-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

A type system for statically detecting spreadsheet errors

Citation for published version:

Ahmad, Y, Antoniu, T, Goldwater, S & Krishnamurthi, S 2003, 'A type system for statically detecting
spreadsheet errors'. in Automated Software Engineering, 2003. Proceedings. 18th IEEE International
Conference on. pp. 174-183., 10.1109/ASE.2003.1240305

Digital Object Identifier (DOI):
10.1109/ASE.2003.1240305

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Automated Software Engineering, 2003. Proceedings. 18th IEEE International Conference on

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 20. Feb. 2015

https://core.ac.uk/display/28970567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ASE.2003.1240305
http://www.research.ed.ac.uk/portal/en/publications/a-type-system-for-statically-detecting-spreadsheet-errors(cfcbeddf-0f4c-419e-8c99-f126833252e8).html

Ahmad, Y., Goldwater, S.,
detecting spreadsheet errors.

Antoniu, T., & Krishnamurthi, S. (2003). A type system for statically
2003. Proceedings. 18th IEEE

10.1109/ASE.2003.1240305

In Automated Software Engineering,

International Conference on. (pp. 174-183). doi:

A Type System for Statically Detecting Spreadsheet Errors*

Yanif Ahmad Tudor Antoniu Sharon Goldwater
Shriram Krishnamurthi
Computer Science Department, Brown University, Providence, RI 02912, USA

{yna,taj,sgwater,sk} @cs.brown.edu

Abstract

We describe a methodology for detecting user errors in
spreadsheets, using the notion of units as our basic elements
of checking. We define the concept of a header and discuss
two types of relationships between headers, namely is-a and
has-a relationships. With these, we develop a set of rules
to assign units to cells in the spreadsheet. We check for
errors by ensuring that every cell has a well-formed unit.
We describe an implementation of the system that allows the
user to check Microsoft Excel spreadsheets. We have run
our system on practical examples, and even found errors in
published spreadsheets.

1. Introduction

A spreadsheet is a program. That is, not only is the
utility—such as VisiCalc [4] or Microsoft Excel [10]—that
creates the spreadsheet a program, but so are the individual
spreadsheets that we use the utility to implement. Even the
humblest spreadsheet user writes simple formulas to com-
pute results and maintain consistency between groups of
data. These formulae are user programs.

Not only are spreadsheets programs, they are increas-
ingly one of our most popular programming languages.
Millions of users employ spreadsheet utilities on a regu-
lar basis. The wealth of features and tools in these utilities
lets users perform several complex operations ranging from
“what if” calculations to limited forms of database manage-
ment. Because of their powerful operators, they are used
not only in business applications [16], but in some forms of
mathematical and scientific computing [14], both to teach
students [7] and to build applications [15].

The widespread use of spreadsheet utilities has an unfor-
tunate consequence: Many users have relatively little for-
mal education in computing. Many of them learn to use

*Research partially supported by NSF grants ESI-0010064, ITR-
0218973, SEL-0305949 and SEL -0305950.

spreadsheet utilities primarily by trial-and-error, by copying
spreadsheets and formulae from others, and so on. Conse-
quently, they are not trained to recognize common program-
ming errors, and may thus fail to spot mistakes. Sociologi-
cally, it is also possible that some are more prone to trust the
output of a program because it is “from the computer”, not
fully realizing the ways in which their actions can corrupt
that output.

Unfortunately, spreadsheet utilities are often quite poor
at detecting and reporting errors in user spreadsheets. There
are many possible reasons for this: the desire to minimize
confusing output; the expectation that spreadsheets will re-
main modest, not grow into large programs; and the dif-
ficulty in identifying errors and reporting them meaning-
fully. Sadly, this lack of checking means a great number
of spreadsheets are actually buggy [11]. As spreadsheet
programs grow, and business decisions and workflows in-
creasingly rely on their output, these errors assume critical
importance.

Indeed, the problems with spreadsheets are also a soft-
ware engineering problem. Spreadsheet utilities are in-
creasingly accessible to external programs through pow-
erful interfaces, such as those defined for Microsoft Ex-
cel in COM [9]. This, combined with the growing desire
to cobble applications from fragments in different domain-
specific languages, means the reliance on spreadsheets will
only grow. Therefore, the reliability of an overall soft-
ware system can increasingly be compromised by a buggy
spreadsheet.

In this paper, we tackle the problem of statically detect-
ing errors in spreadsheets. We perform an operation similar
to type-checking on the formulae of spreadsheets; follow-
ing the lead of Erwig and Burnett [2], we call this “unit
checking”. We present a collection of rules that help iden-
tify weaknesses in spreadsheets that are likely to be errors.

In addition to defining rules, we have also implemented
a unit checker. Building the checker and executing it on
several spreadsheets helped us identify problems with prior
approaches. Our unit checker operates on a mainstream
spreadsheet utility, namely Microsoft Excel. By using

v1lfass
Typewritten Text
Ahmad, Y., Antoniu, T., Goldwater, S., & Krishnamurthi, S. (2003). A type system for statically detecting spreadsheet errors. In Automated Software Engineering, 2003. Proceedings. 18th IEEE International Conference on. (pp. 174-183). doi: 10.1109/ASE.2003.1240305

COM, our checker interfaces directly with Excel without
the need for human intervention (such as asking the user
to save the contents of the spreadsheet in some other for-
mat). Excel is weaker than spreadsheet languages such as
Forms/3 [1], and provides less information to build an ef-
fective checker. Nevertheless, because we do not have the
power to change practice, we believe it is important to con-
tend with the vicissitudes of a mainstream utility to make
our work most widely applicable.

