

Edinburgh Research Explorer

PARTANS

Citation for published version:
Lutz, T, Fensch, C & Cole, M 2013, 'PARTANS: An autotuning framework for stencil computation on multi-
GPU systems' ACM Transactions on Architecture and Code Optimization, vol 9, no. 4, 59. DOI:
10.1145/2400682.2400718

Digital Object Identifier (DOI):
10.1145/2400682.2400718

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
ACM Transactions on Architecture and Code Optimization

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28970498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2400682.2400718
http://www.research.ed.ac.uk/portal/en/publications/partans(82cb78c9-afcd-4e38-9379-b81e3fb92174).html

59

PARTANS: An Autotuning Framework for Stencil Computation on
Multi-GPU Systems

THIBAUT LUTZ, CHRISTIAN FENSCH, and MURRAY COLE, University of Edinburgh

GPGPUs are a powerful and energy-efficient solution for many problems. For higher performance or larger
problems, it is necessary to distribute the problem across multiple GPUs, increasing the already high
programming complexity.

In this article, we focus on abstracting the complexity of multi-GPU programming for stencil computation.
We show that the best strategy depends not only on the stencil operator, problem size, and GPU, but also on
the PCI express layout. This adds nonuniform characteristics to a seemingly homogeneous setup, causing
up to 23% performance loss. We address this issue with an autotuner that optimizes the distribution across
multiple GPUs.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Design Studies; D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel programming

General Terms: Experimentation, Performance

Additional Key Words and Phrases: GPGPU, multi GPU, optimization, stencil computation

ACM Reference Format:
Lutz, T., Fensch, C., and Cole, M. 2013. PARTANS: An autotuning framework for stencil computation on
multi-GPU systems. ACM Trans. Architec. Code Optim. 9, 4, Article 59 (January 2013), 24 pages.
DOI = 10.1145/2400682.2400718 http://doi.acm.org/10.1145/2400682.2400718

1. INTRODUCTION

GPGPUs have emerged as powerful and energy-efficient compute devices for many
kinds of problems. To improve the overall compute power of a system, vendors have
started to offer systems with multiple GPUs, such as the TYAN FT72B7015 (8 GPUs)
or the Dell PowerEdge C410x (16 GPUs). These systems reduce the computation time
or allow the computation of larger problem sizes. However, exploiting the full com-
pute capability of such systems efficiently presents a difficult programming challenge.
Ensuring efficiency in a single GPU system is already complicated due to the complex
memory model. Doing so for multiple GPUs, with data distribution and synchronization
decisions critically impacting performance, requires additional effort of the program-
mer. This makes automation an attractive option.

In this article, we focus on the abstraction and optimization of multi-GPU program-
ming for a particular class of compute pattern: stencil computation. Stencil computa-
tion is a computation pattern on an n-dimensional volume, where each point is updated
(usually iteratively) as a function of its neighboring elements. This pattern is found
in many application domains, such a quantum physics, weather prediction, and image
processing. We present a framework that automatically distributes and optimizes such

This work is supported by the Engineering and Physical Sciences Research Council (EPSRC). This is a new
article, not an extension of a conference paper.
Authors’ addresses: T. Lutz (corresponding author), C. Fensch, M. Cole, School of Informatics, Uni-
versity of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom; email: {thibaut.lutz,
c.fensch}@ed.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1544-3566/2013/01-ART59 $15.00

DOI 10.1145/2400682.2400718 http://doi.acm.org/10.1145/2400682.2400718

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:2 T. Lutz et al.

computations across multiple GPUs. We achieve a high level of abstraction, completely
hiding the underlying GPU programming and optimization, leaving the user to focus
only on the problem-specific implementation.

We evaluate our framework using an extensive range of stencil computations on dif-
ferent GPUs (NVidia GTX 590 and AMD Radeon HD 5970 dual GPU graphics cards)
and different motherboard chipsets (Intel P67 and Intel X79). We extend the applicabil-
ity of our results by additionally experimenting with synthesized application variants,
in which the granularity of the local GPU computations is under our control. This en-
ables us to investigate the impact of future improvements in single GPU performance
and optimization.

The contributions of this article are as follows.

—We perform an exhaustive evaluation of the large optimization space. This enables
us to understand the importance and interaction of various application and machine
characteristics, and to measure the performance and overheads of our optimization
strategies against those of an idealized oracle. Our investigation of the optimization
space shows that the best strategy depends not only on characteristics of the stencils
employed in an application, the problem size, and the GPU specification, but also on
the detailed configuration of the connection mechanism (in our systems, PCI express).
This aspect of our work is completely novel. We discover that the PCI configuration
adds nonuniform characteristics to a system that otherwise seems homogeneous.

—We develop a family of autotuning heuristics, which tune the number and configura-
tion of GPUs, data distribution, and exchange strategies, in ways that are sensitive to
the characteristics of the underlying communication configuration. No previous work
has attempted to account for these factors systematically. Our heuristics achieve a
very high proportion of the optimal possible performance, often to within 5%. Our
analysis carefully examines the contributions made by both offline and online tuning
components.

The rest of this article is structured as follows: Section 2 gives a concise overview of
GPGPU technology, stencil computation, and PCI express communication. In Section 3,
we present our framework and the issues involved in optimizing stencil computations
on multiple GPUs. Section 4 lists our objectives, while Section 5 gives an overview of
the selected applications and architectures. In Section 6, we present our analysis of the
optimization space and describe our autotuning mechanism. Section 7 presents related
work and we conclude in Section 8.

2. BACKGROUND

2.1. GPGPU Technology

Advances in graphics processing units (GPUs) have provided graphics programmers
with increasing flexibility in algorithm design. This flexibility has increased to such
an extent that it gave birth to the field of General-Purpose computation on Graphics
Processing Units (GPGPU). Originally, each GPU vendor developed its own propriety
programming interfaces for its products (e.g., C for CUDA [NVIDIA 2012] or the ATI
Stream SDK [AMD 2012]). Later, the OpenCL standard has been proposed to provide
a unified programming interface [Khronos Group 2008]. It is the combination of a
programming language (very similar to C99) and a runtime environment. Similar to
C, OpenCL provides quite a low-level programming model [Khronos Group 2011].

OpenCL is not designed as a general-purpose programming language, but focuses
on compute-intensive or data parallel kernels. The OpenCL C programming language
is used to describe these kernels. Due to the vast difference in supported hardware
platforms and the fact that the actual hardware platform is only known at runtime,

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:3

OpenCL uses a runtime compilation approach. The kernels are then dispatched by the
runtime system to an OpenCL device, where the kernel executes asynchronously from
the host program.

One particular interesting feature of OpenCL is its support for dependencies between
tasks. A task in OpenCL can either be a compute operation, or a data transfer between
the host and the GPU. For each task, OpenCL allows to specify tasks that need to be
completed before the task can be started. In particular, in a multi-GPU system a task
can depend on a task that has been issued to a different GPU. This greatly simplifies
the programming effort that is required to synchronize execution on multiple GPUs.
It also simplifies the overlapping of communication and computation, as the GPU will
execute as many tasks in parallel as its hardware is capable of, provided that these
tasks are ready for execution.

2.2. PCI Express

The PCI Express bus (PCIe) is currently the de facto standard to connect expansion
cards (such as GPUs) to the CPU and memory in a system. However unlike its predeces-
sor PCI and as its name seems to imply, PCIe is not a shared parallel bus architecture.
Instead, it uses a star shaped topology with point-to-point links that connect devices to
the PCIe root complex [PCI-SIG 2010]. Each link is composed from 1 to 32 full duplex
PCIe lanes, determining the bandwidth of the link or slot. The number of lanes is
usually given as a factor when one refers to the slot, e.g., PCIe x8 slot or PCIe x16 slot.
However, this is not the only information required to reason about the available band-
width to communicate with a GPU. Most systems have multiple PCIe root complexes,
for example one in the chipset and one in the integrated I/O hub of processor. These
hubs are then linked by other means, for example QPI (Quick Path Interconnect) or
DMI (Direct Media Interface). Finally, motherboard and graphics card manufactures
might use PCIe multiplexers or switches to increase the number of devices that can be
physically connected to one PCIe link. All these factors introduce nonuniformities into
the system. Thus, a quad GPU system with four identical graphics cards might not
behave as homogeneously as one could expect. An example of such a complex system
is the TYAN FT72B7015: it utilizes two Intel 5520 Southbridge chips each with an
I/O hub that supports two PCIe x16 links. These links are then doubled using PCIe
switches to support up to 8 GPUs in the system.

