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Excitation, dynamics, and control of rotationally autoionizing Rydberg

states of H,
A. Kirrander and H. H. Fielding®

Department of Chemistry, University College London, 20 Gordon Street,

London WCI1H 0AJ, United Kingdom
Ch. Jungen®

Laboratoire Aimé Cotton du CNRS, Université de Paris-Sud, 91405, Orsay, France
(Received 18 July 2007; accepted 21 September 2007; published online 22 October 2007)

The dynamics of rotationally autoionizing Rydberg states of molecular hydrogen is investigated
using a time-dependent extension of multichannel quantum defect theory, in which the
time-dependent wave packets are constructed using first-order perturbation theory. An analytical
expression for the complex excitation function for a sequence of Gaussian excitation pulses is
derived and then employed to investigate the influence of pairs of pulses with well-defined phase
differences on the decay dynamics and final-state composition. © 2007 American Institute of

Physics. [DOI: 10.1063/1.2798764]

I. INTRODUCTION

Advances in laser technology1 have contributed signifi-
cantly to the rapid progress being made in the area of coher-
ent control* and considerable degrees of control have been
achieved in systems ranging from single atoms” to proteins.5
Many of these experiments are guided by genetic algorithms,
an approach pioneered by Judson and Rabitz,® in which a set
of variables controlling the optical field is optimized to steer
the system towards a predefined and measurable goal. Opti-
mization procedures are also employed in optimal control
theory.7 However, in these closed-loop experiments, the op-
timized field is often complicated and does not readily allow
for mechanistic insight. A complementary approach is to
build an understanding of quantum systems which allows the
design of control experiments. Such an approach requires
tractable model systems, accessible to both theory and ex-
periment, in order to develop the basic intuitions. Highly
excited atoms and molecules have a rich and nontrivial phys-
ics with complex couplings between electronic and nuclear
motions and associated continua, yet they contain simplify-
ing elements which make them amenable to rigorous theo-
retical treatment™ as well as being experimentally acces-
sible.

The short time scale dynamics of these wave packets can
be partially interpreted in semiclassical or even classical
terms,'® but they are fundamentally quantum objects and as
such display interference, dephasing and, given long-enough
lifetimes, revivals.'' In this paper, we focus on the dynamics
of rotationally autoionizing Rydberg states of the H, mol-
ecule, initially reported in Ref. 12. We solve the time-
dependent Schrodinger equation, with time-independent
wave functions and dipole transition moments provided by
multichannel quantum defect theory (MQDT)," an approach
originally pioneered in atoms by Henle et al." The first ap-
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plication to molecules was by Fielding, who simulated H,
molecules by MQDT using an impulsive approximation of
the excitation.”” More recently, Texier and Jungen incorpo-
rated expressions for the full excitation process from Shapiro
and Brumer™'®'” into a more general phase-amplitude for-
mulation of MQDT."®'” This paper reviews all the elements
of the theory, which is scattered over several publications,
and extends the treatment of the excitation process to allow
for multiple excitation pulses.

The extension of the theory to pulse sequences allows us
to investigate the Ramsey fringe method, originally proposed
by Noordam et al.®® The method probes Rydberg wave
packet dynamics by pairs of coherent pulses. Similar two-
pulse schemes have also been used for coherent control in a
number of experiments.m_23 This is, to the best of our knowl-
edge, the first full quantum simulation of a multiple-pulse
control processes that allows us to map the dynamics inside
and outside the molecule. Specifically, we examine two ex-
amples of pulse sequences; in the first instance we double the
characteristic beating frequency of a Rydberg wave packet
by removal of every other state, and in the second we control
the amount of autoionization by selective pumping of the
autoionizing wave packet, thereby changing the ionization
yield by up to 84%. Finally, the dynamics for window and
normal resonances is investigated for single-pulse excitation.
While the total ionization flux remains the same, ionization
proceeds substantially more slowly for normal resonances
since a greater proportion of the flux is forced through the
quasiresonant channel.

Il. THEORY

The most straightforward approach in calculating the
quantum dynamics of Rydberg systems is to form a coherent
superposition of stationary states of different energies. The
required energies, wave functions, and dipole transition mo-
ments can be determined to high accuracy by MQDT? A
number of workers have used this approach to explore wave

© 2007 American Institute of Physics
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packet dynamics in Rydberg systems, both in the discrete'*"
and the autoionizinglw_26 regions of the spectrum. In this
paper, we follow the approach of Texier and Jungen
closely.lg’19 The theory is organized in the following way:
Section II A reviews the solution of the time-dependent
Schrodinger equation by first-order perturbation theory, Sec.
II B presents theoretical results for the complex excitation
function, and Sec. II C describes the phase-amplitude formu-
lation of MQDT and combines the results of the previous
sections to calculate wave packets and quantum flux.

A. Time-dependent Schrodinger equation

The quantum dynamics in the presence of an electro-
magnetic field is given by the time-dependent Schrodinger
equation

d
th— W) = (Ho - de() V), (1)

where H,, is the field-free molecular Hamiltonian and the
light-matter interaction is given as the product of the time-
dependent electromagnetic field e(r) and the electric dipole
operator d=er, where e is the charge of an electron. The
separation of the dipole operator and the field constitutes the
dipole approximation, which is valid only if the dimensions
of the absorbing state of the molecule are small compared to
the wavelength of the light.