The rest of this paper is organized as follows. Section 2
motivates our work through a series of examples. These ex-
amples lay the groundwork for the formal material that fol-
lows. In particular, they present some of the subtleties that
arise in validating spreadsheets; not treating these weakens
prior work in this area. Section 3 erects a formal framework
for validating spreadsheets, presenting judgement rules for
units. In section 4 we briefly discuss some details of our
implementation. Section 5 describes the results we obtained
by testing some off-the-shelf spreadsheets. The remaining
sections present related work, directions for future work,
and concluding remarks.

2. Motivating Examples

In this section we introduce the basic concepts and de-
sired behavior of our unit checking system by providing
several (intentionally simple) examples. A very simple ta-
ble is shown in Figure 1. Intuitively, the user should be able
to add the numbers in each row and column of the table
because each row or column consists of compatible units.
For example, cells B3 and B4 are both in units of TVs, so
we can add them together to get another number in units
of TVs. We can also add cell B3 to C3, because they both
have units of the year 2001. The result, D3, will be in units
of 2001, and moreover, we can abstract over the specific
type of electronic device in each cell and determine that the
result is also in units of Electronics. On the other hand, if
the user tries to add B3 and C4 (perhaps because of a for-
mula error), this will cause a unit-checking error, because
these cells do not have either a year or a type of device in
common.

] File Edit View Insert Format Jools Data Winde

L _F5___ SIEE.
A B C 1]
1 Electranics
2 | Year TVs VCRs Total
3 2001 751 522 1273
4 2002 803 510 1313

5 ITmal 1554 1032 2566

Figure 1. Electronics Production by Year

Figure 2 shows a slightly more complicated table. Here,
TVs and VCRs are subdivided into three categories each.

& Microsoft Excel - electronics xls

B) File Edt Yiew Insert Format Jooks Dsta MWindow Help

| a0 = =
A | B c D - F G H

1 Electranics
2 Tvs WCRs
3 |Year Total Defective Olay Total Defective Olay Tot. Def.
4 2001 751 B 745 52 3 519 9
5 2002 803 7 796 510 2 508 9
6 |Total 1554 13 1641 1032 5 1027 18

Figure 2. Electronics Production Minus De-
fective Products

As before, we can perform an operation on cells B4 and
C4 because they both have units of 2001 and abstract to
units of TVs. We also want to be able to handle column H,
which contains the sum of defective TVs and VCRs. We
see that cells C4 and F4 have the unit 2001 in common.
They are also both Electronics and Defective, but they do
not have the intermediate category of either TVs or VCRs in
common. Ideally, we would like our unit system to capture
this information by assigning the result units of 2001 and
Defective Electronics.

£ Microsoft Excel - electionics. xls

] e Edt Wew Insert Format Jooks Data indk

Fi - =
A B C [i]
Ll Gross Sales
2 | Year Tws WCRs Total
3 2001 149723 95176 244898
1 2002 153072 93129 246201
5 |Total 302795 188305 491100
B
7 Costs
8 Year TVs WCRs Total
9 2001 107925 77293 185218
10 2002 109332 252 162044
11 |Total 217317 149845 367262
12
13 Profits
14 Year TVs WCRs Total
15 2001 41798 17833 59681
16 2002 43650 20477 64157

17 | Total 85478 36360 123838

Figure 3. Electronics Sales and Profits

Finally, consider Figure 3. If we follow the pattern laid
out above, D3 will have units of the year 2001 and Gross
Sales, because we will “abstract” over TVs and VCRs and
find that B3 and C3 have Gross Sales in common. This
seems slightly odd, since Gross Sales is not a supercategory
of TVs and VCRs the same way Electronics is. We also
want to subtract B9 from B3 to obtain B15, but B3 and B9
have only the subcategory TVs in common, and no common
supercategory at all.

In the remainder of this paper, we describe a unit system
that will allow us to perform all these operations, as well
as preventing errors such as adding B4 to C5 in Figure 2
(see Section 4 for the error report displayed in this case) or
subtracting C9 from B3 in Figure 3. This unit system is

insensitive to the specific arrangement of data, so that if the
user chooses to present the data in Figure 3 differently (see
Figure 4), the results of unit checking will be the same.

] fle Edt Wew Insert Fgrmat Tools Data Winck
n ¥ =
A B [> 8]

1] Vs

2 | Year Gross Costs Profits

3 2001 149723 107925 41798
1 2002 153072 109392 43660
5 |Total 302795 217317 85478
B

7 WCRs

8 Year Gross Costs Profits

9 2001 95176 77293 17883
10 2002 93129 72652 20477
11 |Total 188305 149845 38360
12

13 All Electronics

14 Year Gross Costs Profits

15 2001 244899 185218 430117
16 2002 246201 182044 420245

17 | Total 491100 367262 858362

Figure 4. Electronics Sales and Profits: Alter-
native Layout

3. TheUnit System

We now proceed to discussing our unit system, given the
previous examples of the desired behaviour of our checker.
First we describe our model of spreadsheets, defining key
concepts such as headers and relationships. We then intro-
duce units, the basic elements of our system upon which er-
ror checking occurs. In the heart of this section, we present
rules to govern how units may be built from spreadsheet
cells, starting with simple units, before progressing to more
complex units created from cells containing mathematical
operations.