As another example, one of our experimental systems uses an ASUS Maximus IV
motherboard with Intel’s P67 chipset. For a dual GPU configuration, the board supports
two configurations: two PCIe x8 links that connect directly to I/O hub in the processor;
or, two PCIe x16 links that connect via an Nvidia NF200 PCIe multiplexer. During our
research, we found it impossible to get any detailed information about the capabilities of
these PCIe switches. Information is only available to OEMs after signing nondisclosure
agreements.

In this article, we will show that while these switches are transparent to the user
from a logical point of view, they cannot be ignored when one is aiming for optimum
system performance.

2.3. Stencil Computation

Stencil computations arise naturally in a wide range of application areas, predomi-
nantly within computational science and image processing. They form a constrained
subclass of the geometric decomposition pattern recognized by Keutzer et al. [2010]
and Mattson et al. [2004]. Stencil computations share characteristics that constrain
both the data involved and the control flows that may be applied. With respect to data,
the primary data structure is multidimensional and regular, possibly with toroidal
wrap-around. We call this data structure the volume. Each point of the volume stores

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:4 T. Lutz et al.

(a) (b)

(c)

(d)
(e)

Fig. 1. A fundamental property of stencil computation is that data is drawn into the origin of the stencil,
as shown by the arrows in (a). Thus, the only element that is written to is the element at the origin of the
stencil (shown in green/dark gray). (a)–(e) show possible stencil shapes.

data in a number of arbitrary strongly typed fields. With respect to control flow, pro-
cessing of the volume takes the form of a sequence of applications of stencil operations.
A stencil operation updates the values of each point as a function of its value and the
values at nearby points. The points considered “nearby” are defined by a stencil shape,
which is uniform across all points for which it is well-defined. Figure 1 illustrates a
selection of stencil shapes. The computation performed at each point is uniform and
position independent (except perhaps at boundaries) but may be data dependent. The
computation at a point is not permitted to update values at any other points. As shown
in Figure 1(a), the computation is only allowed to draw in data from its neighbors.

There are several different types of stencil computation. In the simplest case, a
single stencil is applied to the volume once, e.g., edge detection in image processing.
Some applications use a composition of several stencils operations that are applied in
sequence, e.g., a sequence of image processing filters. More complex applications apply
a stencil (or a sequence of stencils) repeatedly. This is either done for a predefined
number of steps or until a certain convergence criteria is met. The first case is often
associated with simulations that run for a number of time steps. The second case is
common for iterative solvers, e.g., for partial differential equations.

2.4. Multiple GPU Computation

Multi-GPU systems are becoming increasingly popular. Innovations include the devel-
opment of scan-line interleave (SLI) technologies, the development of graphics cards
with several GPU chips on a single printed circuit board (PCB), and the integration of
GPUs into processor chips used in addition of an external graphics card. Motherboard
designs have also evolved to accommodate more PCIe slots to host several graphics
cards. PCIe extension devices allow users to increase this number even further. These
innovations put more and more strain on parts of the system that were not considered
to be a bottleneck in the past. Multiple cards plugged on the same slots through an
extension or multiple GPUs on a single PCB all compete for communication over the
same bus.

Using more than one GPU for computation brings several benefits. It increases the
throughput of the system and can enable computation to be performed faster as long as
the distribution overheads are kept low. Furthermore, whereas memory available on a
single device is severely limited, which in turn limits the input size of the application,
using multiple devices allows much larger problem sizes to be computed. A simple
scheme to process a large problem size works by splitting the input into chunks that
are processed sequentially on the GPU. However, this approach includes a significant
data transfer overhead as for each chunk the input has to be copied to the GPU and
updated buffers copied back. By using multiple GPUs, it becomes possible for each
chunk to reside on a GPU throughout the whole computation.

3. THE PARTANS FRAMEWORK

We have designed a framework for stencil computation that abstracts away all of the
low-level details that are required for multiple GPU programming. We have imple-
mented our framework as a template library in C++. Using C++ provides easy access

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:5

Fig. 2. Example of volume declaration and interaction. Lines 1 to 3 define a structure, which will be visible
on both the host program and the OpenCL source code. Lines 5 to 8 define the type of each element of the
volume. In this case each element has two Tuples and a float. Lines 10 and 11 create a two-dimensional
volume of dimensions x and y. Line 13 and 15 show examples of element accesses, which are type safe.

to the OpenCL runtime, which is provided in C, and enforces type safety, as opposed to
the void* style used in the OpenCL runtime library. In addition, the template mech-
anism turns many customizations into compile-time decisions, as opposed to runtime
overhead.

In this section, we describe the high-level API, give an overview of the internal
implementation strategy, and present an overview of the tuning possibilities exposed
by this design.

3.1. API Concepts

The main classes used by the user are Volume and Stencil. The Volume class provides
a homogeneous Cartesian n-dimensional space. Each point in the space stores a het-
erogeneous collection of elements called fields. A field can be a primitive data type
or a complex structure. The user can interact with the volume by setting and getting
the value of a particular field at a given coordinate. Our framework guarantees type
coherency between the host and the device by making these accesses type safe.

Figure 2 shows the declaration of a volume. In this case, the user defines a structure
using a macro that guarantees the structure will be declared in both the host C++ code
and the OpenCL C code.

In line 5–8, the user specifies the volume composition. This defines how many at-
tributes each point in the volume has and their types. An optional name can be asso-
ciated to a field to increase readability of the code. Here, each point of the volume will
be a composition of two user-defined structures and a float.

In lines 10 and 11, the volume is created using the field descriptor and information
about the dimensions. Note that the user is not required to specify memory layout,
the number of cuts, or the locality of the elements. Our framework will automatically
choose a memory layout for the volume (for instance array of structure or structure of
array) and a volume decomposition strategy depending on configuration parameters
and number of devices available.

Stencil objects capture the operations that are applied across Volumes, as shown in
Figure 3. A stencil consists of a simple element function written in OpenCL C, shown
in Figure 3(a). We provide special macros to the programmer that are used to access
neighboring points relative to the current position. Figure 3(b) explains these macros.
Figure 3(c) shows the final definition of a stencil operation. In addition to the OpenCL C
element function, the user also has to specify the fields that are read or updated by the
stencil element function. Note that a stencil can either just be a single function, or (as
in the example in Figure 3(c)) a sequential composition of functors. Composite stencil
objects simplify the expression of complex computations involving several computation
phases, each with a particular sequence of functors.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:6 T. Lutz et al.

1 void mult (g l oba l const Tuple a [] ,
2 g l oba l Tuple b [] ,
3 g l oba l float err []){
4 err [ORIGIN] = b [ORIGIN] ;
5 b [ORIGIN] . f1 =
6 (a [N 1P 0] . f1+a [N 1N 0] . f1+
7 a [N 0 1P] . f1+a [N 0 1N] . f1−
8 b [ORIGIN] . f1) / 4 . ;
9 err [ORIGIN] −= b [ORIGIN] ;
10 }

(a) Stencil Operator

(b) Neighbor macro definition

1 StencilWrapper wrapper (volume) ;
2

3 Stenci l<TupFields> s t enc i l =
4 wrapper . newCompositeStencil () ;
5

6 s t enc i l . addStencil (
7 c l code , // element function
8 ”mult ” , // entry point
9 // l i s t o f readonly f i e l d s
10 { Tuple : : a } ,
11 // updated f i e l d s
12 { Tuple : : b , Tuple : : err }) ;
13

14 s t enc i l . addStencil (
15 c l code ,
16 ”mult ” ,
17 { Tuple : : b } ,
18 { Tuple : : a , Tuple : : err }) ;
19

20 // apply 100 i t e ra t i on s
21 s t enc i l (100) ;

(c) Stencil object usage

Fig. 3. Example of a simple stencil computation that performs a Jacobi operator on one Tuple and stores the
variation in the third field. The stencil operator, shown in (a), can be defined directly in the host code using
a special macro or in a standalone text file. It uses special macros described in (b) to access the neighbors.

Fig. 4. Example of decomposition for a 2D volume. The volume is transformed if necessary, then cut into
smaller chunk. Each chunk is mapped to a GPU buffer, which is large enough to accommodate copies of
the boundary regions of the neighboring partitions, called outer halos. Their counterpart, the inner halos,
represent the neighbor dependencies. The halo buffers allow halos to dynamically change size within the
preallocated buffers.

