al., 2009; Peters, 2009;
Hopkins, 2012). Agents are assumed to differ ex ante in terms of quality or wealth, giving
rise to heterogeneity in investments. Instead, we build on the classic work of Lazear and
Rosen (1981), who analyze a tournament where a finite number of identical workers compete
for exogenously given prizes. By assuming that worker’s output is noisy, they ensure that
the optimization problem faced by the worker is smooth. Models with noisy returns face
the difficulty that the optimization problem faced by the agent is not necessarily concave.
By assuming that the noise is large enough, Lazear and Rosen ensure that the effort level
that satisfies the first order condition is also globally optimal. With two-sided investments,
our problems is somewhat more delicate, since it is the relative dispersion that matters.
Increasing dispersion on one side, say men, increases the payoff to large deviations on the
women’s side. One of our contributions is to show how this analysis may be extended to two
sided matching and investments, and to a situation where the number of agents is large.

Gall et al. (2009) also employ a model with noisy returns to investments, and examine
investments, matching and affirmative action in a non-transferable utility setting. They
consider a situation where efficiency requires negative assortative matching, but where stable
matchings are positively assortative, providing a possible rationale for affirmative action.
They allow for investments with stochastic returns and focus on the trade-off between the
positive role of affirmative action on match efficiency versus its possible negative effect upon
investment incentives.

In empirical work on matching, typically the value of any match is assumed to have an
idiosyncratic random element (Dagsvik, 2000; Choo and Siow, 2006). Our key finding here
is that the structure of shocks not only affects the matching process, but is also critical for
investment incentives.

The transferable utility model is an alternative paradigm that can be used to explain
several empirical phenomena. Chiappori et al. (2009) use this model to explain the increasing
education of women, while Iyigun and Walsh (2007) study the distributional consequences
of institutional and gender differences for investments. While transferable utility models are
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very useful, there are many reasons for the limited transferability of utility in the marriage
context, including the inability to commit to future transfers at the time of marriage.7

Finally, there is also work that considers investment incentives in the presence of search
frictions – Acemoglu and Shimer (1999) study one-sided investments under transferable
utility, while Burdett and Coles (2001) analyze a non-transferable utility model with two-
sided investments.

3 A Matching Tournament with Noisy Investments

We now set out a model where the return to investments are stochastic. To simplify the
analysis, we assume that there is no ex ante heterogeneity but there are stochastic returns so
that there is heterogeneity ex post. Thus, all families are ex ante identical, save for the fact
that some have boys and others have girls. We assume a balanced sex ratio and a continuum
population, so that there are equal measures of boys and girls. Under these assumptions,
and under certain technical conditions, a pure strategy equilibrium exists and is unique.

Assume that a parent of a boy chooses an investment x in a bounded interval [0, x̃B) and
derives a direct private benefit bB(x) and incurs a cost c̃B(x). Similarly, a parent of a girl
chooses x in a bounded interval [0, x̃G) and derives a direct private benefit bG(x) and a cost
c̃G(x) respectively. Define the net cost of investment in a child of gender i, i ∈ {G,B} as
ci(x) := c̃i(x)− bi(x). The quality of a child is an increasing function of the level of parental
investment, x, and the realization of a random shock. These functions are written as qB(x, ε)
for boys and qG(x, η) for girls. The first argument in each quality function denotes parental
investment, and the second argument denotes the random shock.

A parent of any boy believes that her son’s shock, denoted ε, is distributed with a den-
sity function f(ε) and a cumulative distribution function F (ε). Similarly, the parent of a
girl believes that the daughter’s shock, η, is distributed with a density function g(η) and
cdf G(η). The aggregate realized distribution of shocks in the population of boys (resp.
girls) is deterministic, and equals F (resp. G). Since our model does not require a contin-
uum of iid random variables, there exists a simple probabilistic model consistent with these
assumptions.8

Our technical assumptions are as follows:

7Gall et al. (2009) provide reasons why in many matching situations, including business partnerships,
transfers between potential partners may not be fully flexible.

8Normalize the Lebesgue measure of boys to one, and let their index be uniformly distributed on [0, 1]. Fix
an arbitrary individual, say 0, and draw his shock value according to F . Let z(0) denote the realization of this
draw. For a boy of arbitrary index t ∈ (0, 1], his shock value z(t) equals F−1[F (z(0)) + t] if F (z(0)) + t ≤ 1,
and equals F−1[F (z(0)) + t − 1] otherwise. Thus for every t, z(t) is distributed according to F , and the
aggregate distribution also equals F .
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Assumption A1:

1. Assumptions on shocks: let f(ε) and g(η) be twice continuously differentiable on their
bounded supports [ε, ε̄] and [η, η̄] respectively. Further, assume that f(ε) = 0, g(η) = 0
but f(ε) and g(η) are otherwise strictly positive on their supports. Assume that the
right-hand derivatives at the lower bound of their supports, denoted as f ′(ε) and g′(η),
are strictly positive.

2. Assumptions on net costs: for i ∈ {G,B}, ci(x) is twice continuously differentiable on
the open interval that contains the set of feasible investments, [0, x̃i), and satisfies:

(a) Convexity: c′′i (.) is bounded below on [0, x̃i) by γ > 0.

(b) c′i(0) is strictly negative, and limx→x̃i c
′
i(x) =∞.

3. Assumptions on quality: let Iε and Iη be open intervals that contain [ε, ε̄] and [η, η̄]

respectively, and qB : R+ × Iε → R and qG : R+ × Iη → R be increasing and twice
differentiable, with qBx (xB, ε) > 0, qGx (xG, η) > 0, qBε (xB, ε) > 0 if xB > 0, qGη (xG, η) > 0
if xG > 0, qBxx(xB, ε) ≤ 0, qBεε(xB, ε) = 0, qGxx(xG, η) ≤ 0, qGηη(xG, η) = 0, qBxε(xB, ε) ≥ 0,
qGxη(xG, η) ≥ 0.9

4. The value of not being matched is ū which satisfies ū < qB(0, ε) and ū < qG(0, η).
That is, a girl who invests x and who is not matched has total payoff ū− cG(x).

The final point in assumption A1 implies that the value from being unmatched, ū, is
strictly less than the payoff from the lowest possible quality match. Also, note that matched
or unmatched, the individual still pays the investment cost.

Parents are altruistic and internalize the effects of their decisions on the utility of their
own child, but not on the utility of their child’s partner. Thus if a girl with parental
investment xG and shock η is matched with a boy whose parent has invested xB, and who
has shock realization ε, her payoff and that of her parents equals10

UG(xG, xB) = qB(xB, ε) + bG(xG)− c̃G(xG) = qB(xB, ε)− cG(xG). (1)

Similarly for a boy of type (xB, ε) who is matched with a girl of type (xG, η), his utility
would be

UB(xB, xG) = qG(xG, η) + bB(xB)− c̃B(xB) = qG(xG, η)− cB(xB). (2)

9That is, quality is assumed to be concave in investment x but linear in shocks ε, η. These assumptions
allow for the additive and multiplicative specifications as special cases.

10Our analysis also applies when the partner’s valuation of quality is an increasing concave function of qi.
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Let x̄B denote the individually optimal investment for boys – it is the investment that
minimizes cB(x) = c̃B(x) − bB(x). Since c′B(0) < 0, the individually optimal investment
satisfies c′B(x̄B) = 0 and x̄B > 0. The individually optimal investment for girls x̄G is defined
similarly, and x̄G > 0. Individually optimal investments are not Pareto efficient. Consider a
social planner who chooses (xB, xG) to maximize

W (xB, xG) = λ

[∫
qB(xB, ε)f(ε) dε− cG(xG)

]
+ (1− λ)

[∫
qG(xG, η)g(η) dη − cB(xB)

]
,

(3)
for some λ ∈ (0, 1), where λ is the relative weight placed on the welfare of girls. Differenti-
ating with respect to xB and xG, setting to zero and rearranging, we obtain the first order
conditions for Pareto efficiency,

c′B(xB)∫
qBx (xB, ε)f(ε) dε

=
λ

1− λ
. (4)

c′G(xG)∫
qGx (xG, η)g(η) dη

=
1− λ
λ

. (5)

Rearranging the first order condition for welfare maximization, we obtain

c′B(xB)× c′G(xG) =

∫
qBx (xB, ε)f(ε) dε×

∫
qGx (xG, η)g(η) dη. (6)

In other words, any profile of Pareto-efficient investments satisfies this condition, irrespective
of the value of λ. Pareto efficient investments always exceed the privately optimal level
because under the privately optimal investments, we have c′B(x̄B) = c′G(x̄G) = 0, whereas the
right hand side of equation (6) is strictly positive, since qx is strictly positive. Of particular
interest is the case where λ, the weight placed on girls’ welfare, is equal to their proportion
in the population, one-half. Let x∗∗B , x

∗∗
G denote the efficient investments in this case. We

shall call these the utilitarian efficient investments. These are the investments that parents
would like the social planner to choose in the “original position”, before the gender of their
child is realized.

The Pareto efficiency condition (6) does not determine a unique investment level, but
a continuous curve in (xB, xG) space. If a profile of investments (xB, xG) is such that the
product of the marginal costs is strictly greater than the right hand side of equation (6),
and the marginal costs are positive,11 then such a point lies above the Pareto efficiency
curve. We say that we then have overinvestment relative to Pareto-efficiency, since it is

11No individual will choose investment below the individually optimal level, since higher investments can
never reduce match quality. Thus we may restrict attention to investment levels such that marginal costs
are non-negative.
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possible to achieve Pareto efficiency by reducing either investment level.12 Similarly, if the
product of marginal costs is strictly less than the right hand side of the equation, we have
underinvestment relative to Pareto-efficiency.

On the other hand, utilitarian efficiency determines a unique point in (xB, xG) space.
Thus we may consider the investments of one side alone, say boys, and speak of underinvest-
ment relative to the utilitarian level, without reference to the investments by girls. Thus,
by the utilitarian criterion, one may have underinvestment by boys and overinvestment by
girls. By the Pareto criterion, one can only have overinvestment or underinvestment, where
this statement applies to the profile of investments, (xB, xG).

We shall focus upon pure strategy Nash equilibria where every parent on a given side of
the marriage market chooses the same level of investment. Such an equilibrium will be called
quasi-symmetric and consists of a pair (x∗B, x

∗
G). We require the matching to be stable and

measure preserving. Given our specification of preferences, whereby all boys uniformly prefer
girls of higher quality, and vice-versa, a stable measure preserving matching is essentially
unique, and must be assortative. Since q is strictly increasing in the idiosyncratic shock
(as long as investments are non-zero), and since all agents on the same side of the market
choose the same investment level, in equilibrium, there must be matching according to the
idiosyncratic shocks alone. Recall that the realized distribution of shocks in the population
is deterministic. For a boy who has shock realization ε, let φ(ε) denote the value of η of his
match. This satisfies

F (ε) = G(φ(ε)), (7)

or φ(ε) = G−1(F (ε)). That is, if boy is of rank z in the boy’s distribution, he is matched
with a girl of the same rank z in the girl’s distribution. The non-degenerate distribution of
qualities on both sides of the marriage market provides incentives of investment above the
privately optimal level. If the parent of a boy invests a little more than x∗B, he increases the
boy’s rank for any realization of ε. By doing so, he obtains a girl of higher rank. However,
he is concerned not with the girl’s rank but her quality.

One delicate issue concerns large deviations from the equilibrium, where the quality
realization is outside the support of the equilibrium distribution of qualities. For example,
if a boy deviates upwards and his quality exceeds qB(xB, ε̄), stability implies that he will
be matched with the best quality girl, of quality qG(xG, η̄). If he deviates downwards and
his quality is below qB(xB, ε), then stability implies that he could be left unmatched (with
payoff ū) or matched with the lowest quality girl. We shall assume that both these outcomes
have equal probability. Since we assume that being single has a low payoff, this deters
large downward deviations. These assumptions are consistent with the requirement that the
matching be stable and measure preserving. Moreover, the matching assumption can be

12This follows from the concavity of qi(.) in x and the strict convexity of cB(.) and cG(.). If we reduce xB
then the left hand side of (6) decreases due to the strict convexity of the cost function, while the first term
on the right-hand side increases, since qBxx(xB , ε) ≤ 0 by Assumption A1. Since c′B(x̄B) = 0, there exists a
reduction in xB such that (6) holds.
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justified as the limit of a model with a finite number of agents as the number of agents tends
to infinity, as we show in Section 5, where we consider a model where the exact numbers
of men and women is random: with probability one-half there are slightly more men than
women, and probability one-half the reverse is the case. Then a boy with the lowest quality
is unmatched with probability one-half.

In the Appendix we show that the first order condition for the equilibrium investment in
boys can be written as∫ ε̄

ε

qGη (xG, φ(ε))
f(ε)

g(φ(ε))

qBx (x∗B, ε)

qBε (x∗B, ε)
f(ε) dε = c′B(x̂B), (8)

where x̂B denotes the ”best response” by boys to xG. The intuition for the first order
condition is that it balances the marginal cost c′B(.) of extra investment on the right hand
side with its marginal benefit on the left hand side. The latter principally is determined by
the possibility of an improved match from increased investment. Specifically, an increase in
ε, a boy’s shock, would improve his match, given the matching relation (7) at rate φ′ = f/g.
Similarly, the first order condition for investment in girls is given by∫ η̄

η

qBε (xB, φ
−1(η))

g(η)

f(φ−1(η))

qGx (x∗G, η)

qGη (x∗G, η)
g(η) dη = c′G(x̂G), (9)

where x̂G is the best response by girls to xB. If a profile (x∗B, x
∗
G) is a quasi-symmetric

equilibrium, then it must satisfy x∗B = x̂B(x∗G) and x∗G = x̂G(x∗B).

Note that the match value of remaining single, ū , does not affect the first order condition
for equilibrium investments, and thus does not affect the equilibrium level. This is so since
in equilibrium, an individual is always matched with probability one when the sex ratio is
balanced. Furthermore, we assume that the density function of shocks is zero at its lower
bound, ensuring that ū does not affect the derivative of the payoff function at equilibrium.
However, the value of ū does affect the payoff from large downward deviations, and we
assume a “misery effect”, i.e. that ū is sufficiently small relative to the payoff from being
matched.13 This ensures that large downward deviations are not profitable.

We also have to ensure that large upward deviations are not profitable – this is not
immediate, since the optimization problem faced by agents is not necessarily quasi-concave,
just as in Lazear and Rosen (1981).14 We therefore invoke the following assumption:

13The total payoff to a boy from being single equals ū − cB(xB). This incorporates the private benefit
from investment, since cB(xB) = c̃B(xB)− bB(xB) measures the cost net of the private benefit.

14In a one-sided tournament it suffices to assume that shocks affecting that side are sufficiently dispersed
and that the cost function is convex. In a two-sided tournament, it is the relative dispersion on the two
sides that matters, and one cannot make shocks relatively dispersed for both sides. See the discussion of the
log-normal example in Subsection 3.1.3.
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Assumption A2: One of the following two conditions is satisfied:

a) F and G are distributions of the same type, i.e. G(x) = F (ax+ b).

b) f(ε) and g(η) are weakly increasing.

A2 ensures that the benefit function is concave for upward deviations, and together with
A1, ensures existence of a quasi-symmetric equilibrium in pure strategies. For uniqueness of
quasi-symmetric equilibrium, we invoke the following additional assumption:

Assumption A3: Quality is generalized additive/multiplicative:

qB(xB, ε) = θB(xB + ε) + (1− θB)γ(xB)ε,

qG(xG, η) = θG(xG + η) + (1− θG)γ(xG)η,

where θi ∈ [0, 1], for i ∈ {G,B}, and γ(·) is strictly increasing, twice differentiable and
strictly concave, with γ(0) = 0.