3.1. Headersand Relationships

We consider spreadsheets to be comprised of cell loca-
tions, values, and expressions. Cell locations are given by
their addresses, which we take from the Excel grid system.
Values in spreadsheets are typically numbers or strings, but
may include other data types as well. Some cells contain
expressions, and may include operations on the values of
other cells referenced by their locations. The evaluation of
an expression yields a value.

A header is a concept that defines the common unit for
a group of cells. Some cells contain values that provide
names for headers, and we call these header cells. For ex-
ample, in Figure 1, B1 is a header cell containing the value
Electronics, which is the header for TVs, VCRs, and To-
tal (in cell D2). We assume that each header cell defines
a different header, unless it contains a reference to another

header cell. For example, in Figure 1, the value Total ap-
pears in cell A7 as a total over Years and in cell D2 as a
total over Electronics. In this case, although these header
cells contain the same value, they define two different head-
ers. On the other hand, in Figure 2, the value Defective in
cell F3 comes from a reference to C3, so these two cells
define the same header.

Note that a single cell may have more than one header.
For example, cell B3 in Figure 1 has two headers, TVs and
2001. In addition, there may be cells whose headers are
not defined explicitly by header cells. Figure 3 illustrates
this situation. Here the TVs and VCRs cells are both elec-
tronic goods, so they implicitly share a header we will call
Electronics, though there is no cell to indicate this. Our cur-
rent solution to the problem of header inference is to rely
on the user to identify the correct header units. This ap-
proach is discussed further in section 4. We assume in our
unit-checking system that all headers are known.

There are two kinds of relationships that can exist be-
tween headers in our unit system. These relationships, com-
mon to many type systems, are the is-a and has-a relation-
ships. We use the is-a relationship for both instances and
subcategories, so that in Figure 1, we say that 2001 is-a (in-
stance of) Year and that TVs is-a (subcategory of) Electron-
ics. The has-a relationship generally describes properties of
items or sets. For example, we can say that in Figure 3, the
set of TVs has-a (property called) Gross Sales.

3.2. Units

Units form the basic elements upon which we perform
error checking. Every cell has a unit determined by the
cell’s headers and the relationships those headers participate
in. The simplest unit is the Top unit. Any cell that has no
headers has unit Top. Examples from Figure 3 are cells A2
(YYear) and B1 (Gross Sales). Header cells that participate in
is-a relationships have hierarchical is-a units, which we de-
note with square brackets. The unit of cell C3 in Figure
2 (Defective) is therefore written Top[Electronics[TVs]].
Since all is-a hierarchies are ultimately derived from Top,
we will generally leave Top out when describing units from
this point onward.

Non-header cells have somewhat more complex units.
The unit of every non-header cell contains exactly one has-
a relationship, which we denote with braces. This is be-
cause a has-a relationship uniquely identifies the kind of
data present in a value cell. If there were more than one
has-a relationships, we would need to represent multiple
data values in that cell, which is impossible. For the same
reason we cannot have units made entirely of is-a relation-
ships, although the has-a relationship might be implicit, as
described below. In addition, non-header cells may have an
arbitrary number of headers, each of which defines its own

is-a hierarchy. We create units with multiple is-a hierar-
chies using the & operator. For example, cell B3 in Figure
3 has two headers, 2001 and TVs. The TVs header is related
to the Gross Sales header by the has-a relationship, so the
unit for B3 is:

Electronics[TVs]{Gross Sales} & Year[2001]

Note that, like other headers, the header defining the has-a
portion of a cell’s unit may not be explicitly given in the
spreadsheet. The tables in Figures 1 and 2, for instance,
do not list this header explicitly. However, we can see by
looking at the tables that the property described by the data
is a Number or Quantity of electronic devices. That is, each
set of devices listed in the table has-a Quantity. The unit
for cell B3 in Figure 1 is therefore similar to the previous
example:

Electronics[TVs]{Quantity} & Year[2001]

Now that we have covered headers and units, we focus
our attention on the description of well-formed units. We
observe the following conventions for notation:

e I(d) is the is-a header for header d (possibly @)

e U(d) is the unit for header d

e 7(a) is the set of is-a headers for the cell at location a
e U{(a) is the unit for the cell at location a

e d — h idenitifies a has-a relationship between header
d and header h

e v(a) is the value of the cell at location a

e (= uyfus]...[un]...]]) is the short-hand representa-
tion for a hierarchy of is-a relationships

o d[u'](= wi[...[un[u']]...]) is an extension of a hier-
archy of is-a relationships, i, with another is-a rela-
tionship, u'

The four categories of elements for which we compute units
are:

1. Headers. The unit for a header is determined by its is-
a relationships. Every header itself has either zero or
one is-a headers. In the former case, the header’s unit
is Top™:

F I(d)=10
F U(d) = Top

1The bottom part of ajudgement ruleis what the unit checker is able to
infer based on the preconditions present in the top part of the judgement.
See Pierce's book [13] for a detailed explanation of type systems.