3.2. Internal implementation strategy

Figure 4 shows how a volume is transformed and partitioned to be mapped to several
GPUs. In order to distribute a stencil computation across multiple GPUs, the volume
is split into partitions, which are then assigned to different devices. However, applying
the stencil function to elements that are at the border of the cut requires access to
elements that belong to a different partition. As this partition is stored on a different
GPU, accessing these elements directly is not advisable. Instead, it is common practice
to create a copy of these elements at the border of each partition, called an outer halo.
The elements in each partition that are used as the outer halo of another partition are
called the inner halo. As the size of the inner and outer halo is the same, we simply
refer to it as halo size.

In a very naı̈ve implementation, the outer halo only contains the minimum number
of elements required to apply the stencil function. After the stencil function has been
applied, the outer halos need to be updated from the inner halos. As this approach
requires a significant number of data communications, it is generally a better idea to
allocate more elements in the halo than necessary. This allows the stencil function to be
applied multiple times before the outer halo needs to be updated. Figure 5 illustrates
this process. Each iteration of the stencil consumes part of the outer halo, as the edges

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:7

Fig. 5. Illustration of halo consumption. Each iteration consumes as much halo as the size of the stencil
shape. In the first case a stencil of size one is applied on a partition with a halo size three, so three iterations
can be computed. In the second case, the stencil shape is of size two. Thus, only one iteration can be computed,
leaving some unconsumed halo, but not enough for another iteration.

cannot be correctly computed. This data must be renewed when it runs out or becomes
too small to satisfy dependencies for the current operator. Furthermore, this introduces
redundant computation, because they effectively belong to another partition, which is
computing them as well. As a consequence, there is a trade-off between communication
cost (which, for a GPU, consists of both the time to read and write these regions plus
the latency introduced by initiating these operations) and computation redundancy.

The best halo size, which optimizes the trade-off between communication cost and
redundant computation, is a delicate balance that might evolve during the course of
program execution. For example, some computations have several distinct compute
phases involving radically different operators, leading to a situation in which the best
halo size is different for each phase.

To allow more plasticity for the size of halo regions, the allocated size is as large as
possible, up to full device duplication if the memory available on the devices allows it.
This enables the size of the halo regions to be changed easily and avoids a new buffer
creation and a copy when the halo size changes. This large buffer is referred to as
buffer region. The outer halo is part of this buffer region and its size can vary from the
minimal size defined by the halo shape to the size of the entire buffer.

Device coordination is achieved using a task graph generated by the framework.
The host program typically keeps well ahead of the GPUs by generating only the task
graph without waiting for completion of the operations. This allows dependencies to be
computed in advance, feeding the operations to the GPUs as soon as the dependencies
are satisfied, thus keeping it as busy as possible.

Full synchronization between the host and the devices only happens when the user
wants to interact with individual volume elements between iterations. Otherwise the
state of the host buffers and the various regions of interest are managed by a set of
flags updated by the task graph, keeping track notably of the current unconsumed halo
size or if the updated version of a field resides on the GPU or the host.

3.3. Optimization Space

Volume decomposition introduces a lot of communication, which should be reduced
as much as possible to shift the balance between swap frequency and redundant
computations.

In order to reduce the transfer time, a first set of transformations is transparently
performed during the volume decomposition. The volume can be rotated, either to
allow the area of the cut to be minimized by aligning the largest dimension as the first
dimension, or to decrease data dependencies in the case of irregular shaped stencil

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:8 T. Lutz et al.

operators. Each partition can also be transformed independently before being mapped
to the device in order to optimize data layout on a more local scale.

The second important optimization concerns the halo size. As noted above, the best
choice can vary dynamically at execution time. Using the halo region, a search for the
optimal halo size can be performed dynamically for each phase, without the overhead
of reallocating and initializing buffers. We make halo size uniform across all partitions
to guarantee that they will synchronize after the same number of iterations.

Finally, tweaking the graph allows different swapping strategies, giving more or less
priority to computing the halo regions before the core, at the expense of generating a
more complicated graph. The naive scheme consists of computing the whole coherent
region, composed of the partition plus the valid halo regions, until we consume the halo
entirely and pausing computation during the swap. A more advanced scheme computes
only the halo regions and their inner counterpart and starts the swapping process while
the core of the partition, which now is free of dependency, can be computed in parallel
to amortize communication.

4. GOALS OF THIS WORK

The area of autotuning stencil computations on GPU-enabled systems is wide and
challenging. In this work we investigate the specific issues raised by the presence of
multiple GPUs within the same node, and of the impact of the system communication
structure upon the optimization space. Our goals are as follows.

—We explore the communication/redundant computation trade-off for a range of
applications and evaluate the impact of application characteristics on this tuning
parameter.

—We understand, by experimental exploration, the shape of the optimization space
generated by these factors for representative stencil applications. In order to address
this rigorously, we generate synthetic, highly parameterizable kernels, informed
by our analysis of a range of real examples. This makes our work robust in the
face of future, and essentially orthogonal, improvements in the areas of single GPU
autotuning and hardware performance, and also with respect to future variation in
multi-GPU communication/computation ratios.

—We devise an autotuning heuristic, informed by our initial search space exploration,
which is capable of selecting high-performing settings for the various tuning param-
eters relevant to our selected factors. Specifically, the heuristic will automatically
determine the number of GPUs to use, the configuration of these GPUs with respect
to the underlying system architecture, and the halo size.

The search space is already complicated and too large to be fully explored in a naive
fashion. However the potential gain is important, so tuning mechanisms should be
portable and adaptive. Furthermore, GPU setups are getting increasingly heteroge-
neous: some are on the same chip as the CPU, some share a single card, and future
devices might communicate in a peer to peer fashion, which means that this optimiza-
tion space for multiple device synchronization and coordination will explode.

5. SETUP

5.1. Benchmarks

Real-world stencils involve highly diverse dimensionalities, shapes, and volumes. As
our focus is on communication optimization, we chose a set of six applications which
all apply stencils iteratively, meaning that halo swapping is necessary to complete the
computation.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:9

Table I. Summary of Benchmark Characteristics

Dimensions Stencil points Fields Reads Writes Flops/Point
Game of Life 2D 9 2 9 1 n/a
Reverse Edge 2D 5 3 5 1 5
Hyperthermia 3D 6 11 17 1 16
Himeno 3D 27 15 25 2 33
Swim 2D 9 13 28 11 63
Tricubic 3D 64 5 64 1 132

Note: Game Of Life uses only bit masking on integer type.

The net impact of communication optimizations on a whole application evaluation
is affected by the performance of the computational phases between synchronizations.
Faster execution of computation magnifies the relative importance of fast communica-
tion. In the context of GPU implementation of stencils, faster computation phases could
arise from local computational optimizations, or simply from larger or more powerful
GPUs. For example, speedups of orders of magnitude have been reported in the litera-
ture using single GPU optimization strategies, and compute power of GPUs currently
increases at a faster rate than their communication capabilities1.

In order to extend the value of our analysis against such developments we extended
our benchmark suite with virtual variants, replacing the actual computation by syn-
thetic work for which we can accurately control the granularity. This enables us to
explore a fuller space, with kernel execution time ranging from that of the original
application, to faster versions that may emerge as a result of the preceding trends.

Our benchmark suite consists of the following programs.

—Game of life is a cellular automaton implementing Conway’s Game of Life. Each
iteration represents a generation. The application uses double buffering, meaning
that each element of the volume is composed of two chars.

—ReverseEdge is an image processing application using a Jacobi operator. A one-way
function, edge detect, is applied on an image, and a Jacobi operator is used to ap-
proximate the original image.

—Swim is a fluid dynamics kernel used for weather prediction. We adapted it from the
SPEC OMP 2001 benchmark suite. The fields are composed of complex structures
and there are three different operators involved in the computation.

—Himeno is a fluid dynamics application using a Jacobi-variant converging stencil,
which uses complex fields to represent the main operator of the Poisson equation
used in mechanical engineering and theoretical physics.

—Hyperthermia is a simulation of the temperature diffusion in human bodies during
hyperthermia cancer treatment.

—Tricubic is a 64-point stencil used in numerical analysis for tri-cubic interpolation.

Table I presents the stencil characteristics of each application. The operators are de-
fined by the dimensionality of the volume, the stencil shape, the number of fields (total,
read from and updated) and the number of floating-point operations per point. The
boundary condition has been set to wrap-around for all the benchmarks, which forces
halo consumption on both sides of the partition. A simpler boundary policy, like Dirich-
let boundaries, effectively halves the communication in the case of two partitions, as
there is only a single dependency instead of two.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:10 T. Lutz et al.

Fig. 6. Overview of our evaluation systems. The P67 system offers two different layouts for dual GPU
configuration: either two PCIe x8 in native mode or two PCIe x16 via a NF200 multiplexer. Both the Nvidia
GTX 590 and AMD Radeon 5970 are dual GPUs graphics cards that include a PCIe multiplexer on their
PCBs.