Solutions to Eq. (1) can be expanded in the complete
basis of orthonormal eigenfunctions |W¥;) of the Hamiltonian
Hy,

W) =2 (e W), 2)

where E, is the energy corresponding to state |¥;) and c,(¢) is
a time-dependent expansion coefficient. By substituting this
ansatz into the Schrodinger equation and by using the ortho-
normality of the basis functions, c;(1)=(¥,| ¥ (z)), we obtain
a set of ordinary differential equations for each coefficient
cu(2),

dCst(t) = L%; ci(t)e'r'D,;€(t), (3)
where w,;=(E,—E;)/% and where D,;=(¥,|r|V;). We solve
Eq. (3) perturbatively to first order, thereby neglecting mul-
tiphoton processes. If the molecule is in state s initially,
¢,(t=—)=1, and the perturbation caused by the field is suf-
ficiently weak so that c,(t) =0 for n # s at all times 7, we get

de,(1) e
T = e D). (4)

Equation (4) can be integrated in order to obtain the expan-
sion coefficient c,(z),

c,(t) = LD,”|:%J dt’e“""~f’,6(t’)] . (5)
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B. Complex excitation function

In the perturbative treatment of quantum dynamics, as
summarized by Egs. (2) and (5), the influence of the optical
field can be separated from the properties of the quantum
system. In order to examine the electromagnetic field in
greater detail, we introduce the complex excitation function,
cef(w,,,t), which is defined by the expression enclosed in
brackets [- -] in Eq. (5), and which we can write as

t
dtreb(wm—w)t” (6)
T=—x

cef(w, 1) = % f dwe(w)

where €(w) is the Fourier transform of €(r). The complex
excitation function cef as defined here has the dimension of
an inverse length and is a measure of the interaction strength
of the field at a particular energy and time. Note that a real
pulse €(t) requires that e(—w)=¢€ (w). For times t— o, the
integral over ¢ in Eq. (6) becomes 27d(w,,—w) and the
complex excitation function approaches the Fourier limit,
cef(w,,,t—»)=(e/h)2me(w,,). The coefficients |c,| then be-
come directly proportional to the spectral profile of the opti-
cal pulse.

To follow the excitation dynamics during the pulse, we
must integrate Eq. (6). The integral over time ¢’ can be
solved readily, giving rise to two terms, the second of which
vanishes by Cauchy’s residue theorem when 7— —o regard-
less of the shape of the pulse e(a)).‘g’17 A single Gaussian
pulse eg(t), centered on time #; in the time domain, can be
written as

Eg(l‘ _ tk) — e,e"z In 2(1 - tk)z/rtz(emo(t—tk) + e—LwO(t—tk))’ (7)

where w, is the central optical frequency, ¢, the amplitude,
and 7, the full width at half maximum (FWHM) pulse dura-
tion, defined for the intensity profile, proportional to the
square modulus of the electric field. The frequency domain
representation obtained by a Fourier transform of Eq. (7) is

)2

eg(w) — e.w(e—az(w -0 4 e—az(w + wo)z)euotk, (8)

where the frequency domain amplitude is €,=¢7,/ \«"m
and a=7,/\/8 In 2. The (FWHM) width in the frequency do-
main is 7,=41In2/7,. In the following, we will denote the
rotating wave component of the pulse €,(w)= ¢, exp(—a?(w
—wp)?) and the counter-rotating wave component € (w)
=€, exp(—a?(w+wy)?).

If we insert a Gaussian pulse according to Eq. (8) into
Eq. (6) we obtain the corresponding rotating and counter-
rotating wave components of the complex excitation func-
tion, i.e., cef(w,,, 1) =cef*(w,,,1) +cef (w,,1). By straightfor-
ward extension of the analytical results by Brumer, Shapiro
and Taylorm’”’27 we find a solution for a Gaussian pulse
centered at an arbitrary time #;, which will allow for analytic
treatment of sequences of pulses. The cef is given by the
equations

2
Cof* (@1, 1) = 7” sgn(t — 1) n're, (w,)) (Ot - 1,)

—0.5ePWsgn(t — 1) 8.]), (9a)
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cef (putg) = - senlt = 19 n'ke (w,,)e

X Wlsgn(t—1,) B8], (9b)

where ©O(¢) is the Heaviside function and sgn(z) returns the
sign of the argument 7. Furthermore, B,=a(w,,+ wy)+i(t
—1)/2a and W(z)=e‘zz(1—erfc(—zz)), where erfc(z) is the
complex error function as defined by Egs. (7.1.3) and (7.1.8)
in Ref. 28. The counter-rotating wave component,
cef (w,,,1,1;), is a transient with zero amplitude at long
times. For the large w, used in the present paper, even the
transient contribution is negligible.