Otherwise, its unit is a concatenation of its header’s
unit and its header’s name:

FId=d Fd#0

F Ud) = dd]

U@ =4

We define the unit of a header cell to be the unit of the
header it names.

2. Non-header cells containing values (i.e. user data),
such as cell B3 in Figure 1. These cells also obtain
units from their headers. Every cell containing user
data must have at least one is-a header. Moreover,
there must be exactly one is-a header with a has-a re-
lationship. In the case where a cell has only one is-a
header, the cell’s unit is formed by concatenating its
header’s unit and header’s name as above to obtain the
is-a part of the unit, and adding the has-a header at the
end:

FZ(a)={d} ‘FUd)=4 Fd—h 3d
F U(a) = dld]{h}
When a data cell has more than one is-a header, each

is-a header defines its own is-a hierarchy, and the re-
sults are combined using ‘the & operator:

F Z(a) = {d,dy, ..., dn}
Viel.n:U(d;) =u;
F U(d) = ug Fd—h3d

F U(a) = ug[d]{h} & ui[di] & ... & up[dy)]

3. Cells containing references only, such as cell E3 in
Figure 2. The unit of a cell containing a reference is
the unit of the cell it refers to.

F v(a) =d
F U(a) =U(a")

4. Cells containing formulas, such as cell B5 in Figure 1.
These cells contain expressions involving mathemati-
cal operators, and the resulting unit for this kind of cell
depends upon the actual operator in use. We discuss
the rules needed for our unit system to support the four
basic mathematical operators (+, -,*,/) in the following
subsection.

3.3. Unitsand Mathematical Operators

In this section we motivate and describe the behavior of
our system with regard to mathematical operations. The

formal judgements for these operations are listed in full in
the Appendix. The section introduces these judgements in
a less formal way, making use of the Excel examples.

We begin with the simplest example, Figure 1. We want
to be able to add the quantity of TVs and VCRs. Intuitively,
we can think of trying to union the set of TVs and VCRs
to get a combined set. The resulting set will still represent
quantities (the has-a relation) but we want the union to be
described by only the common part of TVs and VCRs. In
our unit notation this means that:

Electronics[TVs]{Quantity} +
Electronics[VCRs]{Quantity}

when unit-checked should yield:
Electronics{Quantity }

Essentially, we want to keep the has-a part unchanged and
perform a union operation, &, on the is-a part of the unit. In
general, we have:

F ui{h} F u3{h}
F di{h} + uz{h} — u1 ® ux{h}

Thus, when we add two units, if they have the same has-a
part, the result is the union of their is-a part. There is an un-
derlying principle here that is the core of the addition rule:
in order to add two units together, they must have something
in common (in this case the has-a part). Now consider the
case where the two units have a common is-a part. Here is
a variant of the example in Figure 3:

Electronics[TVs]{Costs} + Electronics[TVs]{Profits}

Clearly, we cannot perform a union operation on Costs and
Profits, because they are both properties of the same set,
namely TVs. By adding Costs and Profits, we obtain a new
property of the same set of TVs. In general, this new prop-
erty will be some irreducible combination of the two old
properties. Using the o combinator to indicate the new com-
pound property, the result of the previous equation therefore
becomes:

Electronics[TVs]{Cost o Profit}
Or, in general:

Foa{h} F a{he}
F ﬁ{hl} + 'lz{hg} — ﬁ{hl o h2}

There is only one situation that we haven’t covered yet,
the one where both the is-a part and the has-a part of the
unit differ:

Electronics[TVs]{Cost} + Electronics[VCRs]{Profit}

This equation clearly violates our principle stating that units
must have either the is-a or the has-a part in common in
order for the addition to pass the checker. Intuitively, also,
we see that this is the kind of operation we want to prevent,
as it could only result from a mistake made by the user.

We turn our attention now to the & rule, as it is an impor-
tant part of the addition operation. We quickly glanced over
it in the first example of the section, when we obtained Elec-
tronics from Electronics[TVs] @ Electronics[VCRs]. The
@ rule applied to the is-a parts of the units, and combined
them by retaining in the result only the common parts of the
two units. Judging from our first example, it might seem
that the result of the union operation will always be a more
general unit than either of the two arguments. But suppose
we want to perform a union operation on these two units:

Electronics[TVs[Defective]] &
Electronics[VCRs[Defective]]

In this case we could also say that the result should be Elec-
tronics, but we would lose information common to the two
original units: the fact that they are both defective. Instead,
our desired result is:

Electronics[Defective]

The & operation therefore combines the is-a parts of two
units creating a new unit from all the common features of
the two units, not just the most general ones.

To summarize, the addition rule applies only to units that
either have identical has-a parts, in which case the result is
a @ operation on their is-a parts; or identical is-a parts, in
which case the result is a o operation on their has-a parts.

Now that we have seen how addition works, we will de-
scribe subtraction. As with addition, we want to allow sub-
traction only between cells that have either identical has-a
or is-a parts. We begin with the first case. In Figure 2, the
Okay column for TVs requires us to subtract the following
two units:

Electronics[TVs[Total]]{ Quantity} -
Electronics[TVs[Defective]]{ Quantity}

We want our unit checker to identify the result as repre-
senting a quantity of TVs:

Electronics[TVs]{ Quantity }

We cannot be any more specific about the unit of the result,
since there is no way to know in general whether the set
resulting from a subtraction operation contains any items
of the subtracted type. In other words, we may not have
subtracted all the defective TVs from the original set. We
only know that, since both original sets were types of TVs,
we must still have a set containing only TVs (of some type).