5.2. Architectures

In this section we give a description of the hardware used to carry out our experiments.
We are mainly interested in the PCIe layout rather than the compute power character-
istics of the GPUs. This layout is defined by the motherboard chipset and the graphics
cards design.

We evaluate three different systems. Our first system uses an Intel core i7-3820 CPU,
which supports two native PCIe x16 slots, and the Intel X79 motherboard chipset. The
system runs Linux with a 3.1.10 kernel and we refer to this system as X79. The second
system uses an Intel core i7-2600K CPU, which supports two native PCIe x8 slots, and
the Intel P67 motherboard chipset. The system runs Linux with a 2.6.37.6 kernel and
we refer to this system as P67-nat. The third system is identical to the second system,
except that we use 2 PCIe x16 slots that are connected to the core i7 processor via an
Nvidia NF200 PCIe multiplexer. We refer to this system as P67-NF.

The tested graphics cards are two dual GPU cards. The AMD Radeon 5970 has two
GPUs using a TeraScale 2 architecture sharing a single PCIe slot through a PEX mul-
tiplexer. We use the AMD APP SDK 2.6 for our experiments. The Nvidia GTX 590 also
has two GPUs based on the Fermi architecture and uses an Nvidia NF200 multiplexer.
We use the OpenCL runtime provided by CUDA SDK 4.1.28.

Figure 6 shows the three different configuration types used in this article. The bottom
multiplexers are found on the PCB of the Nvidia and AMD graphics cards. In total, we
have six different setups to evaluate. We did not overclock any processor or graphics
card in our experiments.

When distributing data to two GPUs, our systems offer two possible configurations.
The data can be assigned to GPUs on the same PCB (e.g., G0 and G1 in Figure 6).
We refer to this configuration as Single Card. Alternatively, the data can be assigned
to GPUs on different PCBs (e.g., G0 and G2). We refer to this configuration as Dual
Cards. Unlike CUDA, OpenCL currently does not support direct device-to-device copy,
thus all the communication is centralized and has to go through the host memory.

When using all the available GPUs, there is a choice to be made on data placement.
Figure 7 illustrates the two strategies: blocking placement or circular placement. Block-
ing placement first assigns partitions to one dual GPU, and then moves on to the next
one. We refer to this configuration as Blocking. Circular placement assigns partitions in
an alternating way. We refer to this configuration as Circular. The figure also shows the
difference between the dependencies. The arrows in this case indicate the dependencies
between the partitions, not the communication.

1In the same time that PCIe bandwidth has doubled (PCIe 2.0 to PCIe 3.0), the average compute power of
GPUs has tripled.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:11

Fig. 7. Different partition dispatching strategies for a four GPU setup. Currently, OpenCL does not sup-
port direct device-to-device communication, so the arrows represent only semantic dependencies, but all
communication has to go through the host via the main PCIe buses.

5.3. Experimental Methodology

In all experiments, we measure application runtime using wall-clock timers in the
host program. We time only the main stencil loop for 10,000 iterations and use this to
compute average time for one iteration. Because the GPU measurements can be noisy,
due to frequency scaling or shared resource utilization, we use multiple sampling
techniques to ensure the stability of the results. For each sample, the main iterative
stencil loop is applied eight times in a row with the same number of iterations. If
the variance of the interquartile range is below a threshold, the sample is considered
successful and the truncated mean of the set is stored. When exploring a parameter
range, the space is sampled in random order until five samples are accumulated for
each point. This guarantees sampling of similar parameters will be scattered in time
to reduce temporal variation of the GPU performance due to external parameters. The
final result is the median value of the five interquartile means.

6. RESULTS

We now present the results of our extensive experimental exploration of the implemen-
tation and autotuning space.

6.1. Overview

This brief summary highlights findings which are discussed in greater detail in the sub-
sequent sections. We begin in Section 6.2 by investigating the absolute performance
obtained by our single GPU implementation which acts as a baseline for our subse-
quent speedup results. We show that this is competitive with previously published
work on similar applications and devices. For example, our simple implementation
obtains around 70% of the performance of the highly tuned PATUS system. Turning
to our multi-GPU implementations, Section 6.3 shows that the relationship between
halo size and performance has a regular bitonic form across all cases, with an identifi-
able sweet spot, whose precise location varies with application and system. Similarly,
we find that problem size has a relatively simple relationship to performance (larger
problems have greater potential), while halo shapes which go beyond trivial nearest
neighbor can produce less intuitive effects. Finding the correct settings can result in
improvements in speedup of the order of 50%, compared to other points which are quite
close in the optimization space. In Section 6.4, we explore the impact of the underlying
communication technology on otherwise homogeneous systems. For situations in which
a subset of devices are selected, we find variations in speed up of up to 33% in regions
of the search space at or close to the optimal settings for halo size, and we find that the
correct selection of devices can vary with problem granularity with a performance im-
provement of up to 13% at stake. For experiments in which all four available GPUs are
used, we find that optimal allocation of partitions to devices is dependent upon halo size

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:12 T. Lutz et al.

0

10

20

30

40

50

0

10

20

30

40

50

Reverse Edge Swim

G
F

lo
p/

s

1024² 2048² 4096²

(a) 2D Stencils

0

20

40

60

80

100

0

20

40

60

80

100

Hyperthermia Himeno Tricubic

G
F

lo
p/

s

64³ 128³ 256³

(b) 3D Stencils

Fig. 8. Absolute single GPU performance on an Nvidia GTX 590 in GFlop/s for different volume sizes. The
graph also shows 99% confidence intervals, however these are so small that they are almost invisible.

and compute granularity, with discrepancies of up to 21% and 13% in favor of Blocking
and Circular respectively, at different points in the space. These findings all serve to
emphasize the challenge involved in the full autotuning problem. In Section 6.5, we
evaluate our autotuning strategies. These behave impressively, typically obtaining over
90% of the performance improvements found by an exhaustive search of the space.

6.2. Single GPU performance

Figure 8 presents the raw performance for each application using a single GPU on
the GTX 590 card. These results are comparable to Phillips and Fatica [2010], who
investigated implementation and optimization of the Himeno benchmark on Nvidia
Tesla C1060, and Christen et al. [2011] who implemented Hyperthermia and Tricubic
benchmarks using their own PATUS framework on an Nvidia Tesla C2050. In direct
comparison to the Tesla C20502, our naı̈ve implementation achieves about 70% of the
performance of the highly optimized PATUS implementation. We did not try to close
this gap any further, as the focus of this article is multiple GPU optimizations.

The figure also shows that raw performance for each application is not constant
across volume sizes. In order to point out trends and application-independent observa-
tions, we use speedup over single GPU performance instead of raw performance in our
evaluations.

6.3. Halo Size Impact

In Section 3.2, we described how varying the halo size affects the balance between data
communication and redundant computation. We now explore which parameters have
an impact on the optimal halo size. In this section, we use the P67-NF system with one
GTX 590 dual graphics card. We report the speedup of this system compared to one
that only uses a single GPU of the GTX 590 card.

Figure 9 shows the impact of the halo size for several applications in two- and three-
dimensional space. Both spaces have the same number of grid points (224) spanning
a square or cube, respectively. We observe for all curves two distinct stages: an as-
cending and a descending phase. When the halo size is small, the swapping frequency
is increased and the latency induced by initiating the swap plus the communication
cost itself cannot be hidden by the computation of the core. As the halo size increases,
the swapping frequency decreases, leading to less overhead and thus an increase in
performance. With increasing halo size, the amount of computation also increases to
compute the elements in the outer halo, leading to a steady slowdown. This effect
is more noticeable for 3D applications (see Figure 9(b)), because each increment in
halo size adds an additional plane that needs computed, as opposed to a vector for 2D
problems. The sweet point between the two phases is the optimal halo size. We have

2The Tesla uses the same GF110 graphics processor as the GTX 590, however it is clocked about 5% slower.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:13

−100

−50

0

50

100

0 10 20 30 40 50

S
pe

ed
up

 in
 %

Halo size

Game of Life
Reverse Edge
Swim

(a) 2D Stencils - problem size: 4096 × 4096

−100

−50

0

50

100

5 10 15 20 25 30

S
pe

ed
up

 in
 %

Halo size

Hyperthermia
Himeno
Tricubic

(b) 3D Stencils - problem size: 256 × 256 × 256

Fig. 9. Impact of halo size on performance. The problem size is in all programs is 224 grid points and is
distributed across 2 GPUs. On each graph, we mark the optimal halo size that obtains the best performance.

marked this spot in the graphs. In general, we notice that the dimensionality of the
application affects the basic shape of the halo performance curve and location of the
best halo. The benchmark Game of Life has an optimal halo much larger than the other
2D applications. This benchmark uses 8-bit characters as its main volume elements,
requiring much less space and allowing faster exchange.

