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Abstract 

1. An F(2) cross of a broiler male line and a White Leghorn layer line was used to 

identify quantitative trait loci (QTL) for bone density at the onset of lay and at the 

end of the laying period. A total of 686 measures of humeral bone density were 

available for analysis. 2. There was no evidence for epistasis. 3. Genome-wide 

significant QTL for bone density at the onset of lay were identified on chromosomes 1 

(311 cM) and 8 (2 cM) and on chromosomes 1 (311 cM), 3 (57 cM) and 8 (2 cM) with a 

covariate for the number of yellow follicles (a proxy for the concentration of 

circulating oestrogen). 4. Evidence for only 4 chromosome-wide suggestive QTL were 

detected at the end of lay (72 weeks). 5. Analysis of the combined data confirmed two 

genome-wide suggestive QTL on chromosome 1 (137 and 266 cM) and on 

chromosomes 8 (2 cM) and 9 (10 cM) in analyses with or without the covariate. 6. 

Positive QTL alleles came from the broiler line with the exception of 2 suggestive 

QTL at the onset of lay on chromosomes 3 and 5 in an analysis with the covariate. 7. 

In general, QTL acted additively, except that dominant effects were identified for 

three suggestive QTL at the onset of lay on chromosomes 3 (57 and 187 cM) and 5 

(9 cM). 8. The significant QTL in this study were at similar locations to QTL 

identified in a range of crosses in other publications, suggesting that they are prime 

candidates for the search for genes and mutations that could be used as selection 

criteria to improve bone strength and decrease fractures in commercial laying hens. 

 

 

 

 



Introduction 

Bone mineral density (BMD) is a common measure of susceptibility to osteoporotic 

fractures in both humans and other species, including chickens (Whitehead and 

Fleming, 2000; Johnson et al., 2009). Bone fragility in humans is due to the decline 

in oestrogen after menopause but in chickens the decline in the structural integrity of 

the bones is caused by mobilisation of cortical bone for egg laying (Rubin et al., 

2007). Osteoporosis is not only an animal welfare issue but affects productivity and 

leads to processing losses in the industry (Silversides et al., 2006). It is the 

underlying cause of bone fractures of the humerus and keel and is a consequence of 

the loss of structural bone caused by the demands of high rates of egg shell formation 

in modern layers (Whitehead and Fleming, 2000; Webster, 2004). Exercise and 

good nutrition can lead to stronger bones and reduced fractures and the beneficial 

effects can be complemented with genetic selection to improve bone strength and 

resistance to osteoporosis (Fleming et al., 2006). 

Osteoporosis is evident in laying hens from 35—45 weeks of age onwards (Cransberg 

et al., 2001) and is the result of prolonged exposure to high levels of oestrogen and 

the demands of egg laying (Beck and Hansen, 2004). As hens approach sexual 

maturity the reproductive system becomes functional, oestrogen concentration 

increases and stays elevated during egg production. The source of the oestrogen is 

principally the smaller white and the early yolky hierarchical follicles (Armstrong, 

1984; Robinson and Etches, 1986). Because the number of follicles varied widely in 

the cross in the present experiment the number of yellow follicles was measured as a 

potential factor influencing BMD. 



Oestrogen promotes calcium absorption and the formation of the specialised 

medullary storage bone (Dacke et al., 1993). A decline in oestrogen receptor number 

with age may contribute to a reduction in the efficiency of these adaptations for the 

demands of egg shell formation (Beck and Hansen, 2004). The partitioning of key 

metabolites such as calcium for bone deposition, egg production and other 

homeostatic functions could be controlled by a number of genetic factors or genes. 

Osteoporosis in humans is also an age-related condition and is influenced not only by 

genetic factors but also by environmental, gene-gene and gene-environmental 

interactions (Johnson et al., 2009). It is therefore possible that epistasis may be 

involved in the biological process of osteoporosis in laying hens. 