Theorem 1 Under Assumptions A1 and A2 and if the value to not being matched (ū) is
sufficiently low, there exists a quasi-symmetric Nash equilibrium of the matching tournament.
Under Assumption A3, the quasi-symmetric equilibrium is unique.

Now that existence has been established, we can turn to some important questions about
the qualitative nature of equilibrium behavior. Are investments Pareto-efficient? What are
the factors that lead one sex to invest more than the other? In order to shed more light on
these questions, we consider, in turn, different specifications of the quality functions qi(·).

3.1 Additive Shocks

We first analyze the case where qB(x, ε) = x+ ε and qG(x, ε) = x+ η. One interpretation is
that investment or bequest are in the form of financial assets or real estate, while the shocks
are to (permanent) labor income of the child. The interpretation is that total household
income is like a public good (as in Peters-Siow), which both partners share.

Consider a quasi-symmetric equilibrium where all boys invest x∗B and all girls invest x∗G.
A boy with shock realization ε and of rank z in the distribution F (.) will be matched with a
girl of shock φ(ε) with same rank z in G(.). Suppose that the parent of a boy invests a little
more, x∗B + ∆, as in Figure 1. If his realized shock is ε, the improvement in the ranking of
boys is approximately equal to f(ε)∆. The improvement in the quality of the matched girl,
∆̃ must be such that g(η)∆̃ ≈ f(ε)∆, i.e. the improvement in the rank of his match must
equal the improvement in his own rank. Thus the marginal return to investment in terms of
match quality equals f(ε)

g(φ(ε))
at any value of ε.
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ǫ ǫ ǫ + ∆ ǭ η φ(ǫ) φ(ǫ + ∆) η̄

η
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G(φ(ǫ + ∆))

G(φ(ǫ))

rank rank

Figure 1: If a boy with shock realization ε increases investment by an amount ∆, he would
overtake other boys with shock realizations between ε and ε + ∆. The boy’s match would
improve from the girl with shock value φ(ε) to one at φ(ε+ ∆).

Integrating over all possible values of ε gives the first order condition for optimal invest-
ments in boys, ∫ ε̄

ε

f(ε)

g(φ(ε))
f(ε) dε = c′B(x∗B). (10)

Similarly, the first order condition for investment in girls is∫ η̄

η

g(η)

f(φ−1(η))
g(η) dη = c′G(x∗G). (11)

The left hand side of the above equations (the marginal benefit) is constant, while the right
hand side is strictly increasing in xi, due to the convexity of the cost function. Thus, there
is a unique solution to the first order conditions.

3.1.1 Efficiency

We now use the first order conditions (10) and (11) to examine the efficiency of investments.
Under additive shocks, the marginal benefit to a girl from a boy’s investment is one, regardless
of the realization of the shock. Thus the Pareto efficiency conditions (4) and (5) reduce to
c′B(xB) = λ

1−λ , and c′G(xG) = 1−λ
λ

. This implies that in any Pareto efficient allocation,
c′B(xB) × c′G(xG) = 1. The condition for utilitarian efficiency (where equal weight is placed
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on the welfare of boys and girls) is c′B(xB) = c′G(xG) = 1.

Suppose F = G, i.e. the distribution of shocks is the same. Thus, f(ε)
g(φ(ε))

= 1 for all

values of ε, so that c′B(x∗B) = c′G(x∗G) = 1. Investments are utilitarian efficient even if the
investment cost functions are different for the two sexes. As we shall see later, this is an
example of a more general result – if there are no gender differences whatsoever, this ensures
utilitarian efficiency. In general, if there are any differences between the sexes, f(ε)

g(φ(ε))
will

differ from 1, and so one cannot expect utilitarian efficiency. The following theorem sharpens
this conclusion.

Theorem 2 When noise is additive, in a quasi-symmetric equilibrium investments are gener-
ically excessive relative to Pareto efficiency.

Proof. It is useful to make the following change in variables in the first order condition for
the girls, (11). Since η = φ(ε),

dη = φ′(ε) dε =
f(ε)

g(φ(ε))
dε.

Thus the first order condition for girls is rewritten as∫ ε̄

ε

g(φ(ε)) dε = c′G(x∗G).

Consider the product of the two first order conditions:

c′B(x∗B)× c′G(x∗G) =

(∫ ε̄

ε

f(ε)

g(φ(ε))
f(ε) dε

)(∫ ε̄

ε

g(φ(ε)) dε

)
.

By the Cauchy-Schwarz inequality,(∫ ε̄

ε

f(ε)

g(φ(ε))
f(ε) dε

)(∫ ε̄

ε

g(φ(ε)) dε

)
≥

[∫ ε̄

ε

(
f(ε)

(g(φ(ε)))1/2

)
(g(φ(ε)))1/2 dε

]2

= 1,

with the inequality being strict if the two terms are linearly independent. Thus c′B(x∗B) ×
c′G(x∗G) > 1 if f(ε)√

g(φ(ε))
and

√
g(φ(ε)) are linearly independent functions of ε. Since Pareto ef-

ficiency requires c′B(x∗B)×c′G(x∗G) = 1, we have overinvestment generically if the distributions
f and g differ.

Example 1 Let us assume that F (ε) = ε on [0, 1], i.e. ε is uniformly distributed.15 As-

sume that G(η) = ηn on [0, 1]. F (ε) = G(φ(ε)) implies φ(ε) = ε
1
n , g(φ(ε)) = nε

n−1
n . The

15The uniform distribution violates our Assumption A1, since f(ε) > 0. This implies that the left hand
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equilibrium conditions are:

c′B(x∗B) =

∫ 1

0

f(ε)

g(φ(ε))
f(ε) dε =

1

n

∫ 1

0

ε
1−n
n dε = 1,

c′G(x∗G) =

∫ 1

0

g(η)

f(φ−1(η))
g(η) dη = n2

∫ 1

0

η2n−2 dη =
n2

2n− 1
.

The product of the marginal costs equals n2

2n−1
> 1 for n > 1/2 and n 6= 1. Efficiency

requires that the product equals 1, which it only does for n = 1, i.e. when f = g.

The example provides additional intuition for the inefficiency result. Let n = 2, so that
the density function for women, g(η) = 2η on [0, 1]. The incentive for investment for a man

at any value of ε depends upon the ratio of the densities, f(ε)
g(φ(ε)

. This ratio exceeds one for
low values of ε, but is less than one for high values of ε. Conversely, for women, the incentive
to invest depends upon the inverse of this ratio, g(η)

f(φ−1(η))
, which is low at low values of η but

high at high values of η. In other words, the ratio of the densities plays opposite roles for
the two sexes. However, the weights with which these ratios are aggregated differs between
the sexes; high values of η are given relatively large weight in the case of women, since g(η)
is large in this case, while they are given relatively less weight in the case of men.

3.1.2 Gender Differences

We use our model to examine a contentious issue – what are the implications of gender
differences. Let us assume that the shocks to quality constitute talent shocks, and that
quality is additive in talent and investment (our results in this section also apply when quality
is multiplicative). One issue, that excites great controversy, is whether the distributions differ
for men and women. For example, Baron-Cohen (2004) and Pinker (2003) argue that there
are intrinsic gender differences that are rooted in biology, while Fine (2010) has attacked
this view. In any case, in a study based on test scores of 15-year-olds from 41 OECD
countries, Machin and Pekkarinen (2008) find that boys show greater variance than girls in
both reading and mathematics test scores in most countries. We now explore the implications
of differences in variability between the sexes.

Suppose that the shocks are more variable for men than for women. One way to formal-
ize the idea of a distribution being more variable than another is the dispersive order. A

derivative of a boy’s payoffs with respect to investments is strictly greater than the right hand derivative –
see footnote 19 in the Appendix. We focus on the equilibrium where the right hand derivative equals zero,
i.e. the one with smallest investments. Any other equilibrium will have strictly larger investments.
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distribution F is larger in the dispersive order than a distribution F , or F ≥d G if

g(G−1(z)) ≥ f(F−1(z)) for all z ∈ (0, 1), (12)

with the inequality being strict on a set of z values with positive measure (see Shaked and
Shanthikumar (2007, pp148-9)). For example, if F and G are both uniform distributions,
where the support of F is a longer interval than that of G, then F ≥d G. A second example is
two normal distributions – the one with the higher variance is larger in the dispersive order.
These measures of dispersive order do not rely upon an equality of means (see Hopkins and
Kornienko (2010) for further examples and discussion).

Suppose that F ≥d G, so that f(ε)
g(φ(ε))

≤ 1 for all values of ε, and is strictly less on a set

of values of ε of positive measure. Thus the integral on the left-hand side of equation (10) is
strictly less than one, and the integral on the left-hand side of equation (11) is strictly greater
than one. As utilitarian efficiency requires c′B(xB) = 1 = c′G(xG), boys under-invest and girls
over- invest, relative to the utilitarian level. We therefore have the following proposition:

Proposition 1 With additive shocks, if the distribution of shocks for boys is more dispersed
than that for girls, that is F ≥d G, then there is under-investment in boys and there is
over-investment in girls relative to the utilitarian efficient level.

The intuition for this result is as follows. If the distribution of shocks for boys is relatively
dispersed, then at any realization of ε, a ∆ increment in his investment only results in a small
improvement in his rank, and thus of his partner. Since the quality of the girls is relatively
compressed, this improvement in the rank of his partner only translates to a small increase in
quality. In contrast, for a girl, an increment in investment results in a large improvement in
her rank, and this improvement in the rank of her partner also translates to a large increase
in quality, given the higher dispersion in boy qualities. Therefore in equilibrium investment
in girls is greater than in boys.

Empirically, the average performance of girls in school is often better than that of boys,
especially in developed countries, where there is less discrimination. Our model provides
a possible partial explanation for this – the incentives to invest for girls are greater, from
marriage market matching considerations. While differences in the dispersion of shocks have
strong implications, differences in the mean play no role in investment incentives. To see
this, suppose that f is a translation of g, i.e. f(ε) = g(ε+ k) for some k. This implies that

φ(ε) = ε+ k, so that f(ε)
g(φ(ε))

= 1 for every ε. Investments will be utilitarian efficient, and this
difference in average quality has no implications for investment incentives.

15



3.1.3 Normal or Log-Normal Shocks

Suppose that the shocks are normally distributed, i.e. ε ∼ N(µε, σε) and η ∼ N(µη, ση).

Thus F (ε) = Φ
(
ε−µε
σε

)
, and G(η) = Φ

(
η−µη
ση

)
, where Φ denotes the standard normal cdf.

Thus the matching φ(ε) is linear, and f(ε)
g(φ(ε))

= ση
σε

at all values of ε. Furthermore, linearity

of the matching implies that φ′(ε + ∆) is constant and equal to ση
σε

, implying that agents’s
optimization is strictly concave as long as the cost function is convex. Since shocks are
unbounded, an agent is always matched even when he deviates downwards, and the mis-
ery effect plays no role in deterring downward deviations. The first order conditions for
investment are

c′B(x∗B) =
ση
σε
, c′G(x∗G) =

σε
ση
.

Investments are always Pareto efficient but will not be utilitarian efficient if the variances
differ. If one measures the degree of over or under investment relative to the utilitarian level
by the associated marginal costs, and if σε > ση, then the overinvestment by girls, relative
to the utilitarian level, is proportional to the ratio of the standard deviations.

Our analysis can be extended to the case where an increasing function of the shocks is
normally distributed. For example, consider log-normal shocks, so that ln(ε) ∼ N(0, σε) and
ln(η) ∼ N(0, ση). The first order conditions for investment (see the Appendix for derivation)
are given by

ση
σε

exp

(
1

2
(ση − σε)2

)
= c′B(x∗B),

σε
ση

exp

(
1

2
(ση − σε)2

)
= c′G(x∗G).

As in the normal case, the ratio of the marginal costs is related to ratio of the variances.
However, here we have

c′B(x∗B)× c′G(x∗G) = exp (ση − σε)2 ,

so that the outcome is neither utilitarian or even Pareto efficient unless σε = ση. The extent
of inefficiency is related to the difference in variances.

Finally, note that our general existence theorem does not apply to these examples since
it assumes bounded shocks. In the normal case, linearity of the matching suffices to ensure
that the maximization problem is strictly concave. The Appendix shows that large upward
deviations are not profitable in the log-normal case under plausible assumptions on the ratio
of variances and the convexity of costs. Thus our analysis can be extended more generally,
beyond the class of distributions satisfying Assumption A2, if one assumes explicit forms for
the distribution of shocks.
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3.1.4 Sex Ratio Imbalances

Sex ratio imbalances are an important phenomenon in countries such as China and parts of
India. These imbalances are extremely large in China, where it is estimated that one in five
boys born in the 2000 census will be unable to find a marriage partner (see Bhaskar, 2011).
Wei and Zhang (2011) argue that the high savings rate in China is partly attributable to the
sex ratio imbalance. They argue that parents of boys feel compelled to invest more, in order
to improve their chances of finding a partner, thus raising the overall savings rate. However,
one might conjecture that this might be counter-balanced by the reduced pressure felt by
the parents of girls. We therefore turn to our model to provide an answer to this question.

Assume that each sex is ex ante identical, and let the relative measure of girls equal r < 1.
At the matching stage, since r ≤ 1, all girls should be matched, and the highest quality boys
should be matched. Since every girl is matched, the investment in her generates benefits
for herself and for her partner (for sure). Thus the first best investment level in a girl, x∗∗G ,
satisfies c′G(x∗∗G ) = 1. Now consider investment in a boy. If we assume that the idiosyncratic
component of match values is sufficiently small, then welfare optimality requires that only a
fraction r of boys invest, and that their investments also satisfy c′B(·) = 1. However, if we
restrict attention to symmetric investment strategies, then investment will take place in all
boys, and since investment occurs before ε is realized, each boy has a probability r of being
matched, and thus the utilitarian efficient level of investment in a boy, x∗∗B , must satisfy
c′B(x∗∗B ) = r, i.e. the marginal cost must equal the expected marginal benefit. Similarly, the
condition for Pareto efficiency, with arbitrary weights on the welfare of boys and girls is

c′B(x∗∗B )× c′G(x∗∗G ) = r. (13)

We now examine a quasi-symmetric equilibrium where all boys invest x∗B and all girls
invest x∗G. Since only the top r fraction of boys will be matched, this corresponds to those
having a realization of ε ≥ ε̃ where F (ε̃) = 1 − r. In this case, a boy of type ε ≥ ε̃ will be
matched with a girl of type φ(ε, r), where

1− F (ε) = r[1−G(φ(ε, r))].

The derivative of this matching function is given by

φε(ε, r) =
f(ε)

rg(φ(ε, r))
.

That is, an increase in ε increases a boy’s match quality relatively more quickly, since the
distribution of girls is relatively thinner, since r < 1.

Those boys with realizations below ε̃ will not be matched and receive a payoff ū < η,
what we have called the misery effect. As Hajnal (1982) has noted, in Asian societies such
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as China and India, marriage rates have historically been extremely high (over 99%, as
compared to the traditional “European marriage pattern”with marriage rates around 90%).
Thus the misery effect is likely to be large in Asian societies.