In our second investigation, we evaluate the impact of the problem size on the optimal
halo size. Figure 10 shows that the optimization space becomes more complex as the
input size varies. The speedup is around 100% for large problem sizes in all applications.
However for smaller problem sizes, the scalability is not as good. The smallest problem
size (1024 × 1024) for 2D applications only has a speedup of 27% on average. The curve
only shows the increasing phase, indicating that the bottleneck is still communication
despite very large halo regions. 3D applications show an even weaker scalability for
small problem sizes, as communication is even more expensive. Furthermore, for a
cubic input of size 64, the maximum halo possible is too small for the communication
to be amortized.

Tricubic shows an interesting effect of the stencil shape. All other applications have
stencil shapes that access only the nearest neighbor. However, Tricubic also accesses
neighboring points with a distance of two. Thus increasing the halo size from an even
number to an odd number results in an increase of redundant computation, but still
requires the data exchange to happen at the same frequency as before. This pattern is
particularly visible for problem sizes of 643 and 1283.

Figure 11 shows the impact of the hardware performance on both the halo size and
the scalability for a selected range of applications. The overall performance of the
Radeon card is worse in terms of compute power and bandwidth. The sweet spot that
balances computation and communication is harder to find. Only approximating it
leads to significant performance degradation.

6.4. Data Placement and PCIe Layout

In this section, we experimentally explore the influence of the mapping of volume
partitions to GPUs in seemingly homogeneous systems. We demonstrate that the un-
derlying PCIe layout has an influence on the performance in various aspects, including
the optimal halo size and scalability. Therefore, it is an important tuning parameter.

We will first explore the impact of the device choice for applications that use a subset
of available GPUs and then measure the impact of data locality when using all available
resources.

6.4.1. Dual GPU Exploration. Utilizing all the GPUs available is not necessarily the
optimal solution. For example, the problem size may be too small to be decomposed

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:14 T. Lutz et al.

−100

−50

0

50

100

0 10 20 30 40 50

S
pe

ed
up

 in
 %

Halo size

1024²
2048²
4096²
8192²

(a) Game of Life

−100

−50

0

50

100

0 10 20 30 40 50

S
pe

ed
up

 in
 %

Halo size

1024²
2048²
4096²
8192²

(b) Reverse Edge

−100

−50

0

50

100

0 10 20 30 40 50

S
pe

ed
up

 in
 %

Halo size

1024²
2048²
4096²

(c) Swim

−100

−50

0

50

100

5 10 15 20 25 30

S
pe

ed
up

 in
 %

Halo size

64³
128³
256³

(d) Tricubic

−100

−50

0

50

100

5 10 15 20 25 30

S
pe

ed
up

 in
 %

Halo size

64³
128³
256³

(e) Hyperthermia

−100

−50

0

50

100

5 10 15 20 25 30

S
pe

ed
up

 in
 %

Halo size

64³
128³
256³

(f) Himeno

Fig. 10. Impact of the problem size on the optimal halo size. The legend shows the number of grid points in
the total volume. On each graph, we mark the optimal halo size that obtains the best performance. For the
3D application, the small volumes are too small to investigate larger halos.

−100

−50

0

50

100

0 10 20 30 40 50

S
pe

ed
up

 in
 %

Halo size

Game of Life 4096²
Reverse Edge 4096²
Tricubic 256³

(a) Nvidia GTX 590

−100

−50

0

50

100

0 10 20 30 40 50

S
pe

ed
up

 in
 %

Halo size

Game of Life 4096²
Reverse Edge 4096²
Tricubic 256³

(b) AMD Radeon 5970

Fig. 11. Comparison of hardware performance between Nvidia GTX 590 and AMD Radeon 5970. The Radeon
does not have enough memory to support a larger halo size than 32 for Tricubic.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:15

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

Single Card

−71.0 −33.7 3.7 22.3 41.0 59.7 78.3 97.0

Speedup in %

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

Difference Map

−1.8 0.4 2.6 4.8 7.0 9.2 11.4 13.6 15.8 18.0

Speedup difference in %

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

Dual Cards

−71.0 −33.7 3.7 22.3 41.0 59.7 78.3 97.0

Speedup in %
Halo size that obtains the best performance for Single Card Halo size that obtains the best performance for Dual Cards

Fig. 12. Comparison of PCIe layouts. The same synthetic kernel is run using two GPUs in a four GPU system.
The left graph shows the speedup achieved using the Single Card configuration when varying the halo size
and compute granularity. The right graph shows the speedup obtained using the Dual Cards configuration.
The middle heatmap represents the difference of speedup between the second and first configuration.

into many parts, or the communication costs involved may make applications unable
to scale efficiently to more than two GPUs.

In this section, we explore the performance impact of choosing different device sub-
sets in setups providing four GPUs split over two cards, as described in Section 5.2.
In order to explore the space fully, and because the ratio between compute and com-
munication performance of future GPUs is hard to predict, we explore it by artificially
shrinking the time of the compute operation from the time taken by our naı̈ve imple-
mentation to virtually nothing. This allows us to investigate the space generated by
applications which have had their single GPU kernels more highly optimized or which
are running on more powerful hardware. As in the previous section, we explore the
impact of the halo size for each compute granularity to see the impact of the compute
time on the communication overhead.

Figure 12 shows the direct comparison of two different configurations running on
the same system (P67-NF with two dual GPU GTX 590 graphics cards), but using
different PCIe layouts. The left graph shows the Single Card configuration, while the
right graph shows the Dual Cards configuration. In both cases, two PCIe multiplexers
(one on the motherboard and one on the graphics card) need to be traversed in order to
communicate with a GPU. Both plots show the Himeno synthetic kernel with an input
size of 2563 grid points. The lines plotted on each of these graphs represent the optimal
halo size, which is the halo size giving the highest speedup for a given granularity.

The middle graph shows the performance difference of speedup between the two
configurations. This plot shows us if a performance difference exists somewhere in the
full space. The optimal halo lines are identical to the ones on the left and right plot.
They illustrate whether the optimal halo size traverses regions with high differences
in performance. In this case, choosing the wrong halo size has significant impact on
the obtained speedup.

In the rest of this section, we only use the difference map to visualize the difference
between the Single Card and Dual Cards configurations. We summarize the speedup
information as a line plot above the difference map (see Figure 13(a) for example), that
shows the best obtainable speedup for a given compute granularity. All evaluations
are performed using the Nvidia GTX 590 graphics cards, unless stated otherwise.
Figures 13 to 15 show the difference maps for different synthetic kernels running on
our three evaluation systems.

For the 2D synthetic kernel Reverse Edge (see Figure 13), there is very little difference
between the Single Card and Dual Cards configuration. For small compute granulari-

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:16 T. Lutz et al.

90

95

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

10 20 30 40 50

Compute Granularity

10

20

30

40

50

H
al

o
S

iz
e

−1.8 −1.6 −1.3 −1.1 −0.9 −0.6 −0.4 −0.2

Speedup difference in %

(a) X79

90

95

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

10 20 30 40 50

Compute Granularity

10

20

30

40

50

H
al

o
S

iz
e

−1.9 −1.7 −1.5 −1.3 −1.1 −0.8 −0.6 −0.4 −0.2

Speedup difference in %

(b) P67-nat

90

95

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

10 20 30 40 50

Compute Granularity

10

20

30

40

50

H
al

o
S

iz
e

−2.2 −1.7 −1.2 −0.8 −0.5 0.0

Speedup difference in %

(c) P67-NF

Fig. 13. Impact of the PCIe layout on different systems using the GTX 590 GPUs for Reverse Edge with an
input size of 40962 grid points.

50

100

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

−2.1 1.8 5.7 9.6 13.5 17.4 21.3 25.2 29.1 33.0

Speedup difference in %

(a) X79

0

50

100

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

−0.8 2.6 6.1 9.5 12.9 16.3 19.7 23.2 26.6 30.0

Speedup difference in %

(b) P67-nat

0

50

100

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30
H

al
o

S
iz

e

−2.7 −0.3 2.1 4.5 6.9 9.4 11.8 14.2 16.6 19.0

Speedup difference in %

(c) P67-NF

Fig. 14. Impact of the PCIe layout on different systems using the GTX 590 GPUs for Hyperthermia with an
input size of 2563 grid points.

