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Abstract 
What mechanisms support the ability of human infants, 
adults, and other primates to identify words from fluent 
speech using distributional regularities? In order to better 
characterize this ability, we collected data from adults in an 
artificial language segmentation task similar to Saffran, 
Newport, and Aslin (1996) in which the length of sentences 
was systematically varied between groups of participants. We 
then compared the fit of a variety of computational models—
including simple statistical models of transitional probability 
and mutual information, a clustering model based on mutual 
information by Swingley (2005), PARSER (Perruchet & 
Vintner, 1998), and a Bayesian model. We found that while 
all models were able to successfully complete the task, fit to 
the human data varied considerably, with the Bayesian model 
achieving the highest correlation with our results.  

Keywords: Statistical learning; word segmentation; language 
acquisition; Bayesian modeling. 

Introduction 
How do young infants learn words from fluent speech? 
Research on this topic has identified a number of 
information sources which aid in word segmentation, 
including phonotactic, prosodic, and allophonic cues, as 
well as lexical knowledge (Jusczyk, 1999). However, these 
information sources vary across languages. Some languages 
(like English) have a predominant stress pattern which 
allows relatively robust segmentation even in the absence of 
lexical knowledge, while others do not.  

One fact remains constant across languages: the use of a 
small subset of the possible sound sequences in combination 
to create many different meanings. This property—
essentially, the existence of words which are combined 
together to form sentences—implies certain statistical 
properties of the speech stream, including an increase in 
predictability from the beginning of a word to its end. 
Recent work by Saffran and colleagues suggests that human 
learners can make use of these statistical properties to 
distinguish words from non-words in a novel artificial 
language (Saffran, Aslin, & Newport, 1996). Many other 
studies have replicated and extended these results to a 
variety of other domains (e.g., Fiser & Aslin, 2002) and 
other populations, including non-human primates (Hauser, 
Newport, & Aslin, 2001). 

However, despite the existence of a large number of 
statistical models of word segmentation (reviewed in Brent, 
1999), there have been relatively few attempts to integrate 
these models with human experimental results. One reason 
for this lack is the extreme simplicity of many of the human 
artificial language learning results: every available model of 

word segmentation should succeed in recovering the 
complete lexicon of the original Saffran, Newport, and 
Aslin (1996) experiment, for example. However, despite the 
simplicity of artificial language experiments, human adults 
largely do not achieve perfect performance in these tasks. In 
the work presented here, we take advantage of this fact by 
manipulating the difficulty of an artificial segmentation 
experiment and then evaluating a number of computational 
models on their fit to human performance in this paradigm. 

The plan of the paper is as follows. We first describe an 
artificial language learning experiment with adult 
participants in which we parametrically varied the length of 
sentences in our language in an attempt to vary the difficulty 
of the segmentation task. In the next section, we describe 
the criteria for evaluation of the models and the details of 
the implementation of each model (in cases in which the 
details of a model are already described in another 
publication we only note where our implementation differs 
from that description). Because all systems tested were 
extremely effective at finding the correct segmentation, we 
compared the models on two measures: 1) the best linear fit 
of their performance to the experimental data, and 2) the 
relative contribution of target and distractor scores to the 
performance of each model. We conclude by discussing the 
relative merits of the different models in fitting human data. 

While our selection of models is by no means a complete 
survey of the field, we have attempted to test models which 
have been influential or distinctive in the psychological 
literature. We start with models based on the suggestion by 
Saffran, Newport, and Aslin (1996) that boundaries between 
words can be effectively found through the use of simple 
bigram statistics. We evaluate three models of this type: 
local minima in transitional probability (TP); minima in TP 
with smoothed counts; local minima in pointwise mutual 
information. We then evaluate three other models which 
focused on finding a lexicon to fit the input corpus: a 
clustering model by Swingley (2005) which also uses 
pointwise mutual information; PARSER (Perruchet & 
Vinter, 1998), a memory-decay model of segmentation; and 
a Bayesian model in the style of Brent (1999) by Goldwater, 
Griffiths, and Johnson (2006).  