Using Egs. (9a) and (9b) we can calculate the cef for a
sequence of N Gaussian pulses analytically,

N

cef(w,, 1) = >, cef(w,,1,1) + cef (@, 1,1;). (10)
k=1

In the Fourier limit, this reduces to a sequence of N identical
Gaussian pulses, each centered at time 7;, which has the fre-
quency domain representation
) N
cef(w,y,f — %) = %TQ(%)Z etonsit, (11)
k=1

This also follows from the linear properties of Fourier trans-
forms. For instance, a sequence of two identical Gaussian
pulses centered at times #; and ¢, has the Fourier limit

e
cef(w,,,t — ) = 7e+(w,,s)cos(wm5,)e“"ns(’1+5t), (12)

where 8,=(t,—1,)/2 is half the separation in time between
the two pulses. It is worth noting in Eq. (12) how the Gauss-
ian amplitude €,(w,,) is modulated by a cosine term, indicat-
ing the emergence of a comblike structure in the frequency
domain.” In the limit of a very large number of pulses, we
would obtain a sharp frequency comb.*

C. Multichannel quantum defect theory

In essence, MQDT is a subset of scattering theory. It
exploits the fact that complicated many-electron interactions
in a Rydberg atom or molecule are localized to an inner
reaction volume, outside which a single-electron model is
essentially correct. We therefore separate the radial scattering
coordinate r of the Rydberg electron into two regions. At
small distances, inside the core, many-body short-range in-
teractions take place, but outside the core region (r=r,) the
radial motion is described by the Schrodinger equation

&+
(?+k?(r,E)>z/xj(r,E)=O. (13)

All radial functions considered here will be valid for r=r
only. The channel index j refers to the quantum numbers that
specify the target as well as the orbital quantum numbers, J,
l[; and m;. The Kkinetic scattering energy is ka.(r,E)zE
—V,(r), with E the total energy of the quantum system in
units of A2/ 2ma(2) [natural or rydberg units for electron scat-
tering, with m the reduced mass for radial motion and a the
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Bohr radius]. V;(r) is the effective potential, including the
centrifugal kinetic energy [,(/;+1)/ r? for orbital motion
around the target. The solution to the single-electron radial
Schrodinger equation [Eq. (13)] can be written in terms of
the two energy normalized wave functions f;(r,E) and
g,(r,E) (Ref. 31) as

Wi(r = ry,E) = fi(r,E)cos wu,; — g;(r,E)sin mu,;, (14)

where fi(r,E) and g;(r,E) are mixed by the quantum defect
;- The wave functions f; and g; are integrated numerically,32
which allows a generalized form of MQDT not restricted to
Coulomb potentials.

Outside the core region, any solution [¥ (r,E)) of the
multichannel problem is expressed as a sum over the chan-
nels j,

N N
VB =~ S )S B BN EICE) - 8 E)S, ),

j=1 =1
(15)

where p is a solution index (the number of solutions is equal
to the number of open channels), N is the total number of
channels, and |j) describes the core. In this work, C(E) and
S(E) are smooth symmetric real matrices, related to the
short-range scattering matrix,® which mix the single-electron
wave functions f; and g; outside the core.

The channel-mixing coefficients B;,(E) in Eq. (15) are
determined by the application of the boundary conditions at
long range [see Eq. (21) below] and thus may exhibit reso-
nant behavior at energies corresponding to a finite lifetime of
a closed channel coupled to open channels. The multichannel
solutions of Eq. (15) can be recast in phase-amplitude form,

N
W (1 E)) =~ VT (E)F(r. E)cos &,
rioi

_gj(r,E)Sln ¢jp)’ (]6)
where ¢, is defined by
3L1B;,(E)S;(E)

¢.,(E) = arctan
"’ SY B, (E)C/(E)

(17)

and T, by
N
ij(E) = E Bip(E)[Sin ¢jp(E)Sij(E) +cos ¢jp(E)Cij(E)]~
i=1

(18)

The T scattering matrix is real and unitary, i.e., ij=7;}. At
this point it is appropriate to enforce the correct boundary
conditions. For open channels, in the case of autoionization,
we require a recombination wave function |¥;) in which the
outgoing component in channels j other than k vanishes as-
ymptotically. This corresponds to a recombination from all
open and closed channels j into open channel k and requires
the phase ¢;, to be independent of j for open channels, a
condition we can emphasize by writing the phase in any
open channel j as a function of index p only. For closed
channels, as r— o, the phase tends to an asymptotic value
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B,(E), known as the accumulated phase. In order to cancel
the divergence of the amplitude of the wave functions at
large r, we require that f; cos ¢;,+g; sin ¢;,=0 in Eq. (16),
which by simple trigonometry leads to the requirement that

BAE) + ¢;,(E) =n;m, (19)

where n; is an arbitrary integer and ¢;, modulo 7 must be
independent of the solution p, which allows us to drop the p
index. Hence, we can write ¢, in the open and closed chan-

nels as

¢;,(E) = ¢,(E) for channel j open, (20a)

&o(E) = ¢;(E) (20b)

The combined boundary conditions are enforced by the fa-
miliar MQDT equation (see, e.g., Ref. 8)

for channel j closed.