The first order condition for boys in an equilibrium where all boys invest the same amount
x∗B, while all girls invest the same amount x∗G is given by

1

r

∫ ε̄

ε̃(r)

f(ε)

g(φ(ε, r))
f(ε) dε+ f(ε̃(r))(η + x∗G − ū) = c′B(x∗B). (14)

As compared to our previous analysis, we notice two differences. The first term is the
improvement in match quality, and the sparseness of girls increases the investment incentives,
due to the term in 1/r. Additionally, an increment in investment raises the probability of
one’s son getting matched, at a rate f(ε̃), and the marginal payoff equals the difference
between matching with worst quality girl and receiving η + x∗G, and not being matched and
receiving ū. An unbalanced sex ratio tends to amplify investments in boys, for two reasons.
First, a given increment in investment pushes boys more quickly up the distribution of girls,
and second, there is an incentive to invest in order to increase the probability of match taking
place at all, since there is discontinuous payoff loss from not being matched at ε̃, due to the
misery effect.

Similarly, the first order condition for investment in girls is given by

r

∫ η̄

η

g(η)

f(φ−1(η))
g(η) dη = c′G(x∗G). (15)

Notice here that the role of r < 1 is to reduce investment incentives, since an increment
in investment pushes a girl more slowly up the distribution of boy qualities. Furthermore,
there is no counterpart to the misery effect for the scarcer sex, and the only reason to invest
arises from the consequent improvement in match quality.

Since boys are in excess supply, a girl whose parents invest and whose quality realization
is discretely lower than every other girl will still be able to find a partner. Such a girl will
get a match payoff of x∗B + ε̃, no matter how low her own quality. Thus, the conditions for
the existence of a quasi-symmetric equilibrium are more stringent than in the balanced sex
ratio case. Large downward deviations in investment will not be profitable provided that
the dispersion in the qualities of boys is sufficiently large, and the cost function for girls is
sufficiently convex.

Proposition 2 If r < 1 and the noise is additive, there exists a unique quasi-symmetric
equilibrium, provided that f(.) is sufficiently dispersed and cB(.) is sufficiently convex. In-
vestments are excessive relative to Pareto efficiency, for generic distributions of noise.

18



It is worth pointing out that even absent the misery effect, there will be strictly excessive
investments, even if the noise distributions are identical, unless they happen to be uniform.
When r < 1, g(φ(ε)) is not a linear transformation of f(ε) unless f and g are uniform. Thus
investment will be strictly greater than the efficient level.

As we have already noted, if F and G have the same distributions, and r = 1, invest-
ments are utilitarian efficient. Thus a balanced sex ratio is sufficient to ensure efficiency
of investments in this case. This provides an additional argument for the optimality of a
balanced sex ratio, over and above the congestion externality identified in Bhaskar (2011).

We may use our model to evaluate the theoretical basis of the empirical work by Wei and
Zhang (2011), attributing the high savings rate in China to the sex ratio imbalance. Given
the condition for utilitarian efficiency c′B(x∗∗B ) = r, investment in boys should actually fall as
r decreases below one, from a utilitarian point of view. In a related signalling model, Hoppe
et al. (2009) show that an increase in the number of men will increase total signalling by
men; however, the effect on signalling by women is ambiguous and depends on the shape of
the distribution of abilities amongst men. The shape of the distribution also matters for our
model, but a further difficulty here is that investment by one side affects the incentives to
invest by the other. In particular, the equilibrium choice of investment by girls enters the
boys’ first order condition (14). This potentially would also make the investment by boys
respond ambiguously to the sex ratio becoming less equal.

As an example, consider the case where f and g are increasing and f(ε) = g(η) = 0:

r

∫ η̄

η

g(η)

f(φ−1(η, r))
g(η) dη =

∫ ε̄

ε̃(r)

g(φ(ε, r)) dε.

Since g is increasing and both φ and the range of integration [ε̃(r), ε̄] are increasing in r, it
follows that investment by girls is unambiguously increasing in r. Similarly,

1

r

∫ ε̄

˜ε(r)

f(ε)

g(φ(ε, r))
f(ε) dε =

∫ η̄

η

f(φ−1(η, r)) dη.

Since f is assumed increasing and φ−1 is decreasing in r, overall this expression is decreasing
in r. That is the matching incentive for boys increases as the sex ratio becomes more
uneven. However, the overall effect on boys’ investments is ambiguous, as the LHS of (14)
also depends on x∗G which is increasing in r. One can at least conclude that for r close to
one, so that ε̃ is close to ε and f(ε̃) is close to zero, x∗B is decreasing in r.

In summary, under some assumptions, an uneven sex ratio can indeed increase investment
incentives for men, but will also decrease incentives for women. The predicted effect on total
investment is consequently ambiguous. An uneven gender ratio increases the relative weight
of boys in the population, and their increased investment may be enough to increase the
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total, but this is not guaranteed.

3.2 Talent Shocks and Complementarities with Investment

Consider next the case where investment is in education and the uncertainty is talent risk.
It is plausible that the return to education depends upon the talent of the child. To model
this, we suppose that quality is given by a multiplicative production function, qB(x, ε) = xε
and qG(x, η) = xη where ε and η are always strictly positive. Further, investment levels
must be strictly positive since investments below the individually optimal level are strictly
dominated. Investments in a quasi-symmetric equilibrium must therefore satisfy the first
order condition for equilibrium (8) and (9). Since qix = ε and qiε = x, these can be re-written:

x∗G
x∗B

∫
f(ε)

g(φ(ε))
εf(ε) dε = c′B(x∗B), (16)

x∗B
x∗G

∫
g(η)

f(φ−1(η))
ηg(η) dη = c′G(x∗G). (17)

Unlike the additive case, the “reaction function”for the boys is upward sloping in the girl’s
investments, and vice versa. Intuitively, if quality is multiplicative, an increase in the girl’s
investment levels increases the dispersion in qualities on the girl’s side, thereby increasing
investment incentives for boys. Thus, with multiplicative shocks, one has interesting inter-
action effects between investments on the two sides of the market. First, we examine the
implications of gender differences.

Proposition 3 Assume multiplicative shocks that have the same mean for boys and girls,
and identical cost functions for the two sexes. If the distribution of shocks for boys is more
dispersed than that for girls, that is F ≥d G, then there is under-investment in boys and
there is over-investment in girls relative to the utilitarian efficient level.

Proof. From the first order conditions, if F ≥d G:

c′B(x∗B) =
x∗G
x∗B

∫
f(ε)

g(φ(ε))
εf(ε) dε <

x∗G
x∗B

E(ε),

c′G(x∗G) =
x∗B
x∗G

∫
g(η)

f(φ−1(η))
ηg(η) dη >

x∗B
x∗G

E(η).

Utilitarian investments x∗∗B and x∗∗G satisfy c′B(x∗∗B ) = E(ε) and c′G(x∗∗G ) = E(η). Since
E(ε) = E(η) and the cost functions are the same, c′B(x∗B) < E(ε) and c′G(x∗G > E(η).
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Multiplicative shocks have the interesting implication that an increase in investment by
one side, say girls, also increases the dispersion in quality amongst girls, thereby providing
more incentives to invest for the boys. So if shocks are relatively less variable amongst
girls, the induced investments are such that the resulting difference in variability in quality
between the two sides is less pronounced. Since girls invest more and boys invest less, this
raises quality dispersion amongst girls, and reduces it amongst boys.

Both the additive model and the multiplicative model show that the side with more
dispersed shocks has weaker incentives for investment. A similar argument is also found
in Hoppe et al. (2009), where differences in the dispersion of exogenously given unobserved
qualities affect signalling expenditures by men and women. The additive shocks model yields
conclusions similar to Hoppe et al., since investments by one side do not affect investment
incentives on the other side. The multiplicative model is richer, since increased investments
by girls raise the incentives to invest for boys.

These interaction effects have interesting implications also when the mean value of shocks
differs between the sexes. Suppose that F (ε) = G(ε + k) for some k > 0, so that average
quality is higher amongst the girls, but the distributions are of the same type. An example
would be where shocks are normally distributed, with the girls having a higher mean. Since
f(ε)
g(φ(ε))

= 1 for all values of ε the first order conditions reduce to

c′B(x∗B) =
x∗G
x∗B

E(ε),

c′G(x∗G) =
x∗B
x∗G

E(η).

From the first order conditions, under the assumption that the genders have identical cost
functions, we see that women invest more than men. However, the interaction effects imply
that women invest less than the utilitarian efficient amount, and men invest more than
the utilitarian level. Thus, in the multiplicative case, investment behavior partially offsets
differences in mean quality.

Finally, the multiplicative model also shows us that facilitating investment by one side,
say girls, also increases investment incentives for boys. In some developing countries such
as India, governments have sought to overcome discrimination against girls by subsidizing
their education. Increased investment in girls raises the dispersion in their quality, thereby
providing greater incentives to invest for the boys.

3.2.1 Investment under Traditional Gender Roles

Suppose that shocks are additive for women but multiplicative for men. One example is a
traditional society, where women do not work, and so investment in them takes the form of a
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dowry; while parents invest in their sons’ human capital. This interpretation fits our model if
investments towards dowries must take place in advance, i.e. parents must forgo consumption
in order to save for their daughter’s dowry. The first order condition for investments in boys
is

1

x∗B

∫
f(ε)

g(φ(ε))
εf(ε) dε = c′B(x∗B). (18)

Notice that this is independent of the investment level of the girls, since the quality of girls
is additive. On the other hand, since the dispersion of qualities amongst the boys increases
with their investment level, the investment by girls is increasing in boys’ investments, as the
girls’ first order condition shows:

x∗B

∫
g(η)

f(φ−1(η))
g(η) dη = c′G(x∗G). (19)

This mixed model can provide an explanation for why dowries may increase during the
process of development, as for example in India.16 Suppose that the marginal costs of invest-
ing in human capital fall, so that c′B(xB) is reduced at any value of xB. From (18), x∗B must
go up. From (19), x∗G also increases. Intuitively, the increased investment by boys increases
the variability in their quality, thereby increasing the incentives for the parents of girls for
investing in their dowries. A similar argument can also be made if the return to human
capital goes up – this will increase investment levels by boys, increasing the dispersion in
their qualities. The increased dispersion in boy qualities increases the investment incentives
for girls.

3.2.2 Efficiency in a Generalized Multiplicative/Additive Model

We now examine whether investments are Pareto efficient in a generalized model where
quality has multiplicative as well as additive components. Assume that quality satisfies
Assumption A3, set out on page 11. Utilitarian efficiency requires c′B(x∗∗B ) = θB + (1 −
θB)γ′(x∗∗B )E(ε) and c′G(x∗∗G ) = θG + (1 − θG)γ′(x∗∗G )E(η). Pareto efficient investments are
such that

c′B(x∗∗B )× c′G(x∗∗G ) = [θB + (1− θB)γ′(x∗∗B )E(ε)] [θG + (1− θG)γ′(x∗∗G )E(η)].

The following theorem shows that there will be generic overinvestment relative to the above
Pareto-efficiency condition, if the densities are both symmetric, as long as they differ.

16Anderson (2007) surveys the evidence on dowries, while Anderson (2003) provides an alternative expla-
nation for the increase in dowries during modernization, based on social stratification.
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Theorem 3 Suppose that quality is generalized additive/multiplicative and that the distri-
butions f and g are symmetric. Then in any quasi-symmetric equilibrium investments are
generically excessive relative to Pareto efficiency.

This overinvestment result applies both to the pure multiplicative model and to the one
with traditional gender roles. The proof is based on the Cauchy-Schwarz inequality and the
result is a robust result. If f and g are symmetric and linearly independent, investment
will be strictly too high. Now if we perturb the distributions so the f̃ is close to f and
g̃ to g, then c′B(x∗B) × c′G(x∗G) will still be greater than those required for efficiency, since
the integrals defining this are continuous in the distributions. In other words, we will have
excessive investments even with asymmetric distributions as long as the asymmetries are not
too large.

Why does the result require that the asymmetry not be too large? To provide some
intuition for this, assume purely multiplicative quality, and return to the example where the
distribution of shocks is uniform on [0, 1] for men and where the density function for women,

g(η) = 2η on [0, 1]. Here again, the ratio of the densities that is relevant for men, f(ε)
g(φ(ε))

, is

relatively large when ε is low. While these values of ε still have large weight (since f(ε) is
constant in ε), in the multiplicative case, the payoff to investment is low when ε is small.
Under symmetry, neither particularly low values nor particularly high values of ε have any
special weight and thus the inefficiency result applies.

4 No Gender Difference Implies Efficiency

We now consider the implications of ex-ante heterogeneity, where individuals differ even
before shocks are realized, beginning with an illustrative example. Assume that the sex
ratio is balanced. Suppose that we have two classes, H and L, with fractions θH and θL in
the population. Assume that the marginal costs of investment are lower for the upper class,
H. Let cH(.) and cL(.) be the cost functions, which depend upon class but not upon gender,
where c′H(x) < c′L(x) for any x. Let fi(.) and gi(.), i ∈ {H,L} denote the density function of
shocks for the boys from class i, and the girls from class i respectively. Assume that quality
function is additive in the shocks and investment.

Consider a profile of investments (xHB, xLB, xHG, xLG) where each individual who belongs
to the same class and same gender choose the same investment. This profile induces a
distribution of qualities for the boys, F̃ (q), and of girls, G̃(p). Since any stable measure
preserving matching φ̃ must be assortative, we must have F̃ (q) = G̃(φ̃(p)).

Let x∗HB, x
∗
LB, x

∗
HG, x

∗
LG be the equilibrium investment levels. Suppose that the distribu-

tion of qualities in both the sexes has a connected support, without any gaps. In class i, the
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first order condition for investment in boys is given by∫ qmax

qmin

f̃(q)

g̃(φ(q))
f(q − x∗iB) dq = c′B(x∗iB). (20)

The density function for boy’s quality is given by (that for girls is analogous):

f̃(q) = θHfH(q − x∗HB) + θLfL(q − x∗LB).

Let the class differences be arbitrary, so that fH can differ from fL and gH from gL.
However assume that there are no gender differences, so that fH = gH and fL = gL. Consider
a gender neutral strategy profile, where investments depend on class but not on gender,
so that x∗iB = x∗iG for i ∈ {H,L}. Since the shocks do not vary between the sexes, the
induced distribution of qualities will be identical in the two sexes. That is, for any value q,
F̃ (q) = G̃(q), implying that φ̃(q) = q. This in turn implies that f̃(q) = g̃(φ(q)). Therefore
the left hand side of equation (20) equals one.

Consider a utilitarian social planner who puts equal weight on each type of individual,
irrespective of gender or social class. Since the marginal benefit of additional investment in a
boy is unity, for any girl who is matched with him, such a planner would set the marginal cost
of investment to one. We conclude therefore that investment in boys is utilitarian efficient if
there are no gender differences, even if there is large heterogeneity between classes. Similarly,
investment in girls is utilitarian efficient.

This argument is very general – provided that there are no differences between the sexes,
equilibrium investments will be utilitarian efficient even if there is wide heterogeneity within
each sex. Assume that there is a finite set of types, indexed by i ∈ {1, 2, .., n}. Type i has a
measure µi of boys and an equal measure of girls, with

∑n
i=1 µ

i = 1. A boy or girl of type i
has an idiosyncratic component of quality, ε, that is distributed with a density function fi(ε)
and a cumulative distribution function Fi(ε). We shall assume a general quality function
q(x, ε), where q is continuous, increasing in both arguments, and differentiable and concave
in x, the investment. We assume that the quality function is identical for the two sexes, and
is therefore not indexed by gender. The cost of investment may also depend upon type, and
is denoted ci(x). We assume that Assumption A1 holds for each type, i.e. it holds for each
cost function ci and each density function fi, and the quality function.