Experimental Data 
When learning a foreign language, longer sentences often 
seem more difficult to understand than shorter sentences. 
Certainly, in the limit, individually presented words are easy 
to learn and remember, while those presented in long 
sentences with no boundaries are more difficult, perhaps 
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because of problems in segmentation. In order to test the 
hypothesis that segmentation performance decreases as 
sentence length increases, we exposed adults to sentences 
constructed from a simple artificial lexicon. We assigned 
participants to one of eight sentence-length conditions so 
that we could estimate the change in their performance as 
sentence length increased.  

Methods 
Participants We tested 96 MIT students and members of 
the surrounding community, but excluded 5 participants 
from the final sample based on performance greater than 
two standard deviations below the population mean. 
 
Materials Each participant in the experiment heard a unique 
and randomly generated sample from an artificial language. 
The lexicon of this language was generated by 
concatenating 18 syllables (ba, bi, da, du, ti, tu, ka, ki, la, lu, 
gi, gu, pa, pi, va, vu, zi, zu) into six words, two with two 
syllables, two with three syllables, and two with four 
syllables. Sentences in the language were created by 
randomly concatenating words together without adjacent 
repetition of words. Each participant heard a randomly 
generated language sample consisting of 1200 words.  

Participants were randomly placed in one of eight 
sentence length conditions (1, 2, 3, 4, 6, 8, 12, or 24 words 
per sentence). All speech in the experiment was synthesized 
using the MBROLA speech synthesizer (Dutoit, Pagel, 
Pierret, Bataille, & van der Vrecken, 1996) with the us3 
diphone database, in order to produce an American male 
speaking voice. All consonants and vowels were 25 and 
225ms in duration, respectively. The fundamental frequency 
of the synthesized speech was ~100 Hz. No breaks were 
introduced into the sentences: the synthesizer created equal 
co-articulation between every phone. There was a 500ms 
break between each sentence in the training set. Test 
materials consisted of a word from the lexicon paired with a 
part-word distractor (a set of syllables of the same length 
which also appeared—with lower frequency—in the 
corpus). 

  
Procedure. Participants were given instructions that they 
were going to listen to a nonsense language for 15 minutes, 
after which they would be tested on how well they learned 
the words of the language. All participants listened on 
headphones in a quiet room. After they had heard the 
training set, they were instructed to make forced choice 
decisions between pairs of words from the test set by 
indicating which one of the two sounded more like a word 
in the language they just heard. No feedback was given 
during testing. 

Results 
Performance by condition is shown in Figure 1. We 
observed a significant main effect of sentence length on 
performance (F[7,88]=5.57, p < .001), resulting from the 
gradual decrease in performance as sentences grew longer. 

Computational Modeling 
In order to evaluate models of word segmentation, we 
compared their performance on our experimental materials 
to that of our adult participants.  
 
Materials We compiled a corpus of ten randomly generated 
training sets in each of the eight sentence length conditions. 
Each training set was of the same length as those presented 
to our experimental participants (1200 words) and was 
accompanied by 30 pairs of test items, the same number of 
trials as our participants received. Test items were, as in the 
experimental section, words in the generating lexicon of the 
training set or part-word distractors. 
 
Evaluation Our metric of evaluation was simple: each 
model was required to generate a score of some kind for 
each of the two forced-choice test items. We turned these 
scores into probabilities by applying the Luce choice rule 
(Luce, 1963): 
 

! 

pchoice (x) =
s(x)

s(x) + s(y)
 

 
where s(x) and s(y) denote the scores of the two words in the 
forced choice. (Note that in the case where the scores are 
probabilities under the language, this is exactly what we 
should do to condition on the fact that one outcome of the 
two forced choice options must be in the language). Having 
produced a choice probability for each test trial, we then 
averaged these probabilities across test trials and training 
corpora to produce a set of average choice probabilities for 
each sentence-length condition. 

Boundary-finding approaches 
One approach to segmentation employs simple bigram 
statistics to measure the relationship between units such as 

 
 

Figure 1. Segmentation performance as a function of 
sentence length. Dots show mean performance for 

individuals. 



syllables or phonemes. This approach is originally due to 
Harris (1951) but has been the focus of much recent interest. 
We chose syllables as the primary level of analysis for our 
models; all syllables had the same structure (consonant-
vowel), so there was no difficulty in segmenting words into 
syllables. We examined three models of this type, beginning 
with the suggestion of Saffran, Newport, and Aslin (1996) 
to use local minima in transitional probability as word 
boundaries. In order to ascertain that our problems in fitting 
human data did not stem from the 0 and 1.0 TPs found in 
our corpus, we further tested a transitional probability model 
with smoothed counts. We also tested a model using 
pointwise mutual information (MI), a bidirectional measure 
of association. 
  