N

2 Biy(E)lcos ¢;,(E)S(E) = sin ¢, (E)C;(E)]=0, (21)
i=1

with ¢;, defined by Egs. (20a) and (20b) for open and closed
channels, respectively. Equation (21) has nontrivial solutions
B;,(E) only when the determinant |cos ¢;,S;;—sin ¢;,C;j| is
equal to zero. This gives as many solution vectors B;, and
asymptotic open channel phases ¢, as the number N,(E) of
open channels at energy E. The recombination wave func-
tions can therefore be written as

Ny(E)
(Wi(nE) = 2 W, (r.E)e % Ty, (E). (22)
p=1
The projection of the wave functions |¥}) onto each
open or closed target state j gives the radial probability am-
plitude with the target in this particular state. For open j the
projection yields

I rE)) = S8, E) = 1, (. E)) = (3, E)

+ lfj(raE))S;k], (23)

where éjk is the Kronecker delta and S~=S", with the scat-
tering matrix S defined by

N,(E)
S;(E)= 21 T,,(E)e? % ET, (E), (24)
=

with both i and j being open channel indices. For closed
channels the analogous projection for each closed channel is

(lrVe(r.E)) =[fi(r,E)cos ¢; - g(r,E)sin ¢;]
N,(E)
X 2 T;,e7 Ty, (25)
p=1

Having obtained expressions for the MQDT wave func-
tions, we can calculate the corresponding dipole transition
moments. For autoionizing states, the dipole transition am-
plitude connects an initial discrete state W, normalized to
unity, to the excited state W}, normalized to the energy in
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natural units. From Eq. (22) we see that the complex ampli-
tude D, (E) may itself be represented as a superposition of
N,(E) real transition amplitudes D, (E),
No(E)
D= X D,(E)e T, (26)
p=1

Equation (26) can be further decomposed by means of Egq.
(15) into N real short-range channel transition amplitudes
D;(E) which are smooth functions of energy, and in particu-
lar, vary smoothly across ionization thresholds (as discussed,
for instance, in Refs. 33 and 34),
N
D, = 2] D;B,,. (27)
i=
We are now equipped to form a wave packet according
to Egs. (2) and (5). In the continuum, the summation over
discrete states in Eq. (2) is replaced by an integral over en-
ergy. The wave packet is

[ (r,0)=1 f dED; (E)cef(E, e B Wi (r,E))  (28)

for the target continuum state k and dipole transition moment
D (E), calculated according to Eq. (26). The product D
X cef in Eq. (28) has the dimension energy~!/? in the con-
tinuum and is dimensionless in the discrete range; it deter-
mines the amplitude and phase of the contribution of each
energy E to the wave packet depending on the transition
moment and pulse characteristics. Natural units are obtained
by expressing E in units of 2/ 2ma(2) and ¢ in units of 2ma§/ h
so that 1Et/f is replaced by (Et. Projection of the wave
packet on specific channels follows directly from Egs. (23)
and (25). The probability density of the wave packet is given
by the square modulus, i.e., [(j| Wi (r,0))>

For a time-independent potential, such as H, in our
case, the quantum probability flux is given by Jj
=(A/m)Im(P*VW¥). Hence the radial flux associated with
each channel is

- h
7= Im| (WGl | @9)
o

where m,, is the reduced mass. A remark concerning units is
in order here. The wave packets (j|rV;(r,1)) in Eq. (29)
have the dimension length™? [see Egs. (15), (28), and (29)]
and therefore the flux j has the dimension of an inverse time
as is physically required. Natural units are obtained by mul-
tiplying Eq. (29) by the natural unit of time, 2ma(2)/ fi, which
makes Eq. (29) dimensionless.

lll. CALCULATIONS
A. H, rotational autoionization

We study rotational autoionization in a two channel
model of H,. The spectrum of H, excited from the rotation-
less ground level up beyond the rovibrational limit |v*
=2,N*=0) of Hj, corresponding to channel j=1, exhibits a
regular series of rotationally autoionizing Rydberg reso-
nances in channel j=2, converging to the |[p*=2,N*=2)
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FIG. 1. (Color online) The ionization spectrum |D;_,|? for (a) window reso-
nances and (b) “normal” resonances. The spectral profile for excitation
scheme 1 (a single Gaussian pulse) is included for reference. The central
frequency of the pulse corresponds to 7=40.45 in the closed channel.

threshold.'*" One-photon excitation from the J”=0 level
leads to N=J=1 negative parity singlet states with predomi-
nant /=1 character. Thus only ion levels with N*=0 and 2
can be reached. In this work, we neglect vibrational cou-
pling, but the model is still quite realistic for the region be-
tween the N*=0 and 2 (v*=2) ionization limits. In the
present case, V,(r) is the Coulomb potential with angular
momentum /=1, i.e., Vj(r)zE;+ 2/r*=2/r (in natural units),
where E;“ are the ion rovibrational levels in the two channels
je[1,2]. The numerical values for these limits are Ej
=128 672.552 cm™'=1.172 550 57 Ry and E}
=128 828.75 cm™'=1.173 973 95 Ry. The short-range inter-
actions are given by quantum defects w;;=0.0195, wu,,
=0.1136, and p;,=-0.1321, in accordance to Ref. 19.

The dipole transition moments from the ground state
|s)=|X,v"=0,J"=0) are proportional to D,;=1 and D,=0, in
keeping with approximate propensity rules (N*—J"<1" and
I"=0—1[=1). The resulting time-independent photoioniza-
tion spectrum, |D;_; (E) 2, shown in Fig. 1(a), has been cal-
culated previously by a number of authors; it shows a char-
acteristic series of window resonances converging toward the
|[v*=2,N*=2) ionization threshold.