0

50

100

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

−1.0 2.8 6.6 10.4 14.1 17.9 21.7 25.5 29.2 33.0

Speedup difference in %

(a) X79

−50

0

50

100

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

−3.5 0.6 4.6 8.7 12.7 16.8 20.8 24.9 28.9 33.0

Speedup difference in %

(b) P67-nat

−50

0

50

100

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

−1.8 0.4 2.6 4.8 7.0 9.2 11.4 13.6 15.8 18.0

Speedup difference in %

(c) P67-NF

Fig. 15. Impact of the PCIe layout on different systems using the GTX 590 GPUs for Tricubic with an input
size of 2563 grid points.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:17

ties, the Single Card configuration tends to obtain about 1.5% higher speedup than the
Dual Cards configuration. The similarity between the three systems is caused by the
high scalability of the two-dimensional problem. The speedup achieved by using two
GPUs over one GPU tends towards 100%, and the lower limit for the entire space is
above 90%. We find similar results for the other 2D synthetic kernels.

Figure 14 shows the same experiment for the Hyperthermia synthetic kernel. This
space is very different. For the X79 and P67-nat systems (see Figures 14(a) and 14(b)),
which are both using native PCIe connections, the overhead of the multiplexer is clearly
visible for small compute granularities using the Single Card configuration. Most of
the space shows little difference between the two configurations. This area corresponds
to the space where the communication is completely hidden by the computation costs.
The communication overhead starts taking over gradually as the granularity decreases.
This happens when either the halos are too small and have to be swapped too often to
be amortized by the computation, or when they are too large and the swap takes too
long to be hidden by the core computation. This explains the round shape of the lightly
colored area along the left side.

For the two first systems, we can clearly observe the gain of avoiding the multiplexer.
For the Single Card configuration, communication has to go through the on-GPU mul-
tiplexer. In the Dual Cards configuration both GPUs are accessed through the on-GPU
multiplexer. However, as the second GPU on each card is idle, the overhead is negligi-
ble or null. The Dual Cards configuration obtains higher speedups for lower compute
granularity. This difference is accentuated in the P67-nat system that only provides
PCIe x8 links, compared to the PCIe x16 links found in the X79 system.

The multiplexer becomes unavoidable in the P67-NF system for both configurations.
In total, there are three multiplexers: one on the motherboard and one on each graphics
card. For the Single Card configuration, one graphics card is not being used but the
multiplexer on the other one is used to access both GPUs. For the Dual Cards configu-
ration, one GPU on each PCB is idle, but the multiplexer on the motherboard is being
used to access both graphics cards. Our experimental exploration shows that in this
case using both cards is still beneficial, with a gain of up to 22.69% along the optimal
paths.

Figure 15 shows the same experiment for the Tricubic synthetic kernel. We observe
a similar behavior as for Hyperthermia. However, the larger stencil shape used in
Tricubic results in more communication and increases the difference between the two
configurations further.

Figure 16 shows the impact of the problem size on the performance difference for
Hyperthermia running on the X79 system. As established in Section 6.3, changing the
problem size changes the communication pressure. This extra pressure on the smaller
volume translates into a performance difference across the entire space, as opposed to
no difference for most of the space when using a larger volume.

Figure 17 shows a selected result comparing the performance difference using dif-
ferent GPUs. Figure 17(a) shows the difference map for Tricubic running on the X79
system using the GTX 590 graphics cards. Figure 17(b) shows the difference map for
the same setup, except that we replaced the graphics cards with AMD Radeon 5970.
Besides the scalability difference, which is caused by the inferior compute performance
of the Radeon 5970, we can notice that the best configuration depends on the compute
granularity. For most of the presented results, the Single Card configuration is the best
choice for the Nvidia GTX 590 GPUs. For the Radeon 5970, the Dual Cards configura-
tion performs best for small compute granularities, while the Single Card configuration
performs better for larger compute granularities. Choosing to use a single card leads
to a performance improvement of up to 13.2% along the optimal path.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:18 T. Lutz et al.

0

50

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

H
al

o
S

iz
e

−8.8 −5.6 −2.4 0.8 4.0 7.2 10.4 13.6 16.8 20.0

Speedup difference in %

(a) Hyperthermia 128

50

100

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

−2.1 1.8 5.7 9.6 13.5 17.4 21.3 25.2 29.1 33.0

Speedup difference in %

(b) Hyperthemia 256

Fig. 16. The impact of the PCI layout depends on the problem size. (a) presents the Hyperthermia synthetic
kernel running on the setup with the X79 chipset and a problem size of 1283; (b) shows the performance
difference for the same experiment and the same setup but a problem size of 2563.

0

50

100

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

−1.0 2.8 6.6 10.4 14.1 17.9 21.7 25.5 29.2 33.0

Speedup difference in %

(a) Nvidia GTX 590

0

50

O
pt

. H
al

o
S

pe
ed

up
 (

%
)

Single Card
Dual Cards

0 10 20 30 40 50

Compute Granularity

5

10

15

20

25

30

H
al

o
S

iz
e

−16.0 −10.9 −5.7 −3.2 −0.6 2.0 4.5 7.1

Speedup difference in %

(b) AMD Radeon 5970

Fig. 17. Impact of the PCIe layout on the X79 system using different graphics cards for the Tricubic synthetic
kernel with an input size of 2563 grid points.

6.4.2. Data Placement for Full System Utilization. Figure 18 is similar to Figure 12, but
this time all the available GPUs are being used. Both configurations show a similar
speedup, up to 3.85x for high compute granularities. However, the maximum observed
slowdown also increases compared to just using two GPUs. Having four partitions
increases the pressure on the swapping cost, and all the communication involved is
harder to amortize by the core computation.

Even though the full system is utilized, the difference map shows some inequalities
between the configurations for lower compute granularity. Over the complete space,
Blocking is up to 21% faster than Circular. At other points in the space, Circular is
up to 13% faster than Blocking. The optimal path for both configurations crosses this
space, meaning the best partition mapping decision depends on the compute cost in
this case.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:19

20 40 60 80 100

Compute Granularity

2

4

6

8

10

H
al

o
S

iz
e

Blocking

−67.0 10.1 48.7 87.2 125.8 202.9 280.0

Speedup in %

20 40 60 80 100

Compute Granularity

2

4

6

8

10

H
al

o
S

iz
e

Difference Map

−21.0 −13.2 −9.3 −5.4 −1.6 2.3 6.2 10.1 14.0

Speedup difference in %

20 40 60 80 100

Compute Granularity

2

4

6

8

10

H
al

o
S

iz
e

Circular

−67.0 10.1 48.7 87.2 125.8 202.9 280.0

Speedup in %
Halo size that obtains the best performance for Blocking Halo size that obtains the best performance for Circular

Fig. 18. Data placement impact when using four GPUs. The left-hand side shows speedup when four
partitions have one of their dependencies on the same card and the right-hand side shows another placement
where partitions have both dependencies on the other graphics card.

6.5. Autotuning

Our results so far confirm the nontrivial nature of the stencil optimization space,
and hence the need for an automated approach to its navigation. In this section, we
describe and evaluate our autotuning strategies. Our strategies combine offline and
online phases.

The first offline decision concerns the volume orientation, as explained in Section 3.3.
This optimization simply requires examination of the volume and stencil shape. In the
case of an asymmetric stencil, the volume is aligned in such a way that the cut is
applied to decrease the swapping frequency. Otherwise, the volume is aligned to be cut
along the largest dimension, which allows a broader range of halo sizes to be considered
and minimizes the cut area.

In the next offline step, we select a swapping strategy from a pool of predefined
strategies (presented in Section 3.3). Our experiments so far indicate that our most
advanced strategy, which overlaps communication and computation, is optimal in all
cases; hence we select and implement it offline. However, our framework can easily
switch this into an online decision if the need arises.

The framework then tunes the GPU selection and partitioning, which is an offline
decision. It determines how many, and which GPUs to use, and in the case of full system
utilization, how to assign partitions to GPUs. To achieve this, all stencils used in the
application are automatically extracted and profiled independently offline to assess
their scalability. The results are combined, weighted by the complexity and usage of
each stencil in the case of multi-operator applications, to make an overall decision.

Finally, the halo size is adapted online. As the application runs, we vary the halo
size and gather performance data. The data is used to refine the halo adjustments.
We have experimented with a range of adjustment strategies. The search is always
informed by the (application-specific) shape of the stencils to prune part of the search
space. This avoids the oscillating performance for applications like Tricubic (discussed
in Section 6.3).