Transitional probability We calculated transitional 
probability (TP) by creating bigram syllable counts over the 
training sentences in our corpus with a symbol appended to 
the beginning and end of each sentence to indicate a 
boundary. The transitional probability of a syllable b given 
a was defined as: 
 

! 

p(b | a) =
p(a,b)

p(a,y)
y"V

#
 

 
where p(a,b) was the probability of the bigram ab appearing 
and V was the complete set of bigrams observed in the 
corpus.  
 The score of a word under this model was defined as the 
minimum transitional probability within that word (as in 
Saffran, Newport, and Aslin, 1996). However, given that in 
our stimuli, transitional probabilities between syllables in 
the words in the language were equal to one, the same 
probabilities for targets and distractors would have been 
computed if the dependent measure were the product of the 
probabilities within a word rather than the minimum. 
 
Smoothed transitional probability We additionally 
calculated transitional probabilities using a simple add-
lambda smoothing scheme in order to eliminate zero counts 
for unobserved bigrams. We did this by calculating the 
probability of a bigram p(a,b) as: 
 

! 

p(a,b) =
count(a,b) + "

" # V + count(a,x)
x$V

%
 

 
In other words, we incremented each count by a small 
constant, lambda, and then divided by lambda times the 
number of words in the vocabulary. We tested using a range 
of values for lambda but found equivalent results for all 
values, thus we report values with a standard value, λ = 1. 
 
Point-wise mutual information Mutual information is 
sometimes suggested as an alternative to transitional 
probability for computing the association strength between 

syllable pairs (Swingley, 2005; Brent, 1999). Pointwise 
mutual information is defined as: 
 

! 

MI(a,b) = log2
p(a,b)

p(a,y)
y"V

# p(x,b)
x"V

#
 

 
We create scores for words using the same method as we 
used with TP above: taking local minima in MI across 
words. In a less uniform corpus, this measure would differ 
significantly from the result of summing mutual information 
across words. However, given that part-words spanned 
exactly one word boundary and all syllables appeared in 
only one word, summing mutual information produced the 
same result as taking local minima.  

Lexicon-finding approaches 
We evaluated three other models. These models were 
distinguished by the assumption that a lexicon—a list of 
words—is the fundamental representation to be optimized 
with respect to the input corpus. The first was a recent 
model by Swingley (2005), which clusters syllables based 
on their frequency and the mutual information of their 
syllables. The second was a Bayesian model of 
segmentation proposed by Goldwater, Griffiths, and 
Johnson (2006). The third was PARSER (Perruchet & 
Vinter, 1998), a model based on simple memory principles 
of decay and interference. We describe each briefly because 
the relevant details are available in the respective 
publications. 

Swingley (2005) This model is a heuristic clustering model 
which calculates n-gram statistics and pointwise mutual 
information over a corpus, then takes as words those strings 
which exceed a certain threshold value both in their 
frequency and in the mutual information of their constituent 
bisyllables. In order to run the model on the language of our 
experiment, we added support for four syllable words. We 
then defined the score of a string under the model (given 
some input corpus) as the maximum threshold value at 
which that string appeared in the lexicon found by the 
model. In other words, the highest-scoring strings were 
those that had the highest percentile rank both in mutual 
information and in frequency. It should be noted that, unlike 
the next two models, Swingley’s model relies on purely 
local and word-based statistics (frequency and MI); thus, 
unlike either PARSER or GGJ2006, a word’s score is 
unrelated to the size of the lexicon. 
  
Goldwater, Griffiths, & Johnson (2006) This model uses 
Bayesian inference to optimize a lexicon with respect to an 
observed corpus. Its lexicon is generated according to a 
Dirichlet process, a probability distribution which gives 
higher probability to small lexicons containing short words. 
We use the implementation of the unigram model described 
in GGJ2006 since there were no bigram syllable 
dependencies in our materials.  