Likewise, we examine the dynamics in the same spectral
region with a dipole transition moment vector proportional to
D=0 and D,=1, obtained by excitation from a different
state than the ground state. This corresponds to a sequence of
normal, approximately Lorentzian-shaped peaks in the spec-
trum which can be seen in Fig. 1(b). If these were isolated
resonances, the window resonances in Fig. 1(a) would have

J. Chem. Phys. 127, 164301 (2007)

Fano parameter ¢=0 and the normal resonances in Fig. 1(b)
would have ¢g> 1. It is interesting to note in Fig. 1 that due to
the strong channel couplings, the relative position of the nor-
mal and window resonances is slightly shifted. The channel
couplings also prohibit strict distinction between direct and
indirect ionizations,””"° although we will find the language
of direct and indirect ionizations intuitively useful when ob-
serving the ionization fluxes in each channel in Sec. IV.

B. Optical excitation pulses

The optical excitation schemes used in the calculations
are presented in Table I. They all consist of one or two
Gaussian pulses. The amplitude of pairs of pulses is divided
by VE in order to keep the total excitation intensity constant
for all excitation schemes. The central optical frequency wy
is given in terms of the corresponding principal quantum
number 7 in the closed channel. For convenience, the central
frequency wg is aligned with an absorption maximum in
|D,J?, which is the reason for the change of 7 in schemes
2c—2e, which are used to excite normal resonances rather
than window resonances.

Scheme 1 uses a single pulse centered at time =0, while
schemes 2a—2e employ two pulses, one for excitation and
one for control. The first pulse is centered at r=0, while the
second pulse is centered at time &=35,+y(6), where the
coarse time delay & is given in terms of the classical Kepler
period T,=2mi°. Schemes 2a and 2b use a coarse time delay
8y=0.5T4(T,=10.06 ps), while schemes 2c-2e use &
=T4(T4=9.73 ps). The delay y(6) is a small additional delay
which allows for fine adjustment of the relative optical phase
difference between the two pulses. For a phase difference 6,
the required change in the delay time y(6) can be calculated
as

Y0 =- wL mod(wy&y — 6,27). (30)
0

In the Fourier limit, the two pulses have a comblike spectral
profile. For =0, Eq. (30) centers the peaks under the Gauss-
ian envelope with a maximum at w,, while for =, there is
a corresponding minimum.

The carrier envelope phase, shown to be important in the
strong-field, few-cycle regime,37 and the zero area theorem,38
are of less importance here due to the large number of optical

TABLE I. Excitation schemes used in the calculations. The number of pulses and the time-domain amplitude e,
are listed. The total time delay between two pulses is §=35,+ (). The coarse delay &, is expressed as a
multiple of the Kepler period 27iz° and @ is the relative optical phase (see Sec. III B). The pulse width (7,/cm™")
and duration (7,/ps) are specified by the FWHM intensity. The central optical frequency w, is given by the
corresponding principal quantum number 7 in the closed channel.

Scheme Pulses € & (Ty) 0 n 7, (ps) 7, (cm™)
1 1 1.0 40.45 1.69 8.70
2a 2 1/\2 0.5 0 40.45 1.69 8.70
2b 2 1/\2 0.5 ™ 40.45 1.69 8.70
2 2 12 1.0 0 40.0 1.69 8.70
2d 2 1742 1.0 ™ 40.0 1.69 8.70
2e 2 1\2 1.0 w3 40.0 1.69 8.70
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FIG. 2. Magnitude of complex excitation function, |(f/e)cef(w,?)|, for a
single Gaussian excitation pulse as a function of time (ps) and energy
(cm™). At large times, the complex excitation function is proportional to the
spectral profile (see Sec. II B).

cycles under each pulse envelope. The focus of the present
work is the relative optical phase between two identical
pulses.

IV. RESULTS AND DISCUSSION
A. The complex excitation function

We begin by examining the cef, which models the exci-
tation process. We discuss the cef for the two representative
excitation schemes 1 and 2b (see Sec. III B for details). The
results are presented in Figs. 2-5 and discussed below. Note
that the cef in Figs. 2-5 has been multiplied by %/e.

Figure 2 shows the magnitude of the cef as a function of
time and energy for the single-pulse excitation scheme 1.
Essentially all energies are pumped, except that the spectral
width of the pulse is overestimated before the duration of the
pulse becomes a well-defined quantity. In the final stages of
the pulse, this overshoot is corrected by downpumping in the
wings. This correction can be seen more clearly in Fig. 3,
which shows the excitation rate calculated [following Eq.
(5)] as the time derivative of the magnitude of the cef, i.e.,
d|cef(w,)|>/dt. Note that it would be incorrect to ascribe
physical reality to virtual states excited by the overshoot in
the flanks of the pulse; only the field-free states that remain
excited once the pulse is switched off are observable.