We assume: No Gender Difference: Men and women are symmetric with regards to
costs of investment and the idiosyncratic component of quality. Specifically, for any type i:
i) there are equal measures of men and women, ii) the investment cost functions and quality
functions do not differ across the sexes, and iii) the idiosyncratic component of quality has
the same distribution, fi, that depends upon type but not on gender.

The assumption of no gender difference is strong, but there are reasonable conditions
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under which it is satisfied. Suppose that investment costs or the idiosyncratic component
depend upon the “type”of the parent (e.g. parental wealth, human capital or social status),
but not directly upon gender. If the gender of the child is randomly assigned, with boys and
girls having equal probability, then no gender difference will be satisfied.

A utilitarian efficient profile of investments (x∗∗Bi, x
∗∗
Gi)

n
i=1 is one that maximizes the sum of

payoffs of all individuals, irrespective of type or gender. This satisfies the conditions below
∀i, i.e. the marginal social benefit from increased quality must equal the marginal cost to
the individual:

c′i(x
∗∗
Bi) =

∫
qx(x

∗∗
Bi, ε)fi(ε) dε, (21)

c′i(x
∗∗
Gi) =

∫
qx(x

∗∗
Gi, η)gi(η) dη. (22)

Under Assumption A1, the cost function ci is strictly convex and qxx(.) ≤ 0, so that the
above conditions are sufficient for the profile to be utilitarian efficient. Assuming no gender
difference, utilitarian efficiency requires that individuals of the same type choose the same
investments even if they differ in gender, i.e. x∗∗Bi = x∗∗Gi ≡ x∗∗i ∀i.

Consider now a quasi symmetric strategy profile ((x∗Bi)
n
i=1, (x

∗
Gi)

n
i=1), specifying invest-

ment levels for each type of each gender. This profile, in conjunction with the realizations
of idiosyncratic shocks, induces a cumulative distribution function of qualities, F̃ , in the
population of boys. Since ε is assumed to be atomless, and q is continuous, F̃ admits a
density function f̃ , although its support may not be connected if the investment levels of
distinct types are sufficiently far apart (i.e. there may be gaps in the distribution of qual-
ities). Similarly, let G̃ denote the cumulative distribution function of girl qualities, given
(xGi)

n
i=1. A stable measure preserving matching must be assortative, so that a boy of type

q is matched to a girl of type φ̃(q) if and only if F̃ (q) = G̃(φ(q)). Thus the distributions
F̃ and G̃ define the match payoffs associated with equilibrium investments for each type of
boy and each type of girl. For the profile ((x∗Bi)

n
i=1, (x

∗
Gi)

n
i=1) to be an equilibrium, it must

satisfy the first order conditions for each type i, for the boys and girls respectively:

c′i(x
∗
Bi) =

∫
φ̃
′
(.)qx(x

∗
Bi, ε)fi(ε) dε, (23)

c′i(x
∗
Gi) =

∫ (
φ̃
−1
)′

(.)qx(x
∗
Gi, η)gi(η) dη. (24)

We shall call a strategy profile gender neutral if xBi = xGi∀i, so each type of parent invests
the same amount regardless of the gender of their child. Suppose that ((x∗Bi)

n
i=1, (x

∗
Gi)

n
i=1)

is gender neutral and is an equilibrium. Under the assumption of no gender difference, the
induced distributions of qualities are identical on the two sides, i.e. F̃ (.) = G̃(.). Thus φ̃(.)
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is the identity map on the support of F̃ (.). The first order conditions reduce to

c′i(x
∗
Bi) =

∫
qx(x

∗
Bi, ε)fi(ε) dε = c′i(x

∗
Gi)., (25)

The first order conditions for an equilibrium that is gender neutral, (25) coincide with the first
order conditions for utilitarian efficiency, (21) and (22). Thus if a gender neutral equilibrium
exists, it must be utilitarian efficient. Also, if large deviations from the utilitarian profile are
unprofitable for every type, then it is the unique gender neutral equilibrium.

A profile of investments, ((xBi)
n
i=1, (xGi)

n
i=1)), has no quality gaps if the induced dis-

tributions of qualities, F̃ (q) and G̃(p), have connected supports. Large deviations will be
unprofitable as long as there are no quality gaps.

Theorem 4 Suppose that there is no gender difference and Assumption A1 is satisfied. The
utilitarian efficient profile of investments is a gender neutral equilibrium if it has no quality
gaps, and ū is sufficiently small. A gender neutral strategy profile is an equilibrium only if
it is utilitarian efficient.

The efficiency result applies plausibly to a non-marriage context. Consider a single-
population matching model, where quality is a one-dimensional scalar variable. An example
is partnership formation, e.g. firms consisting of groups of lawyers. Theorem 4 implies that
one has efficient ex ante investments, even absent transferable utility. While the formal proof
restricts attention to pair-wise matching, the extension to matches consisting of more than
two partners is immediate.

The intuition for the efficiency result is as follows. Consider a gender neutral profile of
investments, where there are no quality gaps. Then a boy of quality q will be matched with
a girl of the same quality, i.e. φ̃(q) = q. Thus the marginal return to investment equals the
increment to his own quality, and thus private incentives and utilitarian welfare are perfectly
aligned.

This result does require the no quality gap assumption, which will be satisfied if the
support of the shocks is large enough, or if there is sufficient similarity between adjacent
types so that their equilibrium investments are not too far apart. Interestingly, if there are
quality gaps, then there is a tendency for overinvestment, rather than underinvestment. Let
us return to the two-class illustrative example at the beginning of this section, and suppose
that the differences in utilitarian investments between the rich and the poor are so large
that there is a quality gap. Suppose that an individual boy deviates from this profile and
has a quality realization that is greater than the best poor boy, and smaller than the worst
rich boy. Assume that the deviator is assigned either the match of the former or that of the
latter, each with probability one-half. Under such a matching rule, the poor boys would have
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an incentive to deviate upwards – the rich boys have no incentive to deviate downwards.17

5 A Model with Finite Numbers

We now set out a model with finitely many boys and girls, where there is uncertainty as
to whether there are slightly more boys than girls or the reverse.18 Thus the lowest quality
boy (or girl) will be unmatched with probability one-half. We show that the payoffs in
this finite model converge to those in the continuum model as the number of participants
becomes large. This provides a justification for our assumption in the continuum case,
that a downward deviating agent, whose quality is below the support of the equilibrium
distribution of qualities, is unmatched with probability one-half. We also show that if the
number of agents is sufficiently large, there exists a unique quasi-symmetric equilibrium of
the finite model, which converges to the equilibrium of the continuum model as the number
of agents tends to infinity.

Assume that there are 2n + 1 agents, with their sex being determined as follows: n of
the agents are randomly chosen, (equi-probably, so that each agent has equal an chance of
being chosen), and then a fair coin is tossed to determine whether these n chosen individuals
are all male or all female. The n + 1 unchosen individuals are then specified to be of the
opposite sex. We assume that at the time of investment, each individual knows their sex,
but not whether they were among the n chosen individuals. Thus, at the investment stage,
an individual does not know whether boys or girls are in excess.

For tractability, we assume that quality is additive in investment and in the idiosyncratic
shock. Shocks are i.i.d, and are drawn from F for the boys and G for the girls. Agents are
matched assortatively in terms of quality, and so all agents are matched except the lowest
quality agent on the long side of the market. Suppose all girls invest xG and all boys invest
xB. If a single boy deviates and invests xB + ∆, and his shock value is ε, then since his
quality equals ε+ ∆ +xB, it is the same as if he had invested xB and had shock value ε+ ∆.
Consequently, his prospects for marriage are the same as if he did not deviate (and hence
are independent of xB), and had a shock value ε + ∆, with the caveat that if ε + ∆ > ε̄,
he marries the highest quality girl, and if ε+ ∆ < ε, he marries the lowest quality girl with
probability n

2n+1
, and is unmarried with probability n+1

2n+1
. The shock received by the girl

that this deviating boy is matched with, where that shock is defined to be ū− xG if the boy

17The matching rule can be justified as the limit of a model with a large but finite number of agents of each
type, along the lines of the argument in the next section. Efficiency can be obtained even with quality gaps
if we modify the matching rule so that a deviator is always assigned the match of the next worst individual.
This matching rule is formally correct in the continuum model, but does not seem to correspond to the limit
of a reasonable finite model.

18We thank Roger Myerson for suggesting this approach. See also Myerson (1998) for large games with a
random set of players.
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is unmatched. Let φn(ε+ ∆) denote the expected shock value of the boy’s match.

Then the expected quality of the girl that the boy is matched equals φn(ε + ∆) + xG.
Thus the ex ante expected benefit of a boy, averaged over his shock realizations, when he
invests xB + ∆, equals

Bn(∆, xG) =

∫ ε̄

ε

φn(ε+ ∆)f(ε) dε+ xG. (26)

The benefit function Bn(∆, xG) is differentiable with respect to ∆, and its derivative at
∆ = 0 is strictly positive. Since marginal investment costs are strictly negative at zero,
and unbounded as investments tend to the upper bound, any quasi-symmetric equilibrium
(x∗Bn, x

∗
Gn) must lie in the interior of the set of feasible investments. Thus equilibrium

investments must satisfy the first order conditions:

c′B(x∗Bn) = B′n (0, x∗Gn) ,

c′G(x∗Gn) = B′n (0, x∗Bn) .

We have the following result.

Theorem 5 Suppose that quality is additive, and that Assumptions A1 and A2 are satis-
fied. For n sufficiently large, the game with uncertain finite numbers has a unique quasi-
symmetric equilibrium with investments (x∗Bn, x

∗
Gn), provided that ū is sufficiently small.

Further, limn→∞(x∗Bn, x
∗
Gn) = (x∗B, x

∗
G), the equilibrium investments in the continuum model.

We prove this result in the Appendix, by showing that the benefit function in the finite
model and its derivatives converge to their counterparts in the continuum model. Since
Theorem 2 shows that one has generic overinvestment in the continuum case, our main
convergence result here, Theorem 5, implies that there is excessive investment when the
number of agents is sufficiently large. However, exactly how investment incentives depend
on population size is quite complex and we do not analyze it here.

6 Conclusions

We examined a model of marriage with investments that have stochastic returns. This
approach ensures the existence of a unique pure strategy equilibrium, in an area where
models often have multiple equilibria or equilibria only in mixed strategies. Our main result is
that investments are inefficiently high, generically. The intuition for our inefficiency result is
somewhat subtle – it is not due to the usual positional externality that arises in tournaments,
since investments in our context are not wasteful. Investments by boys increase welfare for the
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girls, and vice-versa. Indeed, when the two sides or sexes are identical and there are no gender
differences, one gets efficient investments. However, when there are differences between the
sexes, there are some realizations of shocks where boys have a relatively higher incentive to
invest, and other realizations where girls have a relatively higher incentives to invest. Each
sex gives greater weight to those states where they have relatively greater incentives, giving
rise to overinvestment. When the sexes are identical, at every shock realization, both sexes
have identical investment incentives, which ensures efficiency. Our model also has interesting
observational implications. For example, if shocks are more variable for boys as compared
to girls, boys invest less than girls. If there is an unbalanced sex ratio, the abundant sex
invests more, while the scarcer one invests less.

While formal tests of the Pareto efficiency of investments at the aggregate level are
yet to be developed, Wei and Zhang (2011) present evidence that the sex ratio imbalance
drives higher savings in China by the parents of boys, which is possibly inefficiently high.
Similarly, the global boom in the higher education of women is arguably not explained by
higher returns to education on the labor market (see Becker et al. (2010)). Our model
suggest that matching considerations from the marriage market could explain the greater
investment incentives of girls.

Appendix: Proofs

Proof of Theorem 1: We first derive the first order conditions as given in (8) and (9).
We then show that these first order conditions are sufficient, and that no individual can
benefit from large deviations. Next, we show that the first order conditions define a unique
symmetric best response for the boys as a function of the investment level of the girls, and vice
versa. These best response functions are continuous, establishing existence of equilibrium.
Finally, we show that under assumption A3 equilibrium is unique.

Note that any investment x < x̄i is strictly dominated, since c′i(x) < 0 if x < x̄i and
quality is increasing in x, implying that the marginal benefit on the marriage market is
positive. So we may restrict attention to profiles where every agent invests strictly positive
amounts. Consider a quasi-symmetric equilibrium where all boys invest xB > 0 and all girls
invest xG > 0. Suppose that a parent of a boy deviates from this equilibrium and invests xB+
∆ in his son. We may, without loss of generality, restrict ∆ to lie in a compact interval [∆, ∆̄]
where ∆ < 0 < ∆̄. Let ∆′ be defined by qB(xB+∆′, ε̄) = qB(xB, ε) if there exists xB+∆′ ≥ 0
that solves this equation; otherwise, let ∆′ = −xB. Define ∆ := max{∆′, x̄B − xB}. This
definition reflects two facts. First, deviations below x̄B are unprofitable. Second, very large
downward deviations cause a boy to be below the support of the equilibrium distribution
of boy qualities, and thus unmatched with probability one-half – we assume ū is sufficiently
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small that such deviations are unprofitable.19 Let ∆
′′

be defined by qB(xB + ∆′′, ε) =
qB(xB, ε̄), and define ∆̄ := min{∆′′, x̃B − xB}, where x̃B is the upper bound on investments
introduced in Assumption A1. The definition of ∆′′ reflects the fact that there is no advantage
in deviating more than ∆′′, since there is no better outcome than being matched with the
best quality woman.

Suppose that a parent of a boy deviates from this equilibrium and invests xB + ∆ in his
son, where ∆ ∈ [∆, ∆̄]. If the realization of the shock for his son is ε, the son will hold the
same rank in the population of boys as a boy with a shock level ξ, where ξ(x, ε,∆) is defined
by the equation

qB(xB + ∆, ε) = qB(xB, ξ(xB,∆, ε)).

For example, in the additive case ξ(xB,∆, ε) = ε + ∆. Given this deviation, the boy now
holds rank F (ξ) in the population of boys and can expect a match with a girl holding rank
G(φ(ξ)) in the population of girls. She would be of quality qG(xG, φ(ξ)). Applying the
implicit function theorem to the above equation, it is easy to show that ξ(xB,∆, ε) has the
following properties:

ξ∆ > 0, ξε > 0, ξεε = 0, ξ∆ε ≥ 0, ξ∆x ≤ 0, ξ∆∆ ≤ 0, (27)

given our assumptions that qBxx ≤ 0, qBεx ≥ 0 and qBεε = 0.

Let ∆ ∈ (0, ∆̄] and define ε̂(∆) by ξ(xB,∆, ε̂) = ε̄. That is, given an upward deviation
of ∆, ε̂(∆) is the shock value that results in the same quality as the highest ranked non-
deviating boy, and given our assumption that ∆ ≤ ∆̄, ε̂(∆) ≥ ε. If a deviating boy has a
shock value that is greater than ε̂(∆), then he matches for sure with the highest ranking girl,
with quality qG(xG, η̄), where η̄ = φ(ε̄). Thus, if all other boys invest an amount xB and all
girls xG, then the expected match quality or benefit B(∆) of a boy investing xB + ∆, where
∆ > 0, is given by20

B(∆) =

∫ ε̂(∆)

ε

qG(xG, φ(ξ(xB,∆, ε)))f(ε) dε+ (1− F (ε̂(∆)))qG(xG, η̄). (28)

Evaluating B′(0) is troublesome because downward deviations induce a positive prob-
ability of being unmatched, while upward deviations do not. Thus we will first consider
upward deviations to derive the limit, lim∆→0+ B

′(∆), which we denote by B′(0+). Then we
consider downward deviations to derive lim∆→0− B

′(∆), which we denote by B′(0−). The
two turn out to be equal, from which we conclude (from the mean value theorem) that

19If ∆ < ∆′ then B(∆) = (qG(xG, η) + ū)/2. Thus the overall payoff from such a deviation is no greater

than (qG(xG, η) + ū)/2 − cB(x̄B). Since the equilibrium match payoff of a boy is no less than qG(xG, η), if

ū < qG(xG, η)− 2[cB(xB)− cB(x̄B), such a deviation is unprofitable.
20Note that B is properly a function of (∆, xB , xG), but from the point of view of an individual boy, xB

and xG are fixed, and thus we write B(∆) for simplicity.
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B′(0+) = B′(0−) = B′(0).