This result is satisfying, since it exactly mirrors the behavior
of addition, where we apply & operator to the is-a parts.

Now consider subtracting two units with a common is-a
part, as in Figure 3, where the data in the Profit column is
given by:

Electronics[TVs]{Gross Sales} -
Electronics[TVs]{Costs}

As with addition, the result is the combination of the is-
a part, Electronics[TVs], and a new property derived from
Gross Sales and Costs:

Electronics[TVs]{Gross Sales o Costs}

Having seen how addition and subtraction work, we can
conclude that any binary operator must correctly handle two
cases: identical is-a parts and identical has-a parts. In the
case of identical is-a parts, the result of the operation is al-
ways a compound of the two different has-a parts. For ex-
ample, in the computation for the area of a rectangle:

Shape[Rectangle]{Length} x
Shape[Rectangle]{ Width}

It is obvious we want to remember that the result is given
by the combination of Length and Width:

Shape[Rectangle]{Length o Width}

We conclude, therefore, that when dealing with identical is-
a parts, any binary operator returns a o combination of the
has-a parts along with the is-a part as the result.

Is the case of identical has-a parts also uniform across
all binary operators? We have seen that both addition and
subtraction require the use of the @ operator on the different
is-a parts. But suppose we have the following equation:

Shape[Rectangle]{Length} x Shape[Square]{Length}

Clearly it does not make sense to have Shape{Length} as
the result. In fact, there is no satisfactory combination of
the two is-a parts that will accurately describe the result.
However, we do not want to flag this as an error, since there
might be a legitimate reason for the user to perform this op-
eration. Therefore, when dealing with any binary operator
other than + or -, the result of combining two units with dif-
ferent is-a parts and the same has-a part is always Top{h}
(where h is the common has-a part).
To obtain meaningful results from constructs such as:

Shape[Square]{Length} x Shape[Square]{Length}

the identical is-a combination, o, takes precedence over the
identical has-a combination, & or Top.

Finally, we will describe the and(&) operation. As noted
in section 2, the unit of cell B3 from Figure 1 is:

Electronics[TVs]{Quantity} & Year[2001]

The unit of a value cell that has more than one header is
given by the & constructor on the units inferred from each
individual header. There are restrictions on the types of the
units on which we can perform &.

Each header conveys a distinct property for the data in
the cell, which means that a well-formed & unit consists of
different, header inferred, units containing only is-a parts,
with only one of them potentially having a has-a part. Since
there is only one has-a part at most, the difference applies to
the is-a parts of the units. Two is-a parts are different if and
only if their top labels are different because only then do
the two is-a parts represent disjoint data properties. The &
operation is idempotent to handle the special case when two
is-a parts are identical. For example, Electronics and Year
are clearly different so it is correct to join them through &.
On the other hand,

Electronics[TVs] & Electronics[VCRs]{Gross Sales}

does not represent a valid & unit operation because both
headers represent Electronics and that contradicts our re-
quirement that the headers differ.

The & operation is distributive with respect to any other
binary operation between units. For example, in Figure 1,
cell B5 has unit:

Electronics[TVs]{Quantity} & Year[2001] +
Electronics[TVs]{Quantity} & Year[2002]

which reduces to:

Electronics[TVs]{Quantity} &
(YYear[2001] + Year[2002])

We want the unit checker to perform the addition on the
two is-a units as if there were an empty has-a part, yielding
the following result:

Electronics[TVs]{Quantity} & Year

We thus handle the reduction of Year[2001] +
Year[2002] using the special case of the identical has-a rule
for binary operations, the one with empty has-a parts.

4. Implementation

Our unit checker is implemented in the DrScheme pro-
gramming environment [6]. It has three components: a
GUI, an 1/O layer that mediates the communication with
Excel, and the unit checker itself.

Figure 5 presents the GUI interface. The user can start
an instance of a desired spreadsheet with the Load Fi |l e
button. Anal yze will check the loaded spreadsheet once
it is annotated with the right units. In earlier sections we

assumed the existence of a header inference algorithm to
correctly annotate cells with units based on header labels.
Header inference is a difficult artificial intelligence and nat-
ural language processing problem. Our current implemen-
tation does not have such an algorithm. Instead, the value
cells are annotated with the right units through the GUI.
A range of cells is selected either with the mouse in Ex-
cel, or textually entered inthe Cel | (s) Range(s) field
in the GUI, and their corresponding unit in the Cel | ('s)
Uni t s field. The Assi gn Uni t s button updates, in Ex-
cel, the comment field of every cell from the range with the
assigned unit. In the future we plan to provide a more au-
tomated process for header inference. To that end, we may
do semantic analysis on headers to determine relationships
with the aid of WordNet [5].

| CloseFiel And_uzel M

Unit Checker Stabus:

Feady to lnad Excel file
Loaded file: C:haaaEleckonics]. sl

Cellls) Flangels] | [|

Cellfz) UMs'l [Electiamcs{Tws]ET atall |

Assign Units |

Figure 5. Unit Checker GUI

We use the MysterX [18] Component Object Model
(COM) extension to DrScheme to communicate with Ex-
cel. Although Excel has a complex COM model (over 400
COM interfaces), we only need a few of those for our tool.
Examples of the interfaces we need are: _Appl i cati on,
Wor ksheet, _I range. Each of these has methods and
properties through which the application can mimic any
user interaction with Excel. Our 1/O layer implements the
functionality needed by the tool (such as coloring cells,
adding comments to cells, etc.) by using MysterX methods.