For scheme 2b presented in Fig. 4, the cef initially de-
velops the same way as for the single-pulse scheme, but,
once the second pulse arrives, interference effects between
the two pulses become important. The most striking effect
for excitation scheme 2b is how the second pulse completely
drops all amplitude at the central frequency w,, consistent
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FIG. 3. The excitation rate, d|(i/e)cef(w,1)|*/dt, as a function of time (ps)
and energy (cm™") for a single Gaussian excitation pulse (scheme 1).
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FIG. 4. Magnitude of complex excitation function, |(%/e)cef(w,1)|, for two
Gaussian excitation pulses (scheme 2b) as a function of time (ps) and energy
(cm™!). At large times, the complex excitation function is proportional to the
spectral profile (see Sec. II B).

with the Fourier limit of the cef. In fact, Figs. 2 and 4 both
show how the Fourier limit of the cef emerges over time (see
Sec. I B). In both cases the spectral width of the Gaussian is
overestimated initially, and the comblike spectral profile,
characteristic of the two-pulse sequence used in scheme 2b,
does not emerge until the second pulse arrives.

Finally, Fig. 5 shows the excitation rate as a function of
time and energy for the two-pulse scheme 2b. The arrival of
the second pulse causes strong downpumping at the central
frequency ), with accompanying pumping of the flanking
frequencies, consistent with the results presented in Fig. 4.

B. Single-pulse excitation in window and normal
resonances

First we examine the dynamics after excitation by a
single optical pulse according to scheme 1 into the window
resonances between the N*=0 and 2 ionization limits. Figure
6 shows the resulting wave packet at intervals of one-half
Kepler period (0.57,). In the closed channel, the wave
packet oscillates with a period T, localizing at the outer
turning point (at r=272%~ 3200 a.u.) and recolliding with the
core. The amplitude of the wave packet decreases since in
each recollision, some of the wave packet scatters into the
continuum. In the open channel, a large initial peak corre-
sponds to the direct ionization and is followed by a sequence
of smaller peaks due to the wave packet in the closed chan-
nel recolliding with the core and scattering into the con-
tinuum.

q

= AT
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128770
128760
28750 2
Energy (cm™) Time (ps)
FIG. 5. The excitation rate, d|(/e)cef(w,?)[?/dt, as a function of time (ps)
and energy (cm™') for two Gaussian excitation pulses according to scheme
2b.
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FIG. 6. The wave packet probability [(j|rW(r,1))]> as a function of the
radial distance r (a.u.) in the closed (j=2) and open (j=1) channels after
excitation with a single Gaussian pulse (scheme 1) for window resonances.
The wave packet is shown every half Kepler period, 7,,=10.06 ps (corre-
sponding to 7=40.45). In the closed channel, the wave packet is localized at
the outer turning point once every Kepler period. The open channel wave
packet is multiplied by 5 at times f3, 4, and ¢5, and shows the outgoing,
ionized, wave packets. The results in this figure are consistent with Texier
and Jungen (Ref. 19) and serve here as reference for the two-pulse
calculations.

A complementary story is told by the flux of quantum
probability j. Figure 7 shows the time-dependent flux at r
=2390 a.u. in the closed channel and at ¥=20 000 a.u. in the
open channel. In the closed channel, an initial outward (posi-
tive) flux, corresponding to the excited wave packet racing
toward the outer turning point, is followed by an inward
(negative) flux, corresponding to the wave packet returning
to the core. The flow of incoming and outgoing fluxes
quickly becomes less well defined as dispersion spreads the
wave packet. We also see that the time-integrated flux goes
asymptotically to zero in the closed channel, as all the prob-
ability amplitude leaks into the continuum.

In the open channel, an intense initial peak of outward
flux, the direct ionization, is followed by substantially
smaller autoionization peaks. The first two pairs of peaks are
separated by the Kepler period 7,;=10.06 ps, as calculated
either by the classical relationship T,=27/AE or by the

4x10°

12x10°

Ch. 1 open

Ch. 2 closed

FIG. 7. (Color online) The instant (solid line) and time-integrated (dashed
line) fluxes as functions of time (ps) in (a) the open (j=1) and (b) the closed
(j=2) channel after excitation with a single Gaussian pulse (scheme 1) for
window resonances. The flux is calculated at a distance from the nucleus of
r=20000 a.u. in the open channel and r=2390 a.u. in the closed channel.
(a) The integrated flux in the open channel (scaled by 0.5) has small peaks
spaced by the Kepler period 7,,=10.06 ps, corresponding to autoionization.
(b) There is both outgoing (positive) and incoming (negative) fluxes as the
wave packet oscillates between the core and the classical turning point (at
r=3200 a.u. for 7=40.45). Note that the time-integrated flux in the closed
channel goes asymptotically to zero as the molecule autoionizes completely.
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FIG. 8. (Color online) Comparison of the flux for window and normal
resonances in (a) the open (j=1) and (b) the closed (j=2) channel after
excitation with a single Gaussian pulse (scheme 1). Both the instant and the
time-integrated fluxes are given. The flux is calculated at a distance from the
nucleus of =20 000 a.u. in the open and r=2390 a.u. in the closed channel.
(a) The integrated fluxes in the open channel are scaled by 0.5. Note that the
integrated flux approaches the same long-time limit for both types of reso-
nances, indicating that the total ionization flux is identical. Nevertheless, the
indirect (autoionization) route dominates the process for normal resonances,
while direct ionization is dominant for window resonances. (b) In the closed
channel the instant and integrated fluxes for the normal resonances are
scaled by a factor of approximately 0.176 to emphasize that the flux (and
hence the wave packets) in the closed channel is identical for both window
and normal resonances. The integrated flux goes to zero as the molecule
autoionizes.

phase relationship Ty=dB(E)/dE. Note that for a pure Cou-
lomb potential, both expressions reduce to T, =2iz".