The derivative of the expected match or benefit with respect to ∆ when ∆ ∈ (0, ∆̄)
equals

B′(∆) =

∫ ε̂(∆)

ε

qGη (xG, φ(ξ(xB,∆, ε)))φ
′(ξ(xB,∆, ε))ξ∆(xB,∆, ε)f(ε) dε. (29)

To take its limit as ∆ ↓ 0, note that φ′ and ξ∆ are both continuous in ∆, and at ∆ = 0, they
are given by

φ′(ε) =
f(ε)

g(φ(ε))
, ξ∆(xB,∆, ε) =

qBx (xB, ε)

qBε (xB, ε)
.

Similarly, ξ(xB,∆, ε) is continuous in ∆, and equals ε at ∆ = 0, and so ε̂ = ε̄ when ∆ = 0.
Thus, we have

B′(0+) =

∫ ε̄

ε

qGη (xG, φ(ε))
f(ε)

g(φ(ε))

qx(xB, ε)

qBε (xB, ε)
f(ε) dε. (30)

Thus the right hand derivative, B′(0+), equals the left hand side of the first order condition
(8).

Turning to downward deviations, ∆ ∈ (∆, 0), define ε̃(∆) by the relation ξ(xB,∆, ε̃) = ε
– since ∆ ≥ ∆, this ensures that ε̃(∆) ≤ ε̄. For ∆ ∈ (∆, 0), B(∆) is given by

B(∆) =

∫ ε̄

ε̃(∆)

qG(xG, φ(ξ(xB,∆, ε)))f(ε) dε+ F (ε̃(∆))
ū+ qG(xG, η)

2
. (31)

The final term depends on the following crucial assumption. If the deviating boy has a low
shock realization, in the interval [ε, ε̃], his quality will be less than the lowest quality in the
equilibrium distribution of boys’ qualities. With equal probability, he will be left unmatched
and have utility ū or match with the lowest quality girl. The derivative with respect to ∆,
given ∆ ∈ (∆, 0) is

B′(∆) =

∫ ε̄

ε̃(∆)

qGη (xG, φ(ξ(·)))φ′(ξ(·))ξ∆(xB,∆, ε)f(ε) dε+ f(ε̃(∆))
dε̃

d∆

(ū− qG(xG, η))

2
(32)

Since ε̃ is defined by the relation qB(xB + ∆, ε̃) = qB(xB, ε), ε̃ → ε as ∆ → 0. Since f(ε)
is zero by A1, the above derivative approaches (30) as ∆ goes to zero. Thus, the left and
right derivatives exist and are equal at ∆ = 0 and give the first order condition (8). The
first order condition for girls (9) can similarly be derived.21

21In some of our examples, e.g. those with a uniform distribution, the density f is non-zero at ε, the lower
bound of its support, and the left hand derivative of the benefit function, (30) is strictly greater than the
right hand derivative, (32). Since optimality requires that the left hand derivative of benefits is greater than
or equal to marginal costs, and that the right hand derivative is less than or equal, there is a continuum of
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We now show that the integral defining B′(∆) is well defined (even though 1/g(φ(ε)) is
unbounded). As in the proof of Theorem 2, we make a change of variables, from ε to η:

B′(0) =

∫ η̄

η

qGη (xG, η)f(φ−1(η))
qx(xB, φ

−1(η))

qBε (xB, φ
−1(η))

dη.

Since f(φ−1(η)) is bounded, as is qη and since qBε (xB, φ
−1(η)) > 0 and is constant as a

function of φ−1(η), the integral defining B′(0) is well defined.

Assume for now that for any xG ∈ [0, x̃G], there exists x̂B(xG) such that the boys’ first
order condition (8) is satisfied (we demonstrate below that this is indeed the case). We
show first that large deviations are not profitable, considering in turn upward deviations and
downward deviations.

Upward deviations: Let B′′(∆) denote the derivative of B′(∆) on (0, ∆̄).22 Let
U ′′B(∆, x̂B) = B′′(∆) − c′′B(x̂B + ∆). We show that U ′′B(∆, x̂B) < 0 for ∆ ∈ (0, ∆̄), which
implies B′(∆) − c′B(x̂B + ∆) < B′(0) − c′B(x̂B), so that no upward deviation is profitable.
Suppressing most arguments, B′′(∆) on (0, ∆̄) can be written as

B′′(∆) =

∫ ε̂(∆)

ε

(
qGηη(φ

′ξ∆)2 + qGη φ
′′ξ2

∆ + qGη φ
′ξ∆∆

)
f(ε) dε+

dε̂

d∆
qGη φ

′ξ∆f(ε̂). (33)

The second term is negative since dε̂
d∆

< 0 and qGη , φ
′ and ξ∆ are all positive. Thus B′′(∆) < 0

if the first term, under the integral sign, is negative, and this is the case if all the three
functions qGηη, φ

′′ and ξ∆∆ are (weakly) negative.23 First, qGηη = 0 by assumption A1. Second,
we have ξ∆∆ ≤ 0 from (27). This leaves φ′′(·).

Invoking assumption A2, either a) F and G are of the same type, or b) f(.) and g(.) are
increasing. If a) then G(x) = F (a + bx) which implies that φ(ε) is linear and φ′′(·) = 0.
Thus, B′′(∆) < 0.

We now consider b), f ′(ε) ≥ 0 and g′(η) ≥ 0. The expression (33) can be written as

B′′(∆) =

∫ ε̂(∆)

ε

qGη φ
′ξ∆∆f(ε) dε+

∫ ε̂(∆)

ε

qGη φ
′′ ξ

2
∆

ξε
ξεf(ε) dε− qGη φ′

ξ2
∆

ξε
f(ε̂), (34)

given qGηη = 0 by assumption and since dε̂/∆ = −ξ∆/ξε when ε̂(∆) > ε. Note that the first
integral is non-positive, due to our finding that ξ∆∆ ≤ 0. We now show that the sum of the

equilibria in this case. We focus in these examples upon the equilibria with the smallest investments, i.e.
where the right hand derivative equals marginal costs. Given that our results demonstrate overinvestment,
investments will only be greater in any other equilibrium.

22Note that B′(∆) is not differentiable at 0.
23The integral defining the function B′′(∆) can be shown to be well-defined using a similar argument as

employed for B′(∆).
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second and third terms is negative. Starting with the second term, note that the ratio ξ2
∆/ξε

is increasing in ε because qxε ≥ 0 by assumption, f(ε) is also increasing by assumption, and
their product is also increasing. Then, by the second mean value theorem for integrals,24

there is a c ∈ [ε, ε̂] such that the second integral is equal to

f(ε̂)
ξ2

∆(ε̂)

ξε(ε̂)

∫ ε̂(∆)

c

qGη φ
′′ξε(ε) dε = f(ε̂)

ξ2
∆(ε̂)

ξε(ε̂)

(
qGη (xG, φ(ε̄))φ′(ε̄)− qGη (xG, φ(ξ(c)))φ′(ξ(c))

)
,

where ξ(c) = ξ(xB,∆, c) and the arguments of ξ∆ and ξε are similarly abbreviated. That is,
we can write the second and third terms of (34) together as

−qGη (xGx
∗
G, φ(c))φ′(c)f(c)

ξ2
∆(x̂B,∆, c)

ξε(x̂B,∆, c)
< 0.

Thus B′′(∆) < 0 on (0, ∆̄) if f is increasing.

Downward deviations: Let ∆ ∈ (∆, 0). Differentiating (32), one obtains,

B′′(∆) =

∫ ε̄

ε̃(∆)

(
qGηη(φ

′ξ∆)2 + qGη φ
′′ξ2

∆ + qGη φ
′ξ∆∆

)
f(ε) dε− dε̃

d∆
qGη φ

′ξ∆f(ε̃(∆))

+

[
f ′(ε̃(∆))

(
dε̃

d∆

)2

+ f(ε̃(∆))
d2ε̃

d∆2

]
(ū− qG(xG, η))

2
. (35)

The limit as ∆ ↑ 0, B′′(0−), is given by

B′′(0−) =

∫ ε̄

ε

(
qGηη(φ

′ξ∆)2 + qGη φ
′′ξ2

∆ + qGη φ
′ξ∆∆

)
f(ε) dε

−f ′(ε)
(
dε̃

d∆

)2 qG(xG, η)− ū
2

. (36)

Since f ′(ε) > 0 by Assumption A1, we can choose ū sufficiently small so that B′′(0−) < 0.
Since B′′(∆) is continuous to the left at 0, there exists d > 0 such that B′′(∆) < 0 if
∆ ∈ (−d, 0).

Let d′ ∈ (0, d). We now consider deviations in the set (∆,−d′] and show that B′(∆) ≥
24More specifically, this is the special case known as Bonnet’s Theorem, which considers the integral of

the product of two functions where one (here f(ε)ξ2
∆/ξε) is non-negative and increasing. See for example,

Bartle (2001, p194).
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B′(0) if ū is sufficiently small. One has from (32),

B′(∆)−B′(0) =

∫ ε̄

ε̃(∆)

qGη (xG, φ(ξ(·)))φ′(ξ(·))ξ∆(xB,∆, ε)f(ε) dε+ f(ε̃(∆))
dε̃

d∆

(ū− qG(xG, η))

2

−
∫ ε̄

ε

qGη (xG, φ(ε))
f(ε)

g(φ(ε))

qBx (xB, ε)

qBε (xB, ε)
f(ε) dε.

The first term is positive for any ∆ and is thus bounded below by 0. f(ε̃(∆)) is bounded away
from zero given Assumption A1, and given ∆ ∈ (∆,−d′], which implies ε̃(∆) ∈ [ε̄, ε̃(−d′)].
dε̃
d∆

= − qBε (x̂B+∆,ε)
qBx (x̂B+∆,ε)

, and given our assumptions qBxε ≥ 0 and qBxx ≤ 0, and since xB + ∆ ≥ x̄B,

this is bounded above by − qBε (x̄B ,ε)
qBx (x̄B ,ε)

< 0. Thus, we can find ū sufficiently small so that the

above expression is always positive for ∆ ∈ (∆,−d′].

We have therefore established that B′(∆) ≥ B′(0) for any ∆ ∈ (∆,−d′], and that
B′′(∆) < 0 for any ∆ ∈ [−d, 0), where d > d′. Since the cost function is strictly convex, this
establishes that no downward deviation in the set (∆, 0) is profitable.

We now show that the first order conditions define reaction functions. For any xG ∈
[0, x̃G], let x̂B be a solution to the first order condition for the boys, i.e.∫ ε̄

ε

qGη (xG, φ(ε))
f(ε)

g(φ(ε))

qBx (x̂B, ε)

qBε (x̂B, ε)
f(ε) dε− c′B(x̂B) = 0. (37)

Let h(xB, xG) denote the left hand side of equation (37), evaluated at an arbitrary xB and
xG. Since qGηx ≥ 0, ∂h

∂xG
≥ 0. Since qBxx ≤ 0, qBεx ≥ 0 and c′′B(xB) > 0, h(.) is strictly decreasing

in xB. Thus x̂B is weakly increasing in xG. h(xB, xG) strictly positive when xB = 0 since
c′B(0) < 0. Since c′B(x) → ∞ as x → x̃B, and since the first term on the left hand side of
equation (37) is bounded, h(xB, xG) is negative for xB sufficiently close to x̃B. Thus, by the
intermediate value theorem, there exists x̂B(xG) ∈ (0, x̃B) such that h(xB, xG) = 0. Since
h(.) is strictly decreasing in xB, this value is unique. By the implicit function theorem, the
reaction function for the boys, x̂B(xG) is differentiable (and thus continuous). An identical
argument establishes that the reaction function for the girls, x̂G(xB), is differentiable and
increasing.

We now show that there exists a profile such that the reaction functions cross. Let
ζ : [0, x̃B] → [0, x̃B] be defined by ζ(x) = x̂B(x̂G(x)). Note that if x∗B is a fixed point of ζ,
then the profile (x∗B, x̂G(x∗B)) is such that the first order condition is satisfied for boys, and for
girls. Since x̂G(.) and x̂B(.) are continuous functions, so is ζ. Note that ζ(0) ≥ x̄B > 0, since
x̂B(x) ≥ x̄B∀x. Also, ζ(x̃B) < x̃B, since x̂B(xG) < x̃B for any xG. Thus, the intermediate
value theorem implies that ζ has a fixed point in [0, x̃B).

We now show uniqueness under assumption A3. Since investments below the individually
optimal investments are dominated, any equilibrium (x∗B, x

∗
G) must satisfy x∗B > 0 and
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x∗G > 0. Since qGη (x∗G, η) > 0 when x∗G > 0, the left-hand side of the first order condition for
boys, (8) is strictly positive, and thus c′B(x∗B) > 0. Similarly, c′G(x∗G) > 0. Use assumption
A3 to re-write the equilibrium first order condition for boys (8) as

θG + (1− θG)γ(x∗G)

θB + (1− θB)γ(x∗B)

∫ ε̄

ε

[θB + (1− θB)γ′(x∗B)ε]
f(ε)

g(φ(ε))
f(ε) dε = c′B(x∗B). (38)

So if we take the product of the two first order conditions,

c′B(x∗B)c′G(x∗G) =

∫
[θG + (1− θG)γ′(x∗G)η]

[g(η)]2

f(φ−1(η))
dη

∫
[θB + (1− θB)γ′(x∗B)ε]

[f(ε)]2

g(φ(ε))
dε > 0.

(39)
If we have two distinct equilibria, both x∗B and x∗G must be higher in one of the equilibria
since the reaction functions are increasing. The product of the marginal benefits, i.e the
right-hand side of (39) is decreasing in x∗B and x∗G by the concavity of γ. The product of the
marginal costs c′B(x∗B)c′G(x∗G) is increasing due to the convexity of costs. So both equilibria
cannot satisfy (39) and we have a contradiction. We have therefore proved the existence and
uniqueness of quasi-symmetric equilibrium.

Proof of the Log-Normal Example

Let quality be additive in xB and ε, for the boys, and in xG and η, for the girls. Let h(ε)
and k(η) be a strictly increasing differentiable functions, such that h(ε) ∼ N(µε, σε) and
k(η) ∼ N(µη, ση). Let f̃ and g̃ denote the density functions of the shocks, and let f denote
the density function of h(ε), and g denote the density of k(η). The matching φ(ε) is defined
by

F̃ (ε) = G̃(φ(ε))⇔ F (h(ε)) = G(k(φ(ε))).

This implies that

φ′(ε) =
f(h(ε))h′(ε)

g(k(φ(ε))k′(φ(ε))
.

The first order condition for boys is given by∫ ∞
0

φ′(ε)f̃(ε) dε = c′B(x∗B).