Besides nutritional and environmental interventions, osteoporosis can be reduced 

through selective breeding (Bishop et al., 2000; Fleming et al., 2006). A selection 

index (Bone Index) has successfully been used to select against osteoporosis in laying 

chickens (Bishop et al., 2000). A QTL for bone index was reported on chromosome 1 

at position 370cM in an F2 population produced from two White Leghorn lines 

divergently selected on the basis of the bone index (Dunn et al., 2007). Bone mineral 

density (BMD) is a traditional measure of bone strength (Hans and Krieg, 2008) and 

identification of QTL for BMD could assist breeding efforts to address osteoporosis. 

Suggestive QTL for bone mineral density have been detected in an F2 broiler (Cobb 

male line) x layer (White Leghorn female) population (Schreiweis et al., 2005). 

Several QTL for BMD were detected and potential gene candidates were proposed 

based on a QTL in two F2 populations from the offspring of a male broiler line 

crossed with White Leghorn and Fayoumi (Zhou et al., 2007). However, none of 

these studies focused specifically at the critical period when birds reach sexual 

maturity. This stage is important for initiating key physiological processes that lead 



to egg production, which in turn affect bone density. High BMD is important at the 

onset of lay because such birds have higher reserves of calcium to support 

subsequent egg production. These reserves are not replaced after sexual maturity 

because the deposition of calcium in structural bone is prevented by the oestrogen-

dependent switch to medullary bone. 

A study was therefore conducted to identify QTL influencing BMD and to investigate 

the possible role of epistasis in a F2 broiler-layer cross population. 

 

Materials and Methods 

Animals and husbandry 

The production of the F1 and F2 generations was described by Sewalem et al. (2002). 

In the grandparent generation two males and two females from the Ross 308 male 

line broiler (Aviagen, Newbridge, UK) and from a White Leghorn egg laying line 

maintained at the Roslin Institute were crossed to create 4 F1 families. Eight males 

and 32 females of the F1 generation were randomly selected and mated in a balanced 

mating scheme to produce the F2 population. One female died and was replaced for 

producing the young flock making a total of 33 full sib families. 

A total of more than 1000 female offspring from 20 hatches were initially housed in 

pens of about 20 birds. At 12 weeks of age the birds were moved to individual cages 

measuring 40 cm wide x 45cm deep x 80cm high until the end of the experiment. 

Each pen of about 20 birds was housed in a single block of cages on the same tier. 

The birds were fed ad libitum on conventional diets for laying hens and exposed to a 

constant photoperiod of 14 hours per day from hatch to the end of the experiment.  



The experiments were conducted after local ethical review under Government 

approved licences to protect the welfare of the birds at all times. 

 

Observations 

Hens were culled within 3 d of laying their first egg (young flock, 11 hatches) or at 72 

weeks of age at the completion of the egg laying period (old flock, 9 hatches). The 

onset of lay was defined as the day of first recorded oviposition. The birds were killed 

by an overdose of sodium pentobarbitone and the abdominal cavity was opened. The 

ovary was dissected and the number of yellow follicles was recorded. The right wing 

was dissected from the carcase and stored at -20C. At a later date the wing was 

thawed and the humerus dissected from adhering tissue including tendons and 

ligaments. The bone was radiographed on a lateral plane alongside a calibrated 

aluminium step-wedge as described by Hocking et al. (2003). The density of the 

image of the whole bone was then compared with the density of the wedge to 

determine the bone density defined as the density equivalent of a specified depth 

(mm) of aluminium using NIH-image analysis software. 

 

Genotyping and linkage map construction 

Blood samples were collected for DNA extraction and genotyping by superficial 

venipuncture of a wing vein at 12 weeks of age. DNA was extracted from the sample 

using standard methods. A total of 106 microsatellite markers covering 26 autosomal 

linkage groups and the Z sex chromosome (Table 1) were genotyped in sets of 4 to 10 

markers based on the fragment size and dye colour of the PCR product. Fluorescent 



microsatellite detection was performed on an Applied Biosystems 3730xl genetic 

analyser (Applied Biosystems/Hitachi, Applera, USA) and Genemapper Software 

v3.5 (Applied Biosystems, Applera, USA) was used to estimate fragment sizes. 