An approximate lifetime can be obtained by fitting the
area of the first pair of autoionization peaks to an exponential
decay, which gives a lifetime of 14.43 ps, in good agreement
with the exponential decay obtained by either the height of
|Tj=2,p=1|2 or from 0.59¢;.; ,.;/dE at the central excitation
energy. At longer times the decay is better fitted by a lifetime
of 12.5 ps, which emphasizes the overall nonexponential na-
ture of the decay.

We now compare the dynamics in a system of window
resonances with the dynamics in normal (Lorentzian) reso-
nances. Excitation is, as before, with a single pulse according
to scheme 1. Figure 8 shows the resulting fluxes for both
cases. In the open channel, the window resonances have
much higher direct ionization but lower subsequent autoion-
ization. The total time-integrated flux is the same in both
systems, but the dynamics is different. Ionization in the sys-
tem of normal resonances proceeds more slowly as a greater
fraction of the ionization flux is forced through the slow
autoionization route. This is reflected in the closed channel,
where the amplitude of the flux for the normal resonances is
approximately a factor of 5 higher. Interestingly, if the closed
channel flux is multiplied by an appropriate scaling factor,
we can see that the closed channel flux is actually identical
for the window and the normal resonances. This emphasizes
that the basic physics of the two systems is the same, with
the only difference being that they favor different routes for
ionization.

C. Sequences of pulses

As a first example of wave packet dynamics following
excitation with a sequence of pulses, we examine the case
where a second wave packet is launched when the first wave
packet is at the outer turning point, i.e., the time delay be-
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FIG. 9. (Color online) The wave packet probability |(j| W (r,t))|* as a func-
tion of the radial distance r (a.u.) in the closed (j=2) and open (j=1)
channels after excitation with two Gaussian pulses (schemes 2a and 2b) for
window resonances. The wave packet is shown every half Kepler period,
T,=10.06 ps (corresponding to 7=40.45). Compared to excitation by a
single pulse (see Fig. 7), we see that the closed channel wave packet is
localized at the outer turning point twice as often, i.e., every half Kepler
period. The open channel wave packet is multiplied by 5 at times #, and 75
and the ionization wave packets come with a “twin” delayed by half a
Kepler period. During excitation, at short times (#<#,) and small distances
(r<2000), we observe weak transient interference in the open channel.

tween the pair of excitation pulses is 0.57, (excitation
schemes 2a and 2b). The wave packets are shown in Fig. 9.
We see the wave packet from the first pulse accumulating at
the outer turning point, at the same time as the wave packet
from the second pulse slowly emerges from the core (com-
pare also to Fig. 6) in the closed channel. Half a Kepler
period later, the first wave packet collides with the core,
while the second wave packet accumulates at the outer turn-
ing point. As a result, the characteristic beat frequency, given
by the Kepler period T, has doubled. In the open channel,
this manifests itself by a pairing of all the peaks, e.g., the
first direct ionization peak is followed by an identical peak
from the second pulse, half a Kepler time later.

Examination of the time evolution of the complex exci-
tation function shows that the first pulse builds a uniform
Gaussian probability distribution over the states, which the
second pulse modifies by pumping down every second state
to give a long-time asymptotic profile proportional to a comb
overlapping every second state. Taking this into account, the
classical expression for the Kepler period remains valid,
since T,;=27/(2AE) will indeed give a doubling of the beat
frequency.

Changing the phase between the two pulses by =, as
we do in excitation scheme 2b shown in Fig. 10, does not
change significantly the fluxes at short times, which is con-
sistent with the very small change in the delay time (0.13 fs
for a total delay time of 5.03 ps). At longer times, when the
two wave packets can interfere, differences do appear. In
particular, the long-time flux in the open channel (see mag-
nified inset in the upper panel) shows the fluxes from the two
schemes beating out of phase, and a similar effect can be
seen in the closed channel at longer times. Furthermore, ex-
amination of the Fourier limit of the complex excitation
function shows that the phase shift 6= swaps the positions
of troughs and peaks in the comb so that only odd or even
states are excited.”’

We examine the ionization flux and corresponding auto-
ionization decay. The pairing of outgoing wave packets and
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FIG. 10. (Color online) Comparison of the flux for excitation with two
Gaussian pulses (schemes 2a and 2b) in (a) the open (j=1) and (b) closed
(j=2) channels as a function of time (ps). The flux is calculated at r
=20000 a.u. (open) and r=2390 a.u. (closed). The time-integrated flux is
quite similar for the two excitation schemes and is only given for scheme 2a.
The time-integrated flux is scaled by 0.5 in the open channel. The instant
fluxes are more or less identical at small times, with differences appearing at
longer times. (c) A magnified inset is provided at longer times in the open
channel so that the out-of-phase beating can be seen.

fluxes, as discussed in the beginning of this section, has the
consequence that the ionization flux, as shown in Fig. 10, is
highly nonexponential. Nevertheless, if one recognizes that
there are two approximately independent wave packets and
one ascribes each peak in the autoionization flux accordingly,
one finds that the decay of each wave packet occurs at a
similar time scale as for the single pulse. Asymptotically, the
ionization flux can be fitted by a lifetime of 12.5 ps, which is
the same asymptotic limit as for the single-pulse excitation.
In fact, this limit is reached sooner, because the effective
dispersion is faster for the two wave packets.