Let us now make a change of variables, from ε to h. Since F̃ (ε) = F (h(ε)), we also have
that f̃(ε) = f(h(ε)) · h′(ε). Furthermore, dh = h′(ε)dε. Thus

B′(0) =

∫ ∞
−∞

f(h(ε))2h′(ε)

g(k(φ(ε)))k′(φ(ε))
dh =

ση
σε

∫ ∞
−∞

f(h(ε))h′(ε)

k′(φ(ε))
dh.
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Changing variables again, back from h to ε:

B′(0) =
ση
σε

∫ ∞
0

f̃(ε)h′(ε)

k′(φ(ε))
dε.

Specializing to the log normal case, suppose h(ε) = ln(ε) and k(η) = ln η. Thus h′(ε) = 1
ε

and

B′(0) =
ση
σε

∫ ∞
0

f̃(ε)φ(ε)

ε
dε = c′B(x∗B).

Suppose that µε = µη = 0. Since F (h(ε)) = G(k(η)), ln(ε)
1
σε = ln(φ(ε))

1
ση , so that φ(ε) =

ε
ση
σε .The first order condition for the boys is

ση
σε

∫ ∞
0

f̃(ε)ε(
ση
σε
−1)dε = c′B(x∗B).

When ε is log-normally distributed, the expectation of εα equals exp(αµε+ 1
2
α2σ2

ε). Since
µε = 0,

ση
σε

exp

(
1

2

(
ση − σε
σε

)2

σ2
ε

)
=
ση
σε

exp

(
1

2
(ση − σε)2

)
= c′B(x∗B).

Let us now consider large deviations. For ∆ < 0, with probability 1
2
F̃ (∆) a downward

deviation will result is being unmatched, and is unattractive if ū is low enough. For ∆ > 0,

B′(∆) =
ση
σε

∫ ∞
0

f̃(ε)(ε+ ∆)(
ση
σε
−1)dε.

Define α =
(
ση
σε
− 1
)

. When α ≤ 0, B′(∆) is clearly concave in ∆. So let us consider the

case where α ∈ (0, 1), so that the variance of the log of the shocks in the girls is less than
twice that in the boys. A second order Taylor expansion of (ε+ ∆)α around ∆ = 0 yields

(ε+ ∆)α = εα + αεα−1∆ + α(α− 1)εα−2δ2,

for some δ ∈ (0,∆]. Thus,

B′(∆) =
ση
σε

[
E(εα) + αE(εα−1)∆ + α(α− 1)E(εα−2)δ2

]
≤ ση

σε

[
E(εα) + αE(εα−1)∆

]
.

and
c′B(x∗B + ∆) = c′B(x∗B) + c′′B(x∗B)∆ + c′′′B(x∗B)δ̃

2
, δ̃ ∈ [0,∆].
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Assume that c′′′B(x∗B) ≥ 0. Thus the problem is concave in ∆ if

ση
σε
αE(εα−1)∆− c′′B(x∗B)∆ ≤ 0.

This is satisfied if

c′′B(x∗B) ≥ ση
σε

(
ση − σε
σε

)
exp

(
1

2
(ση − 2σε)

2

)
.

In the boundary case where ση = 2σε the condition reduces to c′′B(x∗B) ≥ 2. Thus as long as
the ratio of the variances is less than 2 and the second derivative of the cost function exceeds
2 at x ≥ x∗B, the problem is globally concave.

Proof of Proposition 2: Existence can be established by following the proof of Theorem
1 except in the case of downward deviations by girls. A girl choosing x∗G+ ∆ for some ∆ < 0
faces a marginal benefit of

B′(∆) =

∫ η̄+∆

η

g(η)

f(φ−1(η))
g(η −∆) dη.

We can find a distribution F (ε) sufficiently dispersed in the sense of the dispersion order
(see (12) for a definition) so that f(·) is small enough to ensure that B′(∆) > c′G(x∗G + ∆)
for ∆ < 0.

Turning to the efficiency of investments, we have f(ε̃)(η+ x∗G− ū) > 0, reflecting our as-
sumption that the misery effect is strictly positive. Thus, combining the first order conditions
(14) and (15), we have

c′B(x∗B)× c′G(x∗G) >

(
1

r

∫ ε̄

ε̃(r)

f(ε)

g(φ(ε))
f(ε) dε

)(
r

∫ η̄

η

g(η)

f(φ−1(η))
g(η) dη

)
.

Making a change of variables, from η to ε, results in

c′B(x∗B)× c′G(x∗G) >
1

r

(∫ ε̄

ε̃(r)

f(ε)

g(φ(ε))
f(ε) dε

)(∫ ε̄

ε̃(r)

g(φ(ε)) dε

)
.

By the Cauchy-Schwarz inequality, it follows that

1

r

(∫ ε̄

ε̃(r)

f(ε)

g(φ(ε))
f(ε) dε

)(∫ ε̄

ε̃(r)

g(φ(ε)) dε

)
≥ 1

r

[∫ ε̄

ε̃(r)

(
f(ε)

(g(φ(ε)))1/2

)
(g(φ(ε)))1/2 dε

]2

=
r2

r
.

Thus, c′B(x∗B)× c′G(x∗G) > r while efficiency requires equality.

Proof of Theorem 3: Let f and g be symmetric functions around their means, ε̃ and η̃.
Symmetry implies that f(ε̃−∆) = f(ε̃+ ∆) for any ∆. If f and g are both symmetric, then

37



φ(ε) and g(φ(ε)) are also symmetric around φ(ε̃) = η̃ and g(φ(ε̃)) respectively and f(ε)
g(φ(ε))

is

also symmetric around f(ε̃)
g(φ(ε̃))

. Using these facts,∫ ε̄

ε

ε
[f(ε)]2

g(φ(ε)
dε =

∫ 0

ε−ε̃
(ε̃+ ∆)

[f(ε̃+ ∆)]2

g(φ(ε̃+ ∆))
d∆ +

∫ 0

ε−ε̃
(ε̃−∆)

[f(ε̃−∆)]2

g(φ(ε̃−∆))
d∆

= 2ε̃

∫ 0

ε−ε̃

[f(ε̃+ ∆)]2

g(φ(ε̃+ ∆))
d∆

= 2ε̃

∫ ε̃

ε

[f(ε)]2

g(φ(ε))
dε.

Similarly, ∫ ε̄

ε

[f(ε)]2

g(φ(ε))
dε = 2

∫ ε̃

ε

[f(ε)]2

g(φ(ε))
dε.

A similar argument and a change of variables yields∫ η̄

η

η
[g(η)]2

f(φ−1(η))
dη =

∫ ε̄

ε

φ(ε)g(φ(ε)) dε = 2φ(ε̃)

∫ ε̃

ε

g(φ(ε)) dε.

We may therefore write the product of the equilibrium marginal costs as(
2 [θG + (1− θG)γ′(x∗G)η̃]

∫ ε̃

ε

g(φ(ε)) dε

)(
2 [θB + (1− θB)γ′(x∗B)ε̃]

∫ ε̃

ε

[f(ε)]2

g(φ(ε))
dε

)
. (40)

By the Cauchy-Schwarz inequality, the above is weakly greater than

4 [θG + (1− θG)γ′(x∗G)η̃] [θB + (1− θB)γ′(x∗B)ε̃]

(∫ ε̃

ε

f (ε) dε

)2

,

which is equal to
[θG + (1− θG)γ′(x∗G)η̃] [θB + (1− θB)γ′(x∗B)ε̃] .

Thus the product of marginal costs is strictly greater than for Pareto efficiency if f(ε)√
g(φ(ε))

and
√
g(φ(ε)) are linearly independent.

Proof of Theorem 4: Under Assumption A1, since costs are strictly convex and quality is
concave in x, there is a unique profile of investments that satisfies the first order conditions
for maximizing utilitarian payoffs – Assumption A1 also ensures that maximizing investments
must be in the interior of the feasible set, and must thus satisfy the first order conditions.
Since we have established that the first order conditions for utilitarian efficiency are identical
to the first order conditions for an equilibrium that is gender neutral, a gender neutral profile
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can be an equilibrium only if it is utilitarian efficient.25

We now show that under the stated assumptions, deviations from the utilitarian profile
are unprofitable, so that the utilitarian profile is an equilibrium. Given the convexity of the
cost function and qxx ≤ 0, the utilitarian investments x∗∗i globally maximize the utilitarian
payoffs, implying∫

q(x, ε)fi(ε) dε− ci(x) ≤
∫
q(x∗∗i , ε)fi(ε) dε− ci(x∗∗i )∀x. (41)

Since each type chooses x∗∗i in any gender neutral equilibrium, the payoff of to any
individual of type i equals the right hand side of (41). Thus if the payoff to the individual
from deviating to any x 6= x∗∗i is less than or equal to the left-hand side of (41), no deviation
is profitable. We show that this is the case if there are no quality gaps under the utilitarian
profile, and if ū is sufficiently small. Let C(F̃ ) denote the support of F̃ under the utilitarian
profile, which is connected under the no quality gap assumption. If a deviating individual’s
q(x, ε) ∈ C(F̃ ), then his or her match payoff equals q(x, ε). If q(x, ε) > maxC(F̃ ), then
the match payoff equals maxC(F̃ ). If q(x, ε) < minC(F̃ ), then the match payoff equals
minC(F̃ )+ū

2
which is less than q(x, ε) if ū is sufficiently small. Thus no deviation from x∗∗i is

profitable.

Proofs for the Finite Case

Our main result for the finite model, Theorem 5, is the existence of a quasi-symmetric
equilibrium and its convergence to the quasi-symmetric equilibrium of the continuum model.
Our strategy of proof for this result is as follows. First, we consider the decision problem of
a boy in a quasi-symmetric equilibrium. We fix a profile where every girl chooses investment
xG, where every other boy chooses investment xB, and consider the benefit function of a boy
who chooses xB + ∆. This benefit function as given in (26) is written Bn(∆, xG). As we
assume additive quality, Bn does not depend upon xB, but only on ∆ and xG, and is linear
in xG. From the individual boy’s point of view, xG is exogenously given, while ∆ is a choice
variable. We show in Lemma 4 below that this benefit function converges to the benefit
function in the continuum case, B(∆, xG), uniformly in (∆, xG), as n → ∞. Lemma 4 also
shows that the first derivative with respect to ∆ evaluated at ∆ = 0, B′n(0, xG), converges to
B′(0, xG) for any value of xG (B′(0, xG) is a constant function of xG). Since B′n(0, xG) is linear
in xG, and since xG is bounded, the convergence of B′n(0, xG) is uniform in xG. The first
derivative, B′n(0, xG), defines the “best-response” function for boys, x̂Bn(xG), and similarly,
the first derivative for girls defines their “best-response” function, x̂Gn(xB). It is shown in
Lemma 5 that the convergence of the first derivatives to their continuum values implies that

25Note that because of the strong assumption of symmetry between the sexes, we do not need Assumption
A3 that was required to assure uniqueness in the general asymmetric case.
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for n large enough, the best response functions have positive slope less than one-quarter
(the continuum best response functions have slope zero), so that there exists a unique profile
(x∗Bn, x

∗
Gn) that are mutual “best responses”. Furthermore, uniform convergence of the first

derivatives imply that (x∗Bn, x
∗
Gn)→ (x∗B, x

∗
G), the continuum equilibria, as n→∞.

It remains to verify that no individual boy has an incentive to deviate from x∗Bn. Since
Bn(∆, xG) converges uniformly to B(∆, xG), (x∗Bn, x

∗
Gn) → (x∗B, x

∗
G) as n → ∞, and since

large deviations are unprofitable in the continuum game, they are also unprofitable in the
finite case when n is large enough. To show that small deviations are unprofitable, we estab-
lish two additional uniform convergence results, Lemmas 6 and 7, for the second derivatives
of Bn(∆, xG), for upward and downward deviations. Since Bn(∆, xG) is strictly concave for
∆ in a neighborhood around zero, this establishes that no local deviations are profitable
when n is large enough.

It might be worthwhile, before proceeding to the proof, to explain some the issues involved
in establishing uniform convergence. Lemma 1 shows that the matching function in the finite
case, φn(ε + ∆), converges pointwise to φ(ε + ∆), the matching function in the continuum
model (except at a single point, ε). However, the finite agent matching function (see (42)) is
continuous on its domain, while the continuum matching function is discontinuous to the left
at ε. Consequently, by Weirstrass’s theorem, convergence cannot be uniform.26 Fortunately,
we do not require uniform convergence of the matching function, but of the payoff function
Bn(.), which is the integral of the matching functions (see Lemmas 3 and 4 below).

Define φ(ε+∆), the shock value of the girl who is matched with a boy who invests xB+∆
and receives shock ε, by

φ (ε+ ∆) =


1
2
(η + ū− xG) if ε+ ∆ < ε
G−1(F (ε)) if ε+ ∆ ∈ [ε, ε̄]

η̄ if ε+ ∆ > ε̄.

Similarly, let φ̃n(ε + ∆) denote the shock value of the girl who is matched with boy who
invests xB + ∆ and receives shock ε. Let φn(ε + ∆) denote the expectation of φ̃n(ε + ∆).
As we have already discussed in the text, this equals the expected shock value of a girl who
is matched with a boy of shock value ε + ∆, with the caveat that if ε + ∆ > ε̄, he marries
the highest quality girl, and if ε+ ∆ < ε, he marries the lowest quality girl with probability
n

2n+1
, and is unmarried with probability n+1

2n+1
, in which case the shock value is defined to be

ū− xG. φn(ε+ ∆) can also be written as

φn(ε+ ∆) =
n

2n+ 1
φn,n+1(ε+ ∆) +

n+ 1

2n+ 1
φn+1,n(ε+ ∆), (42)

where φn,n+1(ε + ∆) (resp. φn+1,n(ε + ∆)) equals the expected shock value of the girl that

26This does not preclude uniform convergence of the matching function on a restricted domain where the
continuum matching function is continuous, as we show in Lemma 2.
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the boy with shock ε+ ∆ is matched with, conditional on there being n boys and n+ 1 girls
(resp. n girls and n+ 1 boys). Specifically,

φn,n+1(ε+ ∆) =
n∑
i=1

F n
i (ε+ ∆)Eη(i+1,n+1). (43)

where, using the notation of Hoppe et al. (2009), F n
i (ε) denotes the probability that a boy

with shock ε is ranked i when there are n boys, and Eη(j,n+1) is the expectation of the j-th
order statistic for shocks for girls when there are n+ 1 girls. Similarly,

φn+1,n(ε+ ∆) =
n+1∑
i=2

F n+1
i (ε+ ∆)Eη(i−1,n) + F n+1

1 (ε+ ∆)(ū− xG), (44)

where F n+1
i (ε + ∆) and Eη(i−1,n) are defined analogously. The final term represents the

probability of coming last and remaining unmatched.

For our convergence results, we shall restrict ∆ to lie in the compact interval [−d, d] that
contains [∆, ∆̄]. We consider an arbitrary but larger interval than [∆, ∆̄] in order to show
that deviations outside [∆, ∆̄] are unprofitable in the finite model just as in the continuum
case. The following lemma establishes the pointwise convergence of the matching function φn
that is the average of φn,n+1 and φn+1,n. Since φn,n+1 is well behaved for upward deviations
(even though φn+1,n is not), it also establishes its pointwise convergence in this case.

Lemma 1 Let ∆ ∈ [−d, d], where d > 0 is arbitrary. For any ε + ∆ ∈ [ε− d, ε̄ + d] except
ε + ∆ = ε, φn(ε + ∆) converges pointwise to φ(ε + ∆) as n→∞. Moreover, φn,n+1(ε + ∆)
converges pointwise to φ(ε+ ∆) at any ε+ ∆ ∈ [ε, ε̄+ d].