 

Data management, preparation and cleaning 

The data were from two groups of birds, one that was killed at sexual maturity 

(young flock) and the other at 72 weeks of age (old flock). The average age of the 

young flock at first egg was 21 weeks (SD 3 weeks). The old flock was sampled at the 

end of the usual laying period for layers when bone density is expected to be at its 

poorest. 

All pedigrees, marker genotypes and recorded traits were stored in the resSpecies 

database (Law and Archibald, 2000). Data were edited to detect and eliminate 

genotyping errors using RTools (Dr Ricardo Pong-Wong, 2007, personal 

communication). The map files were created through the CRIMAP program (Green 

et al., 1990) and marker order was confirmed by comparing it to previously 

published linkage maps (Hu et al., 2001; Navarro et al., 2005). 

 

Execution of the epistatic QTL analysis on GridQTL 

Mapping and significance testing were conducted by the interval mapping method 

for QTL analysis adapted for epistasis detection in GridQTL (Seaton et al., 2006; Wei 

et al., 2009) as described earlier (Podisi et al., 2011). Significance thresholds for 

detection of single QTL with significant marginal effects were determined through 



5000 permutations (Churchill and Doerge, 1994) and 1000 bootstraps were used to 

generate 95% confidence intervals for the QTL positions (Visscher et al., 1996).  

F-values greater than those corresponding to the P 0.05 and P 0.01 experiment-

wide threshold values, respectively, were used to identify a significant and highly 

significant QTL (Kruglyak and Lander, 1995). QTL thatachieved an F ratio exceeding 

the P 0.05 chromosome-wide threshold were considered to be suggestive. 

Significance testing for epistatic pairs used F ratio tests for model comparisons in a 

nested test framework following Wei et al. (2009). The following tests were 

conducted: 

Model 1 (With epistasis) : BMD =  +  Locus A 

+ Locus B  + Locus A x Locus B +  

Model 2 (No epistasis) : BMD =   + Locus A 

+ Locus B +  

Model 3 (Single locus model) : BMD =  

+ Locus A +  

Model 4 (Null model) : BMD = +  

where   is the model constant, and  is the random error. 

An overall F test termed Fall was used to compare Model 1 to Model 4 and QTL pairs 

that passed the Fall criteria were subjected to an interaction test denoted as Fint by 

comparing Model 1 and Model 2. To ensure that the aggregate effect of a pair of loci 

which involved a marginal-effect QTL explained significantly more of the phenotypic 



variance than the marginal QTL alone, an overall test was conducted by comparing 

Model 1 with Model 3. Genome-wide thresholds were derived in advance based on 

1000 replicates. 

 

Model definition 

Different models with additive, dominance and parent-of-origin genetic effects with 

family and pen as fixed effects (hatch was confounded with pen) were evaluated in a 

preliminary analysis. There was no evidence for a parent-of-origin effect (detected as 

a difference between the alternative heterozygous genotypes that differ in which 

allele was inherited from each parent) (Knott et al., 1998), and parent of origin 

effects were ignored in subsequent analyses. The Z chromosome was analysed with 

an additive genetic effects model for the detection of QTL with significant marginal 

effects. The epistasis analysis did not include the Z chromosome. 

Family and pen were fitted as fixed effects for both data sets. Data for the combined 

analysis were pre-corrected for pen nested within hatch after fitting a model that 

included effects for hatch, pen and family. The statistical model for the combined 

population included the effects of age at the measurement of BMD. The number of 

normal yellow follicles (NYF) was used as a covariate in a second round of analyses. 

 

Results 

The number of records of BMD available for analysis for the young and old layer bird 

data sets was 388 and 268, respectively (Table 2) and was substantially lower than 

the total number housed for both sets of data. A number of images could not be 



assigned to a bird and a large proportion of the old flock were not in laying condition 

(birds with no normal yellow follicles).  

The phenotypic correlations between BMD and other traits for the two flocks are 

presented in Table 3. The estimated phenotypic correlations were generally low and 

positive except for the negative correlation between BMD and age at first egg (AFE). 