 The score for a word under this model was the posterior 
probability of the word, estimated using a Gibbs sampler as 
in the original paper. Because the posterior probability of 
the correct solution was normally so high (indicating a high 
degree of confidence in the solution the model found), we 
ran the Gibbs sampler using a range of temperatures to 
encourage the model to consider alternate solutions. 
(Temperature is a parameter which controls the degree to 
which the Gibbs sampler prefers more probable lexicons, 
with higher temperature indicating greater willingness to 
consider lower-probability lexicons). The model had one 
further parameter: the parameter of the Dirichlet process, α, 
which was kept constant at the value used in the original 
paper.  
 
PARSER We implemented the PARSER model described 
in Perruchet and Vintner (1998). This model is organized 
around a lexicon, that is, a set of words and scores for each 
word. The model receives input sentences and parses them 
according to the current lexicon and then adds sequences to 
the lexicon at random from the parsed input. Each lexical 
item decays at a constant rate and similar items interfere 
with each other. The model as described has six parameters: 
the maximum length of an added sequence, the weight 
threshold for a word being used to parse new sequences, the 
forgetting and interference rates, the gain in weight for 
reactivation, and the initial weight of new words. Because of 
the large number of parameters in this model, it was not 
possible to complete an exhaustive search of the parameter 
space; however, we experimented with a variety of different 
combinations of interference and forgetting rates and 
maximum sequence lengths without finding any major 

differences in forced-choice performance. Therefore, we 
report results using the same parameter settings used by 
Perruchet and Vintner.  
 We made one modification to the model to allow it to run 
on our data: rather than iterating through the entire input 
corpus, our implementation of the model iterated through 
each sentence until reaching the end and then began anew at 
the beginning of the next sentence. Scores for words under 
this model were the average scores from the lexicon 
obtained by averaging the lexicons from 20 PARSER runs 
on each training set.  

Comparison 1: Linear fit to experimental data 
Because all of the models we evaluated gave high choice 
probabilities to the targets (indicating near-perfect 
segmentation), absolute performance was not useful in 
comparing models. Instead, we examined performance 
across the eight sentence-length conditions relative to the 
performance of adult participants. In other words, we were 
interested in whether the models extracted a similar amount 
of information from a corpus with e.g., three-word sentences 
relative to what they extracted from a corpus with two-word 
sentences. In order to compute the relationship between 
conditions in different models relative to the human data, 
we first scaled the performance of each model using a linear 
regression, finding the best linear adjustment of the scale of 
the curve from each model. We then computed simple 
correlation coefficients (r values) between the best fit of 
each model and the experimental data. See figure 2 for 
results.  
 We found that GGJ2006 best fit our experimental data, 
succeeding in particular in modeling the decrease in 

 
Figure 2. Best linear fit of each model’s performance to human data, graphed by sentence length. The vertical axis 
represents decision probabilities for models and percentage correct for human data; the horizontal, sentence length. 



information between sentences of length 12 and sentences 
of length 24. Here we plot results from this model at 
temperature 5, but for temperatures between 50 and 3, there 
was relatively little difference in r values (ranging 
predictably between .920 and .968). 
 Interestingly, the next most effective models were the 
boundary-finding models using MI and TP. These models 
produce curves that are noticeably too shallow, changing 
little in performance between sentences with length 12 and 
those with length 24; however, they do show the same 
dependency between sentence length and score as the 
human data do. Surprisingly, once TP, smoothed TP, and 
MI were fit to the human data, there was no appreciable 
quantitative difference between the models’ fit, suggesting 
that these models’ underlying difficulty in fitting this dataset 
may be a fundamental deficit of the bigram statistic 
approach.  
 Finally, both Swingley2005 and PARSER performed very 
poorly on this task, producing choice probabilities that did 
not decrease as utterance length increased. One issue in the 
Swingley model is that because it relies on percentile 
rankings of frequency rather than raw frequency, its 
performance can vary highly with very small changes in 
frequency. In addition, because the model is deterministic, 
this noise could not be averaged out by multiple runs 
through the input corpus.  
 PARSER was similarly variable in its performance, but 
for different reasons. In any given run, PARSER very rarely 
assigned any score to a given distractor; thus it was 
necessary to run the model a large number of times on each 
different corpus in order to estimate choice probabilities 
despite its intent to be a single-pass, online segmentation 

system. Run in this fashion, PARSER is actually quite 
similar to a probabilistic model such as GGJ2006 or Brent 
(1999) in that it is an algorithm for sampling a posterior 
distribution over lexicons, albeit one that incorporates a 
number of free parameters and ad hoc approximations. 
 In the following section we examine further the reasons 
why performance differed between models by examining 
the contribution of target and distractor scores to each 
model’s choice probabilities. 