Proof. Let Fn(t) (resp. Gn(t)) denote the fraction of boys (resp. girls) with shock value
below t in a sample of n boys (resp. girls), where t ∈ (ε, ε̄). By the Glivenko-Cantelli
theorem, Fn(t) → F (t) almost surely as n → ∞. Similarly, Gn(t) → G(t) almost surely as
n→∞. Thus for any a, b such that ε < a < ε+ ∆ < b < ε̄, the probability that φ̃(ε+ ∆) ∈
(φ(a), φ(b)) tends to one as n → ∞. Hence φn(ε + ∆) ∈ (φ(a), φ(b)) for all n sufficiently
large. Consequently, since a and b were arbitrary, φn(ε + ∆) → φ(ε + ∆) if ε < ε + ∆ < ε̄.
Also, by definition, if ε+∆ ≥ ε̄, φn(ε+∆) = n

2n+1
Eη(n+1,n+1) + n+1

2n+1
Eη(n,n), which converges

to η̄ = φ(ε+ ∆) . Finally, when ε+ ∆ < ε, φn(ε+ ∆) = n
2n+1

Eη(2,n+1) + n+1
2n+1

(ū− xG). Since

Eη(2,n+1) → η, as n→∞, φn(ε+∆) converges to 1
2
(η+ ū−xG) = φ(ε+∆) as n→∞. Hence

φn(ε + ∆) converges pointwise to φ(ε + ∆) for all values of ε + ∆ except ε + ∆ = ε. The
argument for φn,n+1(ε+∆) is identical for ε+∆ > ε. At ε+∆ = ε, φn,n+1(ε+∆) = Eη(2,n+1),
which converges to η as n → ∞. Since φ(ε) = η, φn,n+1(ε + ∆) → φ(ε + ∆) for any
ε+ ∆ ∈ [ε, ε̄+ a].

Note that φn(ε) does not converge to φ(ε). Thus one cannot expect uniform convergence
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of the matching function in general, but the following lemma shows uniform convergence on
a restricted domain.

Lemma 2 Let 0 < b < d and let ∆ ∈ [b, d]. φn(ε + ∆) converges to φ(ε + ∆) as n → ∞,
uniformly on ε+ ∆ ∈ [ε+ b, ε̄+ d]. Further, φn,n+1(ε+ ∆) converges to φ(ε+ ∆) uniformly
in ∆ on [ε, ε̄+ d].

Proof. Lemma 1 establishes that φn(ε + ∆) converges to φ(ε + ∆) at each value except
ε+ ∆ = ε. Since φn(ε+ ∆) is a strictly increasing and continuous function, and it converges
to a continuous function on the compact domain [ε+ b, ε̄+ d], convergence is uniform (as an
immediate consequence of Polya’s theorem). Similarly, Lemma 1 shows that φn,n+1(ε + ∆)
converges to φ(ε+ ∆) at any ε+ ∆ ∈ [ε, ε̄+ d], and again Polya’s theorem implies uniform
convergence.

We move on to the convergence of the benefit function Bn, as introduced in (26), and
its derivatives. The following lemma ensures that establishing pointwise convergence of the
matching functions ensures uniform convergence of the benefit function.

Let ξ : R → R equal zero except on a compact interval. Without loss of generality, let
this interval be [0, 1], so that ξ(x) = 0 : ∀x /∈ [0, 1]. Let h : [−a, 1 + a]→ R, and for n ∈ N,
let hn : [−a, 1 + a] → R. Assume that each of these functions ξ, h and hn are measurable
and bounded, and let ξ̄ > 0 be an upper bound for |ξ|. For ∆ ∈ [−a, a], define Wn(∆) and
W (∆) by

Wn(∆) =

∫ 1

0

hn(x+ ∆)ξ(x) dx,

W (∆) =

∫ 1

0

h(x+ ∆)ξ(x) dx.

Lemma 3 Assume that for almost any z ∈ [−a, 1 + a], hn(z) → h(z) as n → ∞, i.e.
hn converges pointwise to h almost everywhere on [−a, 1 + a]. Assume also that hn(z) is
uniformly bounded, i.e. |hn(z)| < H ∀n and ∀z ∈ [−a, 1 + a]. Then, Wn converges to W (∆)
uniformly in ∆.

Proof. Using the change of variables s = x+ ∆, we have

Wn(∆) =

∫ 1+∆

∆

hn(s)ξ(s−∆) ds; W (∆) =

∫ 1+∆

∆

h(s)ξ(s−∆) ds.
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Hence,

|Wn(∆)−W (∆)| =

∣∣∣∣∫ 1+∆

∆

(hn(s)− h(s))ξ(s−∆) ds

∣∣∣∣
≤

∫ 1+∆

∆

|hn(s)− h(s)| |ξ(s−∆)| ds

≤ ξ̄

∫ 1+a

−a
|hn(s)− h(s)| ds. (45)

Since the last expression, which does not depend on ∆, converges to zero by the dominated
convergence theorem, the conclusion follows.

With additive quality, the benefit function B(∆, xG) as introduced in (28), and its finite
equivalent Bn(∆, xG), are given by

B(∆, xG) =

∫ ε̄

ε

φ(ε+ ∆)f(ε) dε+ xG,

Bn(∆, xG) =

∫ ε̄

ε

φn(ε+ ∆)f(ε) dε+ xG. (46)

We now writeB as a function of (∆, xG) to emphasize that convergence of the finite equivalent
Bn is joint in both variables (B is not a function of xB however). In the proof of theorem 1
we established that since f(ε) = 0, the left-hand and right-hand derivatives with respect to
∆ of B(∆, xG), evaluated at ∆ = 0, are equal. Thus, the derivative exists and equals

B′(0, xG) =

∫ ε̄

ε

φ′(ε)f(ε) dε.

Note that B′(0, xG) does not depend upon xG. The derivative of Bn(.) with respect to ∆, is

B′n(0, xG) =

∫ ε̄

ε

φ′n(ε)f(ε) dε. (47)

Since quality is additive, B(∆, xG), Bn(∆, xG) and their derivatives are all linear in xG.

Lemma 4 Bn(∆, xG) → B(∆, xG) uniformly in (∆, xG) as n → ∞. Further, B′n(0, xG) →
B′(0, xG) uniformly in xG as n→∞.

Proof. In the expression for Bn(∆, xG) in (46), the integrand is uniformly bounded – below
by ū − xG and above by η̄. Thus Lemma 3 and Lemma 1 imply that Bn(∆, xG) converges
to B(∆, xG) uniformly in ∆. The result that it converges uniformly in (∆, xG) follows since
Bn is linear in xG and convergence is on the compact set [−a, a]× [0, x̃G].
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Use integration by parts, and the fact that f(ε) = 0 to re-write the expression for
B′(0, xG) as

B′(0, xG) = −
∫ ε̄

ε

φ(ε)f ′(ε) dε+ η̄f(ε̄). (48)

Similarly, using integration by parts, we find that

B′n(0, xG) = −
∫ ε̄

ε

φn(ε)f ′(ε) dε+ φn(ε̄)f(ε̄). (49)

Since f ′(ε) is bounded, Lemma 3 and Lemma 1 imply that the first term in (49) converges
to the first term in (48). Lemma 1 implies that the second term in (49) converges to the
second term in (48). Uniform convergence in xG again follows from the linearity in xG and
its boundedness.

Let B̃n(∆, xB) denote the benefit function for girls, and let B̃′n(0, xB) denote its derivative
at ∆ = 0.

Lemma 5 For n sufficiently large, there exists a unique profile (x∗Bn, x
∗
Gn), where the first or-

der conditions are satisfied, for the boys, c′B(x∗Bn) = B′n(0, x∗Gn), and for the girls, c′G(x∗Gn) =
B̃′n(0, x∗Bn). Furthermore, (x∗Bn, x

∗
Gn)→ (x∗B, x

∗
G), the unique quasi-symmetric equilibrium of

continuum economy.

Proof. Define x̂Bn(xG) and x̂Gn(xB) by

c′B(x̂Bn) = B′n(0, xG),

c′G(x̂Gn) = B̃′n(0, xB).

Since c′B(0) < 0 < B′n(0, xG) and c′B(xB) → ∞ as xB → x̃B, and since c′B(.) is strictly
increasing, x̂Bn(xGn) is uniquely defined. Its derivative is

dx̂Bn
dxG

=
∂B′n(0, xG)

∂xG

1

c′′B(x̂Bn)
. (50)

Note that B′(0, xG) does not depend upon xG, while B′n(0, xG) is linear in xG, and converges

uniformly to B′(0, xG). Thus the derivative ∂B′n(0,xG)
∂xG

→ 0 as n→∞. Since c′′B(x̂Bn) ≥ γ > 0

(cf. Assumption A1), dx̂Bn
dxG
→ 0 as n → ∞. Since the argument is identical for the girls,

dx̂Gn
dxB
→ 0 as n → ∞. Thus there exists N : n > N ⇒ dx̂Bn

dxG
< 1

2
for any xG ∈ [0, x̃G] and

dx̂Gn
dxB

< 1
2

for any xB ∈ [0, x̃B]

Define ζn : [0, x̃B] → [0, x̃B] by ζn(x) = x̂Bn(x̂Gn(x)). Since ζn is a composition of
increasing differentiable functions, it is increasing and differentiable, with derivative equal
to the product of the derivatives of x̂Bn(.) and x̂Gn(.). Thus if n > N where N is as defined
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in the previous paragraph, ζn has a slope that is bounded above by 1/4, and so any fixed
point is unique. Since x̂Bn(xG) ≥ x̄B, ζn(0) > 0 and since ζn(x̃B) < x̃B, the intermediate
value theorem ensures existence of a fixed point of ζn, x∗Bn. Let x∗Gn = x̂Gn(x∗Bn). Thus if
n > N , there exists a unique profile (x∗Bn, x

∗
Gn), where the first order conditions are satisfied.

We now show that sequence (x∗Bn, x
∗
Gn)∞n=N+1 converges to (x∗B, x

∗
G), the unique equi-

librium in the continuum model. Recall that x∗B is defined by c′B(x∗B) = B′(0, xG), where
B′(0, xG) is a constant, so that x∗B = (c′B)−1 (B′(0, xG)), where (c′B)−1 denotes the inverse of
the marginal cost function. On the other hand, x∗Bn = (c′B)−1 (B′n(0, x∗Gn)). Let xGn be an
arbitrary sequence that takes values in [0, x̃G), and consider the induced sequence ẍBn :=
(c′B)−1 (B′n(0, xGn)). Since B′n(0, xGn) converges uniformly to the constant B′(0, xG) uni-
formly in xGn and since (c′B)−1 is a continuous function (since c′B(x) is continuous and strictly
increasing), limn→∞ ẍBn = (c′B)−1 (limn→∞B

′
n(0, xGn)) = x∗B. Thus ẍBn → x∗B as n → ∞,

and since the sequence xGn was arbitrary, this proves that x∗Bn = (c′B)−1 (B′n(0, x∗Gn))→ x∗B
as n→∞. Similarly, x∗Gn → x∗G as n→∞.

We now show that deviations from (x∗Bn, x
∗
Gn) are unprofitable if n is large enough. Our

strategy is to show that if the global optimality conditions are satisfied in the continuum
case, then they are also satisfied in the large finite case. For upward deviations, we show that
the second derivative converges uniformly to the continuum derivative plus a negative term.
For downward deviations in some interval, we do this by showing the uniform convergence
of the second derivative to that in the continuum model.

In the continuum model, the second derivative on (0, ∆̄) given in (33), becomes with
additive quality:

B′′(∆, xG) =

∫ ε̄−∆

ε

φ′′(ε+ ∆)f(ε) dε− φ′(ε̄)f(ε̄−∆). (51)

For [−d, 0), the expression (35) becomes,

B′′(∆, xG) =

∫ ε̄

ε−∆

φ′′(ε+ ∆)f(ε) dε+ φ′(ε)f(ε−∆)− f ′(ε−∆)
xG + η − ū

2
. (52)

The second derivatives in the finite case are, for ∆ ∈ (0, ∆̄),

B′′n(∆, xG) =

∫ ε̄−∆

ε

φ′′n(ε+ ∆)f(ε) dε− φ′n(ε̄)f(ε̄−∆), (53)

and for ∆ ∈ [−d, 0),

B′′n(∆, xG) =

∫ ε̄

ε−∆

φ′′n(ε+ ∆)f(ε) dε+ φ′n(ε)f(ε−∆). (54)
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At this point, for the convergence of B′′n(∆, xG) on [−d, 0), we invoke an additional
assumption, f(ε̄) = 0. We will relax this assumption later.

Lemma 6 For any k > 0,∃N : n > N ⇒ B′′n(∆, xG) < B′′(∆, xG) + k for any ∆ ∈ (0, ∆̄).
B′′n(∆, xG)→ B′′(∆, xG) uniformly in (∆, xG) for ∆ ∈ [−d, 0) as n→∞ if f(ε̄) = 0.

Proof. For ∆ ∈ (0, ∆̄) we show that B′′n(∆, xG) can be written as the sum of two terms,
where the first converges to B′′(∆, xG) uniformly in (∆, xG) and the second is negative. By
iterated integration by parts, we obtain

B′′(∆, xG) =

∫ ε̄−∆

ε

φ(ε+ ∆)f ′′(ε) dε− φ(ε̄)f ′(ε̄−∆) + φ(ε+ ∆)f ′(ε), (55)

B′′n(∆, xG) =

∫ ε̄−∆

ε

φn(ε+ ∆)f ′′(ε) dε− φn(ε̄)f ′(ε̄−∆) + φn(ε+ ∆)f ′(ε). (56)

Since f ′′(ε) is continuous on the support of f , it is bounded. Thus the first term of (56)
converges to the first term in (55). Turning to the second terms in the two expressions,
convergence follows since φn(ε̄) converges to φ(ε̄). These terms are multiplied by f ′(ε̄−∆),
but since f ′ is continuous and therefore bounded, the convergence is also uniform in ∆.
Uniform convergence in xG follows from the linearity of B′′n in xG.

This leaves the final term in (56), φn(ε+∆)f ′(ε). Let φ̃n,n+1(ε+∆) be the random variable
that denotes the shock value of the partner when there are n+ 1 girls and n boys. Similarly,
let φ̃n+1,n(ε + ∆) be the random variable that denotes the shock value of the partner when

there are n + 1 girls and n boys. Note that φ̃n,n+1(ε + ∆) first order stochastic dominates

φ̃n+1,n(ε+∆),27 and so φn,n+1(ε+∆) > φn+1,n(ε+∆). Since φn(ε+∆) is a convex combination

of φn,n+1(ε+∆) and φn+1,n(ε+∆), it follows that φn(ε+∆) < φn,n+1(ε+∆). Let B̃′′n(∆, xG)
equal the right-hand side of (56), modified by replacing φn(ε + ∆) with φn,n+1(ε + ∆).

By Lemma 2, φn,n+1(ε + ∆) converges uniformly to φ(ε + ∆), and so B̃′′n(∆, xG) converges

to B′′(∆, xG) uniformly in ∆. Since B′′n(∆, xG) < B̃′′n(∆, xG), and since for any k > 0,

∀∆ ∈ (0, ∆̄)∃N : n > N ⇒
∣∣∣B̃′′n(∆)−B′′(∆)

∣∣∣ < k, implying that B′′n(∆) < B′′(∆) + k.