The highest correlation (0.42) was between body weight at 72 weeks (BW72) and 

BMD (Table 3). There was no correlation  between weight at first egg (WFE) and 

BMD in the old flock in contrast to the young flock. 

There was no evidence for epistasis in any of  the analyses (data not shown) and the 

results for single QTL analyses only are presented. Two significant QTL on 

chromosomes 1 and 8 respectively and 4 suggestive QTL, one each on chromosomes 

1 and 4 and two on chromosome 3 were detected in the young flock (Table 4). A 

significant QTL segregating on chromosome 8 for BMD explained the highest 

proportion of the phenotypic variation (4.5%) without fitting a covariate in the 

model. For older chickens evaluated at 72 weeks of age suggestive QTL were detected 

on chromosomes 2 and 8. The results of the combined analysis (Table 5) led to the 

detection of 4 suggestive QTL: two on chromosome 1 and one on chromosome 8 at 

similar locations as in the young flock and one on chromosome 9. 

Fitting NYF as a covariate had relatively little effect on the analyses. In the young 

flock, a suggestive QTL on chromosome 4 was not detected and an additional 

suggestive QTL on chromosomes 3 and 5 were identified. The significance of the QTL 

at 305cM on chromosome 1 and at 57cM on chromosome 3 increased, the latter from 

suggestive to highly significant whereas the F-statistic for the QTL on chromosome 8 



was slightly lower (Table 4). For the combined data set the analysis with the 

covariate produced similar results to that without (Table 5) and is not presented. 

The estimated size of the QTL effects is presented in Tables 4 and 5. The detected 

QTL individually explained from 1.3 to 5.7 % of the phenotypic variation. Most of the 

QTL had significant positive and additive QTL effects. However, a locus on 

chromosome 3 at 57 cM had significant dominance action that had a negative effect 

on BMD. The total proportion of phenotypic variation explained by the genome-wide 

significant and suggestive QTL without and with the covariate respectively were, 

respectively, 19 and 24% for the young flock, 8.7 and 9.9% for the old flock and 6.5 

and 6.5% for the combined analysis. 

 

Discussion 

Broiler parent stock do not suffer from osteoporosis and bone density is high at the 

end of lay (unpublished data) making a broiler x layer cross particularly valuable for 

identifying QTL for bone mineral density. The purpose of combining the data from 

young and old birds was to increase the power of the experiment and the likelihood 

of detecting epistatic gene action and, as far as we know, this is the first analysis of 

epistasis for BMD and related traits. Whereas no epistasis or additive QTL were 

detected in the combined analysis it is possible that metaanalyses or analyses of 

larger populations with denser genotyping might identify significant QTL. 

Alternatively, bone density at 72 weeks of age in this cross may not have deteriorated 

because of the relatively large body weight, high feed intake and low egg production 

(representing high storage and intake of calcium, and a low requirement for eggshell 



formation, unpublished data) and eliminated statistical evidence in the combined 

data of QTL detected in the young flock. 

Most of the QTL effects in the young flock were positive indicating that the broiler 

allele contributed to the increase in BMD. The location of the QTL detected in all 

three analyses at 311 or 305cM on chromosome 1 with or without fitting a covariate 

respectively is similar to the QTL for humeral breaking strength and bone index that 

were detected on chromosome 1 at 334cM and 370cM in a cross of a White Leghorn 

layer line selected for a decrease or an increase in bone strength (Dunn et al., 2007). 

The location of the QTL on chromosome 1 at 131cM is similar to a reported QTL for 

femoral BMD at 138cM in a White Leghorn x red jungle fowl cross (Rubin et al., 

2007). The proportion of phenotypic variation explained by the QTL on chromosome 

3 at 57 cM with a covariate is similar to the 6% reported for a whole-body BMD QTL 

on chromosome 3 by Rubin et al. (2007). Schreiweis et al. (2005) reported 

significant QTL for BMD on chromosomes 3, 4 and 27 compared to our study where 

suggestive QTL on chromosomes 3 and 4 but not 27 were identified. Other QTL 

detected on chromosomes 2, 3, 5, 8 and 9 in our study are also similar to those 

reported for a Leghorn x red jungle fowl cross (Rubin et al., 2007). 