Unit errors are reported back to the user by coloring the
offending cells. Figure 6 is similar to Figure 2 except we
have deliberately introduced an error in cell D5. For each
error cell, the user can display the input cells to the formula
in that cell by right clicking the mouse. In Figure 6 the
input cells for D5 are B4 and C5. There are two kinds of er-
rors reported back. The unit errors are those where the unit
checker identified a problem in the formula for the cell, as
is the case with cell D5. There are also propagation errors.
Those are cells that use a reference to another cell flagged
by the unit checker as containing an error.

Our judgements do not dictate an order on checking a
spreadsheet. In our current implementation we assign units
to value cells through the GUI. All the other cells will

05 - & =B4-C5
A B [p | E F G H

1 Electronics

2 Vs VCRs

3 Year Total Defective | Ohkay Total | Defective | Chkay Tot. Def.

4 2001 5 745 527 3 519 9
B 2o 803 744 510 7 508 el
& |Total 1554 13 1841 32 5 1027 18
g [Electronics[TVs |[{ Total } &

g ([Year[2001]]

10

11 [Electronics[TVs | { Defective } &

12 [Year[2002]]

13

14

15 ;serror: neither has-a nor is-a are equal in

16 [Electronics[TWs]{ Total} & [Year[2001]]

17 AND

o [Electronics[TVs]{Defective} & [Year[2002]]
0 cell formula = B4 - C5

Figure 6. Unit Error

contain formulas and therefore their units will be inferred.
From Excel we extract a list of all the formulas and then unit
check each one in a recursive manner by computing units
for subformulas first and then combining them by using our
inference rules. Since Excel provides cycle detection, we
do not concern ourselves with circularity and furthermore
this approach is guaranteed to terminate.

Excel has over 300 pre-defined functions. These func-
tions can be grouped together based on their domains. For
example there are financial functions, matrix operators,
trigonometric functions, etc. We chose representatives of
each of these groups and implemented inference rules for
them based on our base inference rules. In order to be fully
functional, our checker would need to implement judge-
ment rules for all the functions; this is an important step
for transforming our checker from a prototype to a product.

5. Experimental Validation

Designing a type system is not hard; the difficulty is in
designing one that (a) actually catches errrors, while (b) not
rejecting too many meaningful programs, all while (c) run-
ning in reasonable time. The best validation of our unit
checker would be to run it against off-the-shelf spreadsheets
and check for all three criteria. To this end, we used the ex-
amples in a book by Filby [14] on spreadsheets for science
and engineering. (None of the spreadsheets had any unit
annotations. We used our tool to annotate the value cells in
those spreadsheets with the correct units.) At the outset, we
did not expect to find errors; we were primarily interested
in whether the checker would reject any (correct) spread-
sheets, and secondarily in how quickly it would run.

The table in Figure 7 describes the spreadsheets we used
to test our unit checker, and the checker’s performance on

| Author | Description

| Size | Time | COM [Checker [Error?]

S. Leharne Acid Base Titration 109 0:24 0:23 0:01
W.J. Orvis Oscillations Frequency 43 0:19 0:18 0:01
Oscillations Euler Method 345 1:52 1:51 0:01
A.A. Gorni Cubic Crystalline Systems X-Ray 83 0:40 0:39 0:01
Diffraction
W.J. Orvis Electron Drift \elocity in GaAs 44 0:16 0:15 0:01
J.P. LeRoux Cleavage Strike Direction 236 1:16 1:13 0:03 X
Palaeocurrent 284 1:40 1:38 0:02
Untilt 53 0:22 0:21 0:01
Chi-square 41 0:16 0:15 0:01
A.A. Gorni Grain size of microstructure 40 0:23 0:22 0:01
E. Neuwirth Feigenbaum Diagram 1000 2:58 2:57 0:01
E. Neuwirth Simple Model 54 0:07 0:06 0:01
Parametric Model 55 0:10 0:09 0:01
Complex Model 56 0:13 0:12 0:01
Complex Model with Table 75 0:19 0:18 0:01
Complex Model with Stepwidth 57 0:08 0:07 0:01
\olterra-Lotka Model 8004 | 14:59 | 14:38 0:21
Planets 4001 | 12:34 | 12:18 0:16
Planets Halfstep 4001 | 10:24 | 10:10 0:14
W.J. Orvis Blackbody spectral emission 507 0:53 0:52 0:01
A.A. Gorni Viscometric molecular weight 41 0:47 0:46 0:01
A.A. Gorni Point count method 26 | 0:18 | 0:17 0:01

Figure 7. Experimental Results

them. The size given is the number of non-empty cells. The
“Time” column shows the total time taken by the checker.?
This time is largely an artifact of our use of the COM Au-
tomation interface to interact with Excel; COM Automa-
tion is known to be slow, and its overhead can be elimi-
nated by using COM Direct Interfaces or .NET. The next
two columns indicate the division of time between the COM
interface and the actual checker, which clearly demonstrates
that most of the time is spent interacting with Excel, not in
the core of the checking procedure.