The simplest is an exhaustive search: try all feasible halo sizes in order and eventually
pick the best. The second strategy is inspired by the observation that for most appli-
cations, performance has a simple bitonic relationship to halo size. The hill climbing
search increases the halo size linearly, from the minimum, until performance degrades
for several consecutive points.

These two strategies are linear searches, resulting in poor performance if the optimal
halo is in the middle of the range or at the opposite end. To guarantee reasonable

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:20 T. Lutz et al.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2048²

2 GPUs

4096²

4 GPUs

2048²

4 GPUs

4096²

4 GPUs

128³

1 GPU

256³

4 GPUs

128³

1 GPU

256³

2 GPUs

Game of Life Swim Himeno Hyperthermia

S
pe

ed
up

Exhaustive
Hill Climbing
Dichotonic

Fig. 19. Speedup over single GPU using autotuning for two input sizes and 100,000 iterations. The autotuner
decides how many and which devices to use and performs an online search for the optimal halo size using
several search strategies.

convergence time, we also implemented a dichotomic search. We sample the average
time per iteration at five regularly spaced halo sizes, and recurse within the best
interval.

Figure 19 shows the efficiency of the autotuning for eight applications and two
input sizes each. Each bar represents the final speedup obtained across the given
number of GPUs when accounting for the overhead of the online search phase and
the outcome of each search strategy. Each application executes 100,000 iterations. The
average speedup for applications running on two GPUs is 1.83x, and on four GPUs
is 2.86x. Speedup increases with problem size, which indicates that communication
is the limiting factor to scalability. 3D applications with an input size of 1283 are not
worth distributing across several devices, the communication dominates over the gain
of parallel computation.

For the online tuning, we observe that the overall performance is similar for the three
searches. In most cases, hill climbing and the dichotomic search perform a little better
than the exhaustive search. In particular, this is the case for larger problem sizes.

In order to compare the searches more accurately, we break down the performance
impact of the halo refinement phase and the outcome of the search in Table II. We
evaluate the quality and online performance overhead of our strategies with respect to
the performance of an idealized oracle strategy. The oracle performance corresponds to
the best performance found for the given application across the full optimization space.
For each application, input size, and search strategy we report:

—the percentage of oracle performance obtained during the online tuning phase. This
figure reflects the overhead introduced by our online scheme and the suboptimal
halos with which it experiments.

—the percentage of oracle performance obtained after the online tuning phase. This
figure reflects the quality of the tuning outcome.

—the number of iterations to convergence. This captures the minimum number of
iterations necessary for the search to converge. To increase the accuracy of the mea-
surement and reduce the noise, each swapping is sampled ten times, making it
expensive in terms of iterations for large halos.

The exhaustive search guarantees to eventually find the optimal halo size, which gives
perfect posttuning performance. It requires a very expensive search phase, but as the
number of iterations increases, this search phase is amortized, giving this strategy a
good overall performance. However, when the number of iterations is not high enough,

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:21

Table II. Performance of Various Search Strategies

Game Of Life Swim Himeno Hyper

20482 40962 20482 40962 1283 2563 1283 2563

Offline Search Parameters
Number of GPUs 2 4 4 4 1 4 1 2
Data Placement B/D C/D C/D C/D n/a C/D n/a B/D

Exhaustive Search Speedup
Search Phase Perf. (%) 94.43 95.44 90.67 87.26 n/a 91.83 n/a 91.13
Post Search Perf. (%) 100.00 100.00 100.00 100.00 n/a 100.00 n/a 100.00
Iterations to converge 36,550 145,350 18,490 72,250 n/a 550 n/a 2,100

Hill Climbing Search Speedup
Search Phase Perf. (%) 71.11 94.96 89.12 90.63 n/a 92.41 n/a 98.34
Post Search Perf. (%) 83.19 99.98 100.00 95.35 n/a 100.00 n/a 100.00
Iterations to converge 2,300 2,750 7,280 23,030 n/a 540 n/a 90

Dichotomic Search Speedup
Search Phase Perf. (%) 97.90 95.53 91.24 87.93 n/a 94.02 n/a 91.67
Post Search Perf. (%) 99.36 96.78 93.69 95.35 n/a 100.00 n/a 100.00
Iterations to converge 4,260 9,400 5,510 8,430 n/a 380 n/a 540

Note: Data Placement Abbreviations: (B) Blocking, (C) Circular, (D) Dual Cards, (S) Single Card
Search Phase Perf.: percentage of oracle performance obtained during the online tuning phase.
Post Search Perf.: percentage of oracle performance obtained after the online tuning phase.

the search does not have time to sample the entire space and the overhead is much
higher. This is the case for Game of Life with a volume size of 4096, which we allowed to
overrun beyond the standard 100,000 iterations in order to fully measure convergence.
This effect is increased by an important performance difference across the full range
of possible halo sizes, which increases the full search time, as shown in Section 6.3.

Hill climbing converges faster than the exhaustive search in most cases. This makes
it more efficient than the first strategy in most cases. For Hyperthermia with a volume
size of 256, the convergence is achieved twenty times faster. However for Himeno, it
is almost as expensive as the exhaustive search because the optimal halo is large.
Therefore the high-quality result is not surprising in this case. Furthermore, it cannot
cope well with bumpy search spaces. For example, with Game of Life and a volume of
2048, hill climbing stopped in a local minimum, missing the true optimal halo. Despite
a fast convergence, the overall performance converges to the outcome of the search
phase, which is in this case worse than performing a complete search.

Dichotomic search is the fastest to converge, but gives only an approximation of the
optimal halo size. As it recursively samples only a few points and makes a search using
the extremities of each range, the result of the search could be quite far from the value
of the optimal halo size. However, it does not stop on the first local minima like the hill
climbing strategy. For applications with a large input data, this strategy is necessary
to navigate through the large parameter space in a small number of iterations. The
number of iterations necessary to sample a halo size is relative to its size, as it affects
the swapping frequency, which is why noniterative searches are more performant for
large ranges. Furthermore, as demonstrated by the synthetic benchmarks, the optimal
halo size tends to increase as the compute time decreases, making nonlinear searches
like the dichotomic search well adapted to explore large parameter spaces with a small
overhead at the cost of having only an approximation of the optimal halo.

For the 3D applications, Himeno and Hyperthermia, there is little difference between
the three searches. This is due to the high number of iterations and the relatively small
range of possible halo sizes. All three searches perform well and find a point close to the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:22 T. Lutz et al.

optimal halo size in a small number of iterations. The overall speedup converges to this
value, amortizing the search overhead. For larger problem sizes, the same differences as
the 2D applications would arise with a greater magnitude, as the amount of redundant
computation increases much faster when the dimensionality of the cut increases.

7. RELATED WORK

Stencil computations have been very extensively studied, both generically and in the
context of individual application instances, and across diverse architectural platforms
including many-core and cluster, with or without GPU acceleration.

The high-performance computing literature contains countless discussions of stencil-
structured codes implemented on message-passing architectures. In early examples,
Fox [1984] notes the need for “subroutine calls” to handle the “new form of boundary
conditions involving the transfer of information from other nodes” (i.e., halos), while
Reed et al. [1987] discusses the relationship between partition shape, stencil structure,
and architecture. Optimization techniques can be borrowed from message passing ap-
proaches, replacing network communication by PCI communication in our new context.
For example, Ripeanu et al. [2001] gives a good discussion of the importance of finding
the optimal halo size (referred to as the “ghost zone”).

With respect to GPUs, PATUS is a code generation and tuning framework for stencil
computations with support for multicore processors and a single GPU [Christen et al.
2011], Chombo [Applied Numerical Algorithms Group, LBNL] focuses mainly on PDE
solvers for regular and adaptive meshes running on multicore CPUs while Kamil et al.
[2010] deal with autotuning of stencil kernels on a range of multicore and single GPU
systems. PADS is a compiler tool which generates CUDA code from stencil applications
written in OpenMP [Han et al. 2011] and Mint provides a source to source translator to
transform annotated C code in CUDA [Unat et al. 2011]. It is beyond our scope to survey
this material exhaustively. We note that our experimentation with granularity tunable
synthetic benchmarks helps to keep our work orthogonal to improvements offered by
single GPU tuning schemes, whether generic or application specific [Itu et al. 2011;
Phillips and Fatica 2010].