Whereas the phenotypic correlations between BMD and body weight and AFE are 

low they are consistent with the expectation that larger and later maturing birds have 

denser bones. To minimise the effect of oestrogen in influencing QTL for BMD, the 

NYF, as the main source of oestrogen, was fitted as a covariate. The location and 

additive effect of the genome-wide significant QTL, after adjusting for the number of 

yellow follicles, were similar to those of the unadjusted analysis implying that the 

difference in BMD between the lines due to the influence of this QTL is independent 



of oestrogen. Furthermore, none of the QTL identified in this study are located in 

QTL for yellow follicle numbers (unpublished results). 

The confidence intervals for QTL at 131cM on chromosome 1, 297cM on chromosome 

2 and 57cM on chromosome 3 overlap with QTL for body weight at several ages in 

this cross (Sewalem et al., 2002; Podisi et al., 2011). This is not unexpected because 

large framed individuals are expected to have more tissue mass and therefore 

stronger bones to support their weight. Furthermore genes controlling weight and 

size have pleiotropic effects on skeletal traits (Rubin et al., 2007). Nevertheless these 

and other QTL may harbour genes controlling bone density independently of body 

weight. 

 

Conclusions 

Significant QTL for bone density detected on chromosomes 1, 3 and 8 are similar to 

QTL for similar traits reported in other studies. The QTL on chromosome 1 and on 

chromosome 8 do not co-locate with body weight QTL and are likely to harbour 

genes controlling BMD independently of body weight. Although oestrogen is 

undoubtedly important to bone density, including the number of yellow follicles did 

not have a large effect on the power to detect QTL for BMD. The results of this study 

are consistent with evidence of a genetic basis for the occurrence of osteoporosis and 

the locations are similar to those of previous results in different breed crosses. Taken 

together, the results emphasise the importance of these loci in the search for genes 

and markers for genetic selection to decrease the propensity for osteoporosis and 

bone fractures in commercial layer hens. 
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Tab.1 

The number of microsatellite markers, first and last marker and map length on each 

linkage chromosome 

 

 

 

 

 

 

 

 



Tab.2 

Bone mineral density and number of normal yellow follicles from an F2 broiler-layer 

cross population at the onset of lay and at 72 weeks of age (mean  standard 

deviation and range) 

            Trait                                                                     Mean SD      Min        Max 

             

1 Millimetre of aluminium density equivalent. 

 

 

 

 

 

 

 

 



Tab.3 

Phenotypic correlations between bone mineral density and reproductive traits at the 

onset of lay (after laying the first egg) and at the end of lay (72 weeks) in an F2 

broiler-layer cross. All correlations were significantly different from zero at P<0.05 

unless indicated otherwise (ns) 

         

 

 

                  Trait                                           BMD at onset of lay         BMD at end of lay 

 

 

 

 

 

 

 

 

 



Tab.4 

Quantitative Trait Loci for tibial bone mineral density. Chromosome, chromosome 

location, F ratio, significance, confidence interval, flanking markers, additive and 

dominance effects and proportion of variation explained at first egg and 72 weeks of 

age in an F2 broiler-layer cross. The analysis of data from the young flock was 

repeated with a covariate for the number of normal yellow follicles 

 

1 Experiment wide significance: *P<0.05, **P <0.01;  chromosome wide suggestive 

significance. 

2 CI =95%  confidence interval. 

3 VP%= percentage of phenotypic variation explained by the QTL. 

 

 



Tab.5 

Quantitative Trait Loci for tibial bone mineral density (loge mm AL equivalent) for 

the combined data from young (first egg) and old (72 weeks) flocks in an F2 broiler-

layer cross. Chromosome, chromosome location, F ratio, significance, confidence 

interval, flanking markers, additive and dominance effects and proportion of 

variation explained at first egg and 72 weeks of age 

 

1  chromosome-wide suggestive significance. 

2CI = 95% confidence interval. 

3VP% = percentage of phenotypic variation explained by the QTL. 

 

 