The last column, “Error?”, indicates whether our checker
claimed to find an error in the corresponding spreadsheet.
The table shows that it did report one purported error. To
our surprise, this is a genuine error in the published spread-
sheet! The author of that spreadsheet uses an Excel oper-
ator, FREQUENCY, that takes two ranges of cells as argu-
ments. The second range is incorrect; one of the cells it
refers to contains no data.

To run our checker, we must annotate value cells with
units. This took very little time and effort, because we used
the header annotations on the tables. In particular, we did
not need to understand the problem domains to make these
annotations. Our experience therefore suggests that the unit
checker offers great promise to be a useful tool for real-
world users of spreadsheets.

2All times are in minutes;seconds.

6. Redated work

The most closely related work is the unit checker of Er-
wig and Burnett [2]. While based on similar principles,
our systems are significantly different. Their work does not
distinguish between the is-a and has-a relationships, which
makes their type system much weaker and much more likely
to incorrectly report errors. They ignore operators such as
subtraction, which are of obvious importance. Furthermore,
they do not provide an implementation or experimental val-
idation, which we believe would have easily identified these
weaknesses. (They discuss a prototype implementation in a
subsequent paper [3], but it is not graphical, does not inte-
grate cleanly with a utility like Excel, and suffers from the
weaknesses of their typing rules.)

To highlight the differences in the core of the unit sys-
tem, we present the following example of a reasonable
spreadsheet that successfully passes our checker but would
fail in that of Erwig and Burnett [2]. In Figure 4, we re-
arrange the tables in Figure 3, and assume that the header
inference is able to infer that TVs and VCRs are both types
of electronic goods. Consider the operation in cell B15.
First we discuss how Erwig and Burnett’s checker would
operate in this situation. In their system, cells B3 and
B9 have units All Electronics[TVs[Gross]] and All Elec-
tronics[VCRs[Gross]] respectively. The subsequent addi-

tion operation in cell B15 fails, because the hierarchies of
the two units differ in their second components (TVs vs.
VCRs), despite the common third component of Gross. The
header inference could conceivably reverse the hierarchy
of the units. Cells B3 and B9 could be assigned units of
Gross[TVs] and Gross[VCRs], enabling cell B15 to pass
the unit checking. However the computation of profits, in
cell D3 for example, would now fail (Cost[TVs] cannot be
subtracted from Gross[TVs]). Our system handles this case
in exactly the same manner as described above. Cell B15
turns out to be an addition of:

All Electronics[TVs]{Gross} +
All Electronics[VCRs]{Gross} =
All Electronics{Gross}

Cell D3 is:

All Electronics[TVs]{Gross} -
All Electronics[TVs]{Cost} =
All Electronics[TVs]{Gross o Cost}

This demonstrates that despite any rearrangement of the
tables, providing the header inference is able to determine
the relationships in the manner above, our rules may be con-
sistently applied. Erwig and Burnett’s system is unable to
handle an intuitive way of tabulating data, and no rearrange-
ment of headers is able to account for the differences in the
is-a and has-a relationships.

There has been other work tackling the specific problem
of detecting errors in spreadsheets. Rothermel et al. [17]
apply an adaptation of testing mechanisms for imperative
programs to spreadsheets. This aims at detecting the most
common of spreadsheet errors, cell reference errors in cell
expressions [12], through the use of data flow adequacy cri-
teria. The authors define the data flow test adequacy criteria
employed, in terms of definition-use (du) associations that
are involved in visible cell outputs. Relying on user inter-
action to validate the values in cells, the system marks du-
associations as having been exercised, and visually reflects
the percentage of all du-associations exercised per cell with
shades of colors. Rothermel et al. apply this kind of test-
ing to the Forms/3 spreadsheet language [1], whereas our
system pertains to Excel spreadsheets. Specifically, Excel
spreadsheets are able to detect the use of blank cells in cell
expressions. Thus the types of errors we are able to detect
are of a different nature, and this belief is reinforced if we
consider the following example. In Figure 1, suppose the
cell B5 contained the cell expression B3 + C4. Our unit
system would flag an error due to the addition:

Electronics[TVs]{Quantity} & Year[2001] +
Electronics[VCRs]{Quantity} & Year[2002]

However the system in [17] would not be able to detect this
problem in Figure 1.

Kennedy [8] describes an extension of strongly-typed
programming languages to include polymorphic dimension
types for values within the language, stemming from a simi-
larity between well-typedness of programs and dimensional
consistency of mathematical expressions. The author intro-
duces the concepts of base dimensions such as length, mass,
time, etc. The counter to these are derived dimensions, for
example acceleration which can be thought of as length di-
vided by time squared. Units are also discussed. These units
are not to be confused with the units we check, but are units
of measurement, such as meters, or kilograms. Base units
are used to measure the base dimensions. Alternative units
of measurement are just a scaling of base units.

7. Conclusion and Future Work

In this paper we have presented a methodology for de-
tecting errors of a semantic nature in spreadsheets. We have
introduced the concept of the is-a and the has-a relation-
ships, whose essence is found in a large number of type
systems, into the domain of spreadsheets. In the process, we
have enhanced the completeness of our system in compari-
son to existing work, by broadening the range of units that
may pass unit checking. This is important because users
will disable a checker if it reports errors on valid inputs.