Turning to B′′(∆, xG) and B′′n(∆, xG) on [−d, 0), iterated integration by parts yields

B′′(∆, xG) =

∫ ε̄

ε−∆

φ(ε+∆)f ′′(ε) dε+f ′(ε−∆)

(
xG + η + ū

2

)
−φ(ε̄+∆)f ′(ε̄)+φ′(ε̄+∆)f(ε̄).

(57)

27Given n− 1 realizations of draws from the distribution F (.), the absolute rank of ε+ ∆ in the set of n
boys must be weakly lower when we have an additional draw from F (.). Similarly, the shock value of a girl
of any absolute rank j in a set of n + 1 girls must be weakly lower when we remove one of the girls. Thus
φ̃n,n+1(ε+ ∆) first order stochastic dominates φ̃n+1,n(ε+ ∆).
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B′′n(∆, xG) =

∫ ε̄

ε−∆

φn(ε+∆)f ′′(ε) dε+φn(ε)f ′(ε−∆)−φn(ε̄+∆)f ′(ε̄)+φ′n(ε̄+∆)f(ε̄). (58)

Uniform convergence of the first two terms in (58) to the first two terms in (57) is by the
same argument as for B′′ when ∆ > 0. Uniform convergence of the third term in (58) to the
third term in (57) follows from Lemma 2. Given the assumption that f(ε̄) = 0, the fourth
terms in (58) and (57) both equal zero.

At this point, we could move directly to the proof of the main theorem if we assume that
f and g equal zero at the upper bound of their supports. This assumption is not necessary,
but relaxing it requires showing that φ′n(ε̄ + ∆) converges to φ′(ε̄ + ∆) uniformly for ∆
belonging to some interval [−b, 0], as we now show.

Lemma 7 There exists b > 0 such that for ∆ ∈ [−b, 0], φ′n(ε̄ + ∆) converges uniformly
in ∆ to φ′(ε̄ + ∆) as n → ∞. Hence, B′′n(∆, xG) → B′′(∆, xG) uniformly in (∆, xG) for
∆ ∈ [−b, 0) as n→∞.

Proof. Let b ∈ (0, ε̄ − ε), so that ε̄ + ∆ ∈ [ε, ε̄]. Since φ′n(ε̄ + ∆) = n+1
2n+1

φ′n+1,n(ε̄ + ∆) +
n

2n+1
φ′n,n+1(ε̄+∆), it converges to φ′(ε̄+∆) if both φ′n+1,n(ε̄+∆) and φ′n,n+1(ε̄+∆) converge.

We demonstrate the convergence of φ′n+1,n(ε̄ + ∆) since the argument for φ′n,n+1(ε̄ + ∆) is
almost identical. By differentiating (44) we obtain

φ′n+1,n(ε̄+ ∆) = f(ε̄+ ∆)
n∑
i=2

F n
i (ε̄+ ∆)n

[
Eη(i,n) − Eη(i−1,n)

]
(59)

+ f(ε̄+ ∆)n(1− F (ε̄+ ∆))n−1(Eη(1,n) + xG − ū) > 0.

Consider first the final term in the above expression. For any n, n [1− F (ε̄+ ∆)]n ≤
n [1− F (ε̄− d)]n, and n [1− F (ε̄+ ∆)]n → 0 as n → ∞ for every ∆ ∈ [−b, 0]. Since
∆ = b provides an upper bound, the convergence is uniform in ∆.

Turning to the summation terms in (59), f(ε̄+∆) enters both φ′n+1,n(ε̄+∆) and φ′(ε̄+∆),
so it suffices to show that

n∑
i=2

F n
i (ε̄+ ∆)n

[
Eη(i,n) − Eη(i−1,n)

]
→ 1

g(G−1(F (ε̄+ ∆))

as n→∞ uniformly in ∆.

Let the integer i(n) = (n + 1)p for p taking values in [0, 1]. We now show that the
expression n[Eη(i(n),n) − Eη(i(n)−1,n)] converges to 1/g(G−1(p)) as n → ∞ uniformly in p
for p belonging to an interval [p̃, 1] where g(G−1(p)) is bounded away from zero. Assume
that g(G−1(1)) = g (η̄) > 0. Since g is continuous, there exists an interval [p̂, 1] such that
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g(G−1(p)) > ḡ > 0∀ p ∈ [p̂, 1], and let p̃ ∈ (p̂, 1). From Arnold et al. (1992, p128) we have,

Eη(i,n) = G−1(p) +
p(1− p)
2(n+ 2)

d2G−1(p)

du2
+O(

1

n2
),

where dG−1(p)/du is the derivative of G−1(u) evaluated at p. Furthermore, the terms that
are O

(
1
n2

)
are so uniformly in p for p ∈ [0, 1]. Now,

n
[
Eη(i,n) − Eη(i−1,n)

]
= n

(
G−1(p)−G−1(p− 1

n+1
)
)

+ n
d2G−1(p− 1

n+1
)

du2

(
(1−2p)
n+1

+( 1
n+1)

2

2(n+2)

)
+n p(1−p)

2(n+2)

(
d2G−1(p)

du2
− d2G−1(p− 1

n+1
)

du2

)
+ nO( 1

n3 ).

(60)
We first show that the first term on the right hand side converges uniformly to 1/g(G−1(p))
as n→∞ uniformly in p for p ∈ [p̃, 1]. By the mean value theorem, ∃ a ∈ (p− 1/(n+ 1), p)
such that [1/g(G−1(a))] 1

n+1
= G−1(p)−G−1(p− 1/(n+ 1)). Since 1/g(G−1(.)) is continuous

and since 1
n+1
→ 0 as n→∞, [1/g(G−1(a))] n

n+1
→ 1/g(G−1(p)) as n→∞. Convergence is

uniform in p for p ∈ [p̃, 1] since 1/g(G−1(.)) is uniformly continuous on the compact interval
[p̂, 1].

Let us now turn to other terms in (60) to show that they go to zero as n→∞ uniformly

in p, for p ∈ (p̃, 1). This is true for n

(
(1−2p)
n+1

−( 1
n+1)

2

2(n+2)

)
since it is of order 1

n
, and p = 1

provides an upper bound for its absolute value for large n. Turning to the third term, our

lower bound on g implies that
(
d2G−1(p)

du2
− d2G−1(p− 1

n+1
)

du2

)
is O(1/n) uniformly in p, and thus

this term also converges to zero as n → ∞ uniformly in p, for p ∈ (p̃, 1). The final term is
of order 1

n3 since the difference between the two O( 1
n2 ) terms is O

(
1
n3

)
.

Consider any p ∈ (p̃, 1) and a sequence (i(n), n), where i(n) = [np] + 1. We have verified
that n[Eη(i,n) − Eη(i−1,n)] → 1

g(G−1(p))
as n → ∞, uniformly in p for p ∈ (p̃, 1). Finally, by

the Glivenko-Cantelli theorem, and as noted in the proof of Lemma 1, Fn(ε+ ∆) converges
to the Dirac measure on F (ε + ∆). Thus φ′n+1,n(ε̄ + ∆) → f(ε + ∆)/g(G−1(F (ε̄ + ∆)))
uniformly in ∆ for ∆ ∈ [−d, 0].

Finally, given the results in Lemma 6, in particular (57) and (58), because φ′n(ε̄ + ∆)
converges uniformly in ∆ to φ′(ε̄ + ∆), then B′′n(∆, xG) → B′′(∆, xG) uniformly in (∆, xG)
for ∆ ∈ [−d, 0) as n→∞.

Proof of Theorem 5. Lemma 5 shows that for n large enough, there exists a profile
(x∗Bn, x

∗
Gn) that satisfies the first order conditions. We now show that no deviation from x∗Bn

is profitable for n sufficiently large. With additive quality, ∆̄ = ε̄−ε and ∆ = max{−∆̄, x̄B−
xB}, and we may focus on deviations ∆ ∈ [∆, ∆̄]. In the proof of Theorem 1, we established
that under Assumptions A1 and A2, there exists d > 0 such that B′′(∆, xG) < 0 if ∆ ∈
[−d, 0) and that B′′(∆, xG) < 0 for ∆ ∈ (0, ∆̄). Recall from the proof of Lemma 6 that
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for ∆ > 0, B′′n(∆, xG) < B̃′′n(∆, xG) and that B̃′′n(∆, xG) converges to B′′(∆, xG) uniformly
in (∆, xG), and that for ∆ < 0, B′′n(∆, xG) converges to B′′(∆, xG) uniformly in (∆, xG).
Thus there exists N : n > N such that, for ∆ either in [−b, 0) or in (0, ∆̄), B′′n(∆, x∗Gn) <
γ
2
, where γ is the lower bound on c′′B(.). Thus B′′n(∆, x∗Gn) − c′′B(x∗Bn + ∆) < γ

2
if either

∆ ∈ [−b, 0) or if ∆ ∈ (0, ∆̄), so that no such ∆ deviation is profitable. In the proof of
Theorem 1, we also established that if ū is small enough, there exists d′ ∈ (0, d) such that
B′(∆, xG) ≥ B′(0, xG) for ∆ ∈ [∆,−d′]. Thus the payoff loss from a −d′ deviation is some
L > 0 (since the payoff function is strictly concave on the interval [−d′, 0)), and the payoff
loss from any larger downward deviation is no less than L. Let ū be sufficiently small such
that a larger downward deviation, which results in being unmatched with probability 1

2
,

leads to an expected payoff loss that is also greater than L. Since (x∗Bn, x
∗
Gn)→ (x∗B, x

∗
G) and

Bn(∆, xG) converges to B(∆, xG) uniformly in (∆, xG) as n→∞, there exists N : n > N ⇒
[Bn(0, x∗Gn)− cB(x∗Bn)]− [Bn(∆, x∗Gn)− cB(x∗Bn + ∆)] > 0 for any ∆ < −d′. This completes
the proof of Theorem 5.

Theorem 5 shows that the equilibrium of the continuum model is the limit of a sequence
of finite equilibria. We now provide a partial converse - the limit of a sequence of finite
equilibria must be an equilibrium of the continuum model, if the payoff functions converge
uniformly, so that the equilibrium correspondence is upper-hemicontinuous.

Proposition 4 In the continuum agent model, let UB(∆|xB, xG) be the payoff function for
any boy who chooses xB + ∆ when all other boys choose xB and when all girls choose xG and
similarly for UG(∆|xB, xG) for a girl. And in the finite agent model with 2n + 1 agents, let
UBn(∆|xBn, xGn) and UGn(∆|xBn, xGn) be the analogous payoff functions. Suppose that, for
i = B and G, Uin converges uniformly in all three variables (∆, xB, xG) to Ui. If for each
n, (x∗Bn, x

∗
Gn) is an equilibrium of the finite agent model and limn→∞(x∗Bn, x

∗
Gn) = (x∗B, x

∗
G),

then (x∗B, x
∗
G) is an equilibrium of the continuum agent model.

Proof. Suppose not, so that (x∗B, x
∗
G) = limn→∞(x∗Bn, x

∗
Gn) is not an equilibrium for the con-

tinuum agent model. Thus a boy (or girl – the argument is identical) must have a profitable
deviation, i.e. ∃∆ : UB(∆|x∗B, x∗G)−UB(0|x∗B, x∗G) = 2ε > 0. Since UBn(·) converges to UB(·)
uniformly in all three arguments, and since (x∗Bn, x

∗
Gn)→ (x∗B, x

∗
G) as n→∞, there exists N :

n > N ⇒ |UBn(∆|x∗Bn, x∗Gn)−UB(∆|x∗B, x∗G)| < ε and |UBn(0|x∗Bn, x∗Gn)−UB(0|x∗B, x∗G)| < ε.
Thus, UBn(∆|x∗Bn, x∗Gn) − UBn(0|x∗Bn, x∗Gn) > (UB(∆|x∗B, x∗G)− ε) − (UB(0|x∗B, x∗G) + ε) > 0.
Hence, for n sufficiently large, (x∗Bn, x

∗
Gn) is not an equilibrium of the finite model.
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Chiappori, Pierre-André, Murat Iyigun and Yoram Weiss (2009) “Investment in Schooling
and the Marriage Market”, American Economic Review, 99, 1689-1713.

Choo, Eugene and Aloysius Siow (2006) “Who Marries Whom and Why”, Journal of Po-
litical Economy, 114, 175-201.

Cole, Harold L., George J. Mailath and Andrew Postlewaite (1992) “Social norms, savings
behavior, and growth”, Journal of Political Economy, 100 (6), 1092-1125.

Cole, Harold L., George J. Mailath and Andrew Postlewaite (2001) “Efficient non-contractible
investments in large economies”, Journal of Economic Theory, 101, 333-373.

Dagsvik, John K. (2000) “Aggregation In Matching Markets”, International Economic
Review, 41, 27-57.

Felli, Leonardo and Kevin W.S. Roberts (2001) “Does competition solve the hold-up prob-
lem?”, working paper.

50



Fine, Cordelia (2008) “Will Working Mothers’ Brains Explode? The Popular New Genre
of Neurosexism”, Neuroethics, 1, 69-72.

Gall, Thomas, Patrick Legros and Andrew Newman (2009) “Mis-match, Re-match, and
Investment”, working paper.

Hajnal, John (1982) “Two Kinds of Preindustrial Household Formation System”, Popula-
tion and Development Review, 8 (3), 449-494.

Hopkins, Ed (2012) “Job Market Signalling of Relative Position or Becker Married to
Spence”, Journal of the European Economic Association, 10(2), 290-322.

Hopkins, Ed and Tatiana Kornienko (2004), “Running to Keep in the Same Place: Con-
sumer Choice as a Game of Status”, American Economic Review, 94 (4), 1085-1107.

Hopkins, Ed and Tatiana Kornienko (2010) “Which Inequality? The Inequality of En-
dowments Versus the Inequality of Rewards”, American Economic Journal: Microeco-
nomics, 2(3), 106-137.

Hoppe, Heidrun C., Benny Moldavanu and Aner Sela (2009) “The theory of assortative
matching based on costly signals”, Review of Economic Studies, 76, 253-281.

Iyigun, Murat and Randall P. Walsh (2007) “Building the Family Nest: Premarital Invest-
ments, Marriage Markets, and Spousal Allocations”, Review of Economic Studies 74,
507-535.

Lazear, Edward P. and Sherwin Rosen (1981) “Rank-order tournaments as optimum labor
contracts”, Journal of Political Economy, 89 (5), 841-864.

Machin, Stephen and Tuomas Pekkarinen (2008) “Global Sex Differences in Test Score
Variability”, Science, 322, 1331-1332.

Mailath, George J., Andrew Postlewaite and Larry Samuelson (2013) “Pricing and Invest-
ments in Matching Markets”, Theoretical Economics, 8, 535-590.

Myerson, Roger (1998) “Population Uncertainty and Poisson Games”, International Jour-
nal of Game Theory, 3, 375-392.

Peters, Michael (2007) “The pre-marital investment game”, Journal of Economic Theory,
137, 186-213.

Peters, Michael (2009) “Truncated Hedonic Equilibrium”, working paper.

Peters, Michael and Aloysius Siow (2002) “Competing Premarital Investments”, Journal of
Political Economy , 110, 592-608.

Pinker, Susan (2008) The Sexual Paradox: Men, Women and the Real Gender Gap. Scrib-
ner.

51



Shaked, Moshe and J. George Shanthikumar (2007) Stochastic Orders, New York: Springer.

Wei, Shang-Jin and Xiaobo Zhang (2011) “The Competitive Saving Motive: Evidence from
Rising Sex Ratios and Savings Rates in China”, Journal of Political Economy, 119,
511-564.

52