Comparison 2: Target and distractor scores 
Why did some models match the drop in human 
performance as sentence length increased, while others did 
not? One way in which models differed from one another 
was whether the score assigned to targets and distractors 
changed as the sentence length changed. For example, 
because TPs within words were always 1, target scores 
under the two TP models remained constant no matter what 
the sentence length. In order to investigate this factor more 
systematically, we plotted target and distractor scores for 
each model, normalized by the maximal target score (so that 
all scores varied between 0 and 1). See figure 3 for results.  
 Although we have no empirical data which address 
whether participants make errors at longer sentence lengths 
because targets are less attractive or because distractors are 
more so, it seems plausible that both are true. However, in 
each of the four models based on bigram statistics, nearly all 
of the change in performance across sentence lengths was 
caused by changes in the score assigned to distractor 
elements. In contrast, there was almost no change in the 
score of target items. This lack of change in target word 
scores seems unrealistic in a psycholinguistic model. Words 

 
Figure 3. Target and distractor scores for each model, normalized by highest target probability. The vertical axis is in 

arbitrary units; the horizontal represents sentence length. 



differ in their frequency and acceptability, and if models of 
segmentation are to make contact with models of the lexicon 
they should be able to take this fact into account.  
 Perhaps this difference is ultimately a difference between 
boundary-finding models and models which search for a 
globally good lexicon (such as GGJ2006 and PARSER). 
The performance of these latter two models is characterized 
by a steep dip in target probabilities as sentence length 
increases, corresponding to a decrease in confidence in the 
target words. However, unlike PARSER (inasmuch as we 
could determine given our computational constraints), 
GGJ2006 also increased the probability of distractor items 
as sentence length increased. This combined drop in target 
probability and increase in distractor probability led to the 
close fit between GGJ2006’s performance and our 
participant data. 

Conclusions 
We collected data on word segmentation by adults in an 
artificial language task in which words were presented as 
part of unsegmented sentences. Our data showed a clear and 
dramatic decrease in performance as sentence length 
increased. In order to better characterize the mechanisms 
involved in segmentation, we attempted to fit a variety of 
computational models to our participants’ data. We initially 
implemented three boundary-finding models based on 
bigram statistics: local minima in unsmoothed transitional 
probability, smoothed TP, and mutual information. We 
additionally tested three other models which focused not on 
finding boundaries but on developing a lexicon: a clustering 
model by Swingley (2005); PARSER, an online model by 
Perruchet & Vintner (1998); and a Bayesian model by 
Goldwater, Griffiths, and Johnson (2006). 
 We found that the Bayesian model—GGJ2006—achieved 
a significantly higher fit to the human empirical data than 
any of the other models, reflecting the change in both target 
and distractor probabilities under the model across different 
sentence length conditions. Surprisingly, the next highest-
performing models were the three based on simple bigram 
statistics: TP, smoothed TP, and MI. These models were 
very nearly equivalent to one another once they had been fit 
to the data, and they correctly predicted the decrease in 
performance as sentence lengths increased, although the 
shape of the predicted curve did not exactly match the 
empirical data. Finally, neither PARSER nor Swingley2005 
adequately fit the human data, although they failed for 
different reasons. Swingley2005’s weakness was its extreme 
sensitivity to small differences in frequency combined with 
its deterministic character. PARSER’s weakness, in 
contrast, may have been its excessive variability, which 
made evaluating the scores of distractor items quite difficult.  
 The success of the Bayesian model in fitting our empirical 
data suggests several conclusions, both about modeling and 
about segmentation. First, two of the lexicon-finding 
models, PARSER and GGJ2006, have the property of 
assigning varying scores to target words depending on the 
model’s degree of confidence in that word; this property 

seems useful in models which make contact with other 
aspects of the word learning task and should be pursued in 
future modeling. Second, the close correspondence between 
the predictions of the Bayesian model and the human data 
suggests that there may be a congruence between the 
assumptions of the model and the assumptions of the human 
word learning system.  
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