Our work is more closely related to approaches that employ multiple GPUs in the
solution of a single stencil application. Most previous systems, designed with HPC
contexts in mind, treat each GPU as an accelerator associated with a distinct process
and node in a cluster. For example, Physis is a compiler-based approach for automatic
parallelization of a code written in a domain-specific language into CUDA code and MPI
code for internode communication [Maruyama et al. 2011]. SBLOCK is a framework
for PDE solvers based on CUDA and MPI and tested with sixty-four GPUs. Phillips
and Fatica [2010] investigated implementation and optimization strategies for the
Himeno benchmark using CUDA and MPI. They scaled their experiments to sixteen
GPUs using a GPU cluster. Our scheme shares some high-level principles with these
approaches, including the need for partitioning and correct, optimized maintenance of
halos. However, our work is distinguished by the use of multiple GPUs on the same
node, with resulting interesting effects of the communication substructure. The SkelCL
[Steuwer et al. 2012] and SkePU [Dastgeer et al. 2011] projects target single-node,
multiple-GPUs configurations from skeleton-structured APIs. While neither supports
stencils directly as a single abstraction, stencil computations can be expressed by
composition and iteration of simpler data parallel operations.

Kim et al. [2011] provide a generic mechanism through which OpenCL programs
developed for a single GPU system can be transparently executed on multiple GPUs.
The underlying kernel partition strategy is supported by a dynamic, sampled tracing
mechanism (executed on the host CPU) to determine memory footprints and what is
in effect a simple virtual memory mechanism, which supports the necessary coherence

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

PARTANS: An Autotuning Framework for Stencil Computation on Multi-GPU Systems 59:23

across GPU memories between kernels. In contrast to our approach, Kim’s system
has the strength of being transparently applicable to any existing Open CL program.
On the other hand, it requires the programmer to write a full OpenCL program in
the first place, where our system asks only for the core of the kernel. Furthermore,
our constrained domain permits two classes of optimization not available to Kim’s
system. Firstly, we can explore optimizations that span multiple kernel invocations
(corresponding to multiple iterations of the stencil). For example, we can leave non-
halo data in place on GPUs and move only halos between stencil iterations, in a way not
accessible to Kim’s kernel-by-kernel translation and tracing. Secondly, we can explore
skeleton-specific optimizations such as tuning the halo-width and its effect on the
computation/communication trade-off.

The impact of PCI configuration on multi-GPU systems performance has been noted
previously [Schaa and Kaeli 2009], but no systematic attempts have been made to
incorporate such phenomena into a systematic tuning mechanism.

8. CONCLUSION AND FUTURE WORK

We have presented a framework that distributes stencil computations across multiple
GPUs and automatically optimizes the distribution in a way that is sensitive to char-
acteristics of the stencils, the problem size, the GPU devices, and the underlying PCIe
interconnect. Our approach is the first to take all of these issues into consideration
systematically and simultaneously.

We have demonstrated that adaptation to the given PCI express configuration is a
significant factor in achieving high performance overall, with a potential performance
loss of 23% if this is not correctly addressed. Our autotuning strategies achieve excel-
lent performance, with low overheads, when compared to the behavior of an idealized
exhaustive search. We have demonstrated the robustness of our autotuner to likely
future improvements in single GPU performance and tuning.

In future we plan to introduce energy use as an optimization cotarget, allowing
a trade-off with raw performance when assessing scalability. The structure of our
framework will allow this to be performed transparently to the programmer.

We plan to further develop our heuristics, for example to address the issues that arise
in the presence of several layers of multiplexers. Looking further ahead, we will con-
sider increasingly heterogeneous platforms. For example, modern processors, such as
AMD’s Fusion series and Intel’s Ivy-Bridge processors, include medium-performance
GPU cores. We aim to incorporate such resources into our strategies. We intend to
incorporate a layer of cluster parallelism, in order to offer seamless, transparent pro-
gramming and tuning of stencil applications across the full systems spectrum. Finally,
we plan to consider the extension of our approach to other problem patterns, such as
wavefront and adaptive mesh refinement.

REFERENCES

AMD. Accelerated parallel processing (APP) SDK (formerly ATI stream). http://developer.amd.com/
appsdk

APPLIED NUMERICAL ALGORITHMS GROUP, LBNL. CHOMBO - Software for adaptive solutions of partial differ-
ential equations. https://commons.lbl.gov/display/chombo/

CHRISTEN, M., SCHENK, O., AND BURKHART, H. 2011. Patus: A code generation and autotuning framework for
parallel iterative stencil computations on modern microarchitectures. In Proceedings of the 25th IEEE
International Parallel and Distributed Processing Symposium.

DASTGEER, U., ENMYREN, J., AND KESSLER, C. W. 2011. Auto-tuning skepu: a multi-backend skeleton program-
ming framework for multi-gpu systems. In Proceedings of the 4th International Workshop on Multicore
Software Engineering (IWMSE’11). 25–32.

FOX, G. C. 1984. Concurrent processing for scientific calculations. In Proceedings of the 28th IEEE Computer
Society International Conference (COMPCON’84). 70–73.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

59:24 T. Lutz et al.

HAN, D., XU, S., CHEN, L., AND HUANG, L. 2011. PADS: A pattern-driven stencil compiler-based tool for reuse
of optimizations on GPGPUs. In Proceedings of the IEEE 17th International Conference on Parallel and
Distributed Systems (ICPADS). 308–315.

ITU, L., SUCIU, C., MOLDOVEANU, F., AND POSTELNICU, A. 2011. GPU optimized computation of stencil based
algorithms. In Proceedings of the 10th Roedunet International Conference (RoEduNet). 1–6.

KAMIL, S., CHAN, C., OLIKER, L., SHALF, J., AND WILLIAMS, S. 2010. An auto-tuning framework for parallel
multicore stencil computations. In Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium. 1–12.

KEUTZER, K., MASSINGILL, B., MATTSON, T., AND SANDERS, B. 2010. A design pattern language for engineering
(parallel) software: Merging the PLPP and OPL projects. In Workshop on Parallel Programming Patterns
(ParaPLOP).

KHRONOS GROUP. 2008. Khronos launches heterogeneous computing initiative. http://www.khronos.org/
news/press/releases/khronos launches heterogeneous computing initiative/

Khronos Group 2011. The OpenCL Specification version 1.2 15 Ed. Khronos Group. http://www.khronos.org/
registry/cl/specs/opencl-1.2.pdf.

KIM, J., KIM, H., LEE, J. H., AND LEE, J. 2011. Achieving a single compute device image in opencl for multiple
GPUs. In Proceedings of the 16th Symposium on Principles and Practice of Parallel Programming.
277–288.

MARUYAMA, N., NOMURA, T., SATO, K., AND MATSUOKA, S. 2011. Physis: An implicitly parallel programming model
for stencil computations on large-scale GPU-accelerated supercomputers. In Proceedings of the 2011
International Conference fo High Performance Computing, Networking, Storage, and Analysis(SC’11).
1–11.

MATTSON, T. G., SANDERS, B. A., AND MASSINGILL, B. L. 2004. Patterns for Parallel Programming. Addison-Wesley.
NVIDIA. CUDA Zone. http://developer.nvidia.com/category/zone/cuda-zone.
PCI-SIG 2010. PCI Express R©Base Specification 3.0 Ed. PCI-SIG.
PHILLIPS, E. H. AND FATICA, M. 2010. Implementing the himeno benchmark with CUDA on GPU clusters. In

Proceedings of the 24th IEEE International Parallel and Distributed Processing Symposium. 1–10.
REED, D., ADAMS, L., AND PATRICK, M. 1987. Stencils and problem partitionings: Their influence on the perfor-

mance of multiple processor systems. IEEE Trans. Comput. C-36, 7, 845–858.
RIPEANU, M., IAMNITCHI, A., AND FOSTER, I. 2001. Cactus application: Performance predictions in grid environ-

ments. In Proceedings of European Conference on Parallel Computing (EuroPar). Springer, 807–816.
SCHAA, D. AND KAELI, D. 2009. Exploring the multiple-gpu design space. In Proceedings of the 23rd IEEE

International Symposium on Parallel and Distributed Processing (IPDPS’09). 1–12.
STEUWER, M., KEGEL, P., AND GORLATCH, S. 2012. Towards high-level programming of multi-GPU systems using

the SkelCL library. In Proceedings of the IEEE 26th International Parallel and Distributed Processing
Symposium Workshops and PhD Forum (IPDPSW). 1858–1865.

UNAT, D., CAI, X., AND BADEN, S. B. 2011. Mint: Realizing CUDA performance in 3D stencil methods with
annotated c. In Proceedings of the International Conference on Supercomputing (ICS’11). 214–224.

Received June 2012; revised October 2012; accepted November 2012

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 59, Publication date: January 2013.