Our implementation provides a simple interface to unit
check an Excel spreadsheet. While we have not delved
deeply into the problem of header inference for a wide
range of spreadsheets, our unit checker is able to detect er-
rors in many cases without any additional information than
that present in the spreadsheet, assuming header inference
which we currently do through manual annotation.

There are many directions for future work. To make this
system truly practical, we must complete three tasks. The
first is to support the entire suite of Excel’s built-in oper-
ators, so that we can handle all spreadsheets. The second
is to perform a detailed study with typical users to assess
the strengths and weaknesses of our interface. Finally, we
have to make the overall running time of the checker much
smaller so that users can integrate this tool in their devel-
opment cycle. There are at least two major remaining re-
search problems. One is building a non-trivial header infer-
ence engine, preferably one that (a) makes significant use of
natural language processing techniques to maximize the ac-
curacy of its inferences, and (b) queries users to validate its
inferences and uses their feedback to adaptively improve its
output. The other is to integrate Kennedy’s [8] dimension
checking into our system.

References

[1] M. M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Rech-
wein, and S.Yang. Forms/3: A first-order visual language to

(2]

(3]

[4]
5]

(6]

[7]

(8]

(9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

explore the boundaries of the spreadsheet paradigm. Journal
of Functional Programming, 10(2):155-206, 2001.

M. Erwig and M. Burnett. Adding apples and oranges. In
Practical Aspects of Declarative Languages (PADL), 2002.

M. Erwig and M. Burnett. Visually Customizing Inference
Rules About Apples and Oranges In 2nd IEEE Interna-
tional Symposium on Human Centric Computer Languages
and Environments, 2002.

D. Bricklin and B. Frankston. VisiCalc.
http://www.bricklin.com/visicalc.htm.

C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krish-
namurthi, P. Steckler, and M. Felleisen. DrScheme: A pro-
gramming environment for Scheme. 12(2):159-182, 2002.

A. I. Katz. Academic Computing In U.S. Colleges And Uni-
versities: A Survey. Journal of Information Systems Educa-
tion, 4(4), December 1992.

A. Kennedy. Dimension types. In D. Sannella, editor, Euro-
pean Symposium on Programming, volume 788, pages 348—
362, Edinburgh, U.K., 11-13 1994. Springer.

Microsoft Corporation. Microsoft Component Object
Model. http://www.microsoft.com/com.

Microsoft Corporation. Microsoft Excel.
http://www.microsoft.com/excel.

R. Panko. Finding Spreadsheet Errors: Most spreadsheet
models have design flaws that may lead to long-term miscal-
culations. In InformationWeek, May 1995.
http://www.informationweek.com/529/29uwfw.htm.

R. Panko and R. Halverson. Spreadsheets on trial: A survey
of research on spreadsheet risks. In Twenty-Ninth Hawaii
International Conference on System Sciences, January 1996.

B. C. Pierce. Types and Programming Languages.
MIT Press, 2002.

G. Filby. Spreadsheets in Science and Engineering.
Springer, 1995.

A. Ricadela and J. Maselli. To The Middle: Big ERP ven-
dors haven’t done well in the midmarket. Can Microsoft do
better?, May 2002.
http://www.informationweek.com/story/IWK20020-
51750043.

E. Colkin. Nasdaq Giving XBRL A Try. In Information\W\eek,
August 2002.
http://www.informationweek.com/story/IWK20-
020806S0004.

G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov.
A methodology for testing spreadsheets. ACM Transactions
on Software Engineering and Methodology, 10(1):110-147,
2001.

P. A. Steckler. MysterX: A Scheme toolkit for building in-
teractive applications with COM. In Technology of Object-
Oriented Languages and Systems, pages 364-373. IEEE,
August 1999.

10

A. Appendix: Unit inferencerules

- V = any binary operator
- V* = any binary operator except for +/-
- All other relations are defined in section 3.2

Unit construction rules:

Headers:
FI(d)=10
F U(d) = Top
Fdelld),Ud)=1u
F U(d) = d[d']
Values:
F deZ(a) FUWd) =14 d—h
F U(a) = dld]{h}
F {d,di,...,dn} =Z(a), Vi€ 1l.n: U(d;) = u;

U(d) =iy, d—h
F U(a) = in[dl{h} & ii[di] & .. & tin[dn]

References:
F v(a) =a
F U(a) =U(a’)
®-rule
_i = 01[... [ci[xl ---[-'Ek[CH—l [c]]]]]]]

U = 01[. .. [Ci[yl . [yl[Ci+1 . [C]’] ..]] ..]] ..]

F oy F 1>0;7>1 k1>0
F _i@lfz—)cl[[cz[c]]]]
&-rule:
&=l .. [ui]...]
T=wv1]...[v5]..]
|—ﬁ |—17U17EU1
Fa&v

Simplification rules:

i & (1) & 1i%)

w1 & (uh V u3) = ui&unr V Ui &us
Identical is-a rule:

Foa{h} F a{h2}
F @{h1}vi{ho} — @{h1 o ha}

—

Identical has-a rule, has-a can be empty:

Foai{h} F @k}
F a3 {h) £ ik} — 0 © s {h}
Foa{h) F a{h)

F ai{h}v*uzr{h} — Top{h}