Finally, we examine the degree of control which can be
achieved over the autoionization for the normal resonances.
For maximum interference, the second optical pulse is timed
one Kepler period T, after the initial pulse. This corresponds
to excitation schemes 2c, 2d, and 2e. The fluxes are pre-
sented in Fig. 11. For =0 phase difference between the two
pulses (scheme 2c¢), the second pulse enhances the total ion-
ization yield by augmenting the first autoionization peak
(from the first pulse) with the direct ionization peak, and by
increasing the flux in the closed channel, which eventually
leads to more autoionization flux.

With a phase difference of =1 between the two pulses

1210

11x10®

Ch. 2 closed Ch. 1 open

FIG. 11. (Color online) Comparison of the flux for excitation with two
Gaussian pulses according to schemes 2c (relative phase 6#=0), 2d (6=),
and 2e (#=/3). The fluxes are given as a function of time (ps) in (a) the
open (j=1) and (b) closed (j=2) channels. The flux is calculated at r
=20000 a.u. (open) and r=2343 a.u. (closed). The fluxes are identical be-
fore the arrival of the second pulse, but for times >9 ps the different inter-
ferences for the three excitation schemes either increase or decrease the flux.
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(scheme 2d), we find a different situation. In Fig. 11 we
observe two small flux peaks corresponding to the direct
ionization from the first and second pulses. Up to the arrival
of the second pulse, the system behaves as for the previous
scheme 2c, but, as examination of the complex excitation
function reveals, the second pulse pumps down most of the
population in the closed channel. In Fig. 11 this is reflected
by the vanishing flux in the closed channel and the strongly
diminished autoionization in the open channel.

The phase difference 6 between the two pulses allows us
to control the population in the closed channel, and hence the
amount of autoionization. This is further illustrated by a third
pulse sequence included in Fig. 11 (scheme 2e¢), in which the
phase difference is #=/3. The difference in total time-
integrated ionization flux between the most strongly enhanc-
ing (6=0, scheme 2c) and the most strongly canceling
(=1, scheme 2d) pulse sequence in Fig. 11 is 84%. Further-
more, the amount of autoionization can be changed smoothly
between these two limits by adjusting the phase difference 6.

V. SUMMARY

This paper brings together elements from several pieces
of work and extends the analytical results into a multipulse
scenario, which opens the door for a number of interesting
studies. We examine examples of the Ramsey fringe experi-
ments originally proposed by Noordam et al.®® An initial
excitation pulse launches the excited Rydberg wave packet,
and a second, coherent and time-delayed, pulse is allowed to
interact with the excited molecule. If the second pulse is
timed to coincide with the time when the first wave packet is
at the outer turning point, two almost independent wave
packets are observed, with interferences appearing only at
large times where the dispersion of the wave packets is con-
siderable. The ionization flux reveals a characteristic “twin-
ning” of the flux peaks as the two wave packets decay by
scattering from the molecular core. Examination of the com-
plex excitation function and its long-time behavior which is
proportional to the spectral profile of the pulse pair reveals
that interference leads to every second state being excited.”’
The effective doubling of the energy spacing is consistent
with the doubling of the characteristic beat frequency of the
system (1/T).

In the second example, the probe pulse coincides with
the return of the excited Rydberg wave packet to the core.
Here, the interference is at its maximum and both strong
enhancement and cancellation of the quasibound, resonant
wave packet is possible. This leads to a strong change in the
autoionization yield. We also calculate the autoionizing wave
packets excited by a single pulse in spectra with window or
normal resonances. These systems have quite different decay
characteristics, with the greater proportion of the quantum
flux taking the quasiresonant route in the normal resonances,
leading to substantially slower ionization. The final, time-
integrated ionization yield is nevertheless basically the same.
In all the examples above, the analytical single- and two-
pulse complex excitation functions allow us to follow the
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flow of energy between the classical field and the quantum
system, and provides a compelling view of the dynamics
during the optical pulses.

We now have the full machinery of time-dependent mo-
lecular MQDT at our disposal, including the ability to treat
electronic, rotational and vibrational couplings, predissocia-
tion, hyperfine spin-orbit couplings, and multiple continua.
The analytical work presented in this paper allows for the
treatment of two or more excitation pulses, which makes
simulation of optical combs an attractive possibility. We are
not limited to Gaussian pulse shapes, as the code can inte-
grate the complex excitation function numerically, allowing
us to explore a wide range of pulse shapes, including phase-
shaped pulses.29 Finally, we are not restricted to the pertur-
bative regime we treat presently; an extension to solve the
time-dependent Schrodinger equation while allowing for
depletion of the ground state and multiple photon or multi-
photon transitions should be possible. Presently calculations
including predissociation and nuclear vibrations in H, are
underway.
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