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X-ray diffraction assisted spectroscopy of Rydberg states
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ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

(Received 5 July 2012; accepted 24 September 2012; published online 18 October 2012)

X-ray diffraction combined with conventional spectroscopy could provide a powerful means to
characterize electronically excited atoms and molecules. We demonstrate theoretically how x-ray
diffraction from laser excited atoms can be used to determine electronic structure, including an-
gular momentum composition, principal quantum numbers, and channel populations. A theoret-
ical formalism appropriate for highly excited atoms, and easily extended to molecules, is pre-
sented together with numerical results for Xe and H atoms. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4757913]

I. INTRODUCTION

In recent years there has been a rapid development of new
x-ray free-electron lasers (FEL), including the Linac Coherent
Light Source (LCLS) at Stanford, the European X-ray Free-
Electron Laser (XFEL) in Hamburg and other facilities cur-
rently under construction. The high intensity x-ray radiation
from these new sources has many interesting applications, in-
cluding crystal-free diffraction imaging of biomolecules.1, 2

The combination of high intensity and short pulse duration
offered by the FELs is also ideal for diffraction using elas-
tic scattering of x-ray photons from transient species in the
gas phase, including electronically excited states in atoms and
molecules. To date, such studies were only possible in rare
species with extremely long-lived excited electronic states.3

The potential benefits of such diffraction studies were
first pointed out by Wilson and collaborators in their pio-
neering work on time-resolved x-ray diffraction.4, 5 Now, as
such experiments are becoming increasingly more likely, we
present a unified theoretical framework for both diffraction
and spectroscopy of excited states based on multichannel
quantum defect theory (MQDT). We propose that diffraction-
based techniques could become an important complement to
more conventional spectroscopic techniques. Modern laser
spectroscopy can determine the energy levels, transition in-
tensities and line shapes of atoms, and molecules with high
precision,6, 7 but analysis of the spectra is often difficult and
requires complicated theoretical models. The complementary
spatial information provided by diffraction, which directly
probes the electron density of the sample, could resolve ambi-
guities in spectroscopic assignments and greatly simplify the
analysis of spectra, as well as provide an independent check
on prevailing theory.

In this paper, we examine in detail the diffraction from
highly excited electronic states (also known as Rydberg
states) in simple and complex atoms. We find that angular
momentum coupling between Rydberg electrons and the core
lead to robust signatures in the diffraction patterns, and that
in some instances it may be experimentally advantageous to
study the Rydberg electron indirectly, via diffraction from

a)Electronic mail: adam.kirrander@gmail.com.

the positive core. We also show, more specifically, how the
diffraction pattern contains information on the angular mo-
mentum composition, the radial wave functions, and the rel-
ative channel populations for an excited electronic state. In
molecules, Rydberg states can provide a signature of the
molecular structure,8 not dissimilar to how photoelectron an-
gular distributions give detailed information on atomic and
molecular states.9 In ultrafast dynamics, there are interesting
reactions that proceed through Rydberg states,10 where un-
ambiguous spectroscopic assignment of transient intermedi-
ates is difficult and may be significantly aided by a diffraction
signature. Again, there is an analogy to how time-resolved
photoelectron spectroscopy is used to study dynamics.11

A schematic representation of the proposed experiment
is shown in Figure 1. The setup is very similar to what has
already been used in time-dependent x-ray diffraction exper-
iments at third generation synchrotrons (see, e.g., Ref. 12).
This paper is structured as follows. In Sec. II we present the
theoretical description of highly excited states using MQDT,
which we use to calculate the electron density and to de-
rive expressions for the elastic x-ray scattering (diffraction).
In Sec. III we apply the theory to calculate wave functions
and associated electron densities for excited states in H and
Xe atoms. The resulting diffraction patterns are analyzed in
Sec. IV and experimental considerations are given in Sec. V.

II. THEORY

A. Theoretical description of highly excited states

Highly excited atomic and molecular states can be
described by MQDT,13–16 which regards Rydberg states as
consisting of an excited electron scattering from a positive
ion core. Outside the core, the Rydberg electron moves in
a Coulomb potential and occupies a large volume of space.
When it enters the core, thereby forming a compact collision
complex, interactions with the core electrons and the nucleus
lead to exchange of energy and angular momentum. The
effect of these interactions on the Rydberg electron wave
function located outside the core can be summarized in terms
of a short-range scattering matrix. This scattering matrix
can be calculated by the R-matrix method,17 or by fitting to

0021-9606/2012/137(15)/154310/10/$30.00 © 2012 American Institute of Physics137, 154310-1
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FIG. 1. Schematic of the proposed experiment. The sample atoms are excited
by a laser with planar polarization along the ẑ-axis. The direction of the in-
coming x-ray beam is k0, which defines the x̂-axis, and the diffracted x-rays
are measured along k. The direction of k is expressed in spherical angles θ ,
φ relative the incoming x-ray beam k0.

ab initio electronic structure calculations or experimental
Rydberg spectra.14 Below, we present the mathematical form
of the Rydberg wave functions as obtained by MQDT for
bound states.

Using the real form of the scattering matrix, K, the scat-
tering wave function � for the Rydberg state is a Nc × Nc

matrix with elements,

�jk = |�+
j 〉

[
1

r
Ylj mj

(ϑ, ϕ){fj (r)δjk − gj (r)Kjk}
]

, (1)

where the square brackets contain the Rydberg electron wave
function outside the core, with fj(r) and gj(r) the radial
Coulomb functions in channel j, and Ylj mj

(ϑ, ϕ) the corre-
sponding orbital angular momentum spherical harmonic. The
positive ion core wave function, |�+

j 〉, contains all degrees of
freedom and factors not made explicit in Eq. (1). The scatter-
ing of the Rydberg electron from the core introduces phase
shifts into the channel components of the outer electron wave
function by mixing irregular (cos -like) components gj(r) with
the regular (sin -like) components fj(r) via the K matrix. Each
of the Nc scattering channels, indexed by j, corresponds to a
particular configuration of the core and the Rydberg electron.
The columns of matrix � in Eq. (1) form Nc linearly indepen-
dent wave functions. To find bound states, we form a linear
superposition �

� = �Z, (2)

where the linear expansion coefficients in the column vector Z
are determined to yield a bound wave function � that vanishes
exponentially in each channel when r → ∞, as the physical
boundary conditions require. Such bound states can only be
found at discrete energies, given by13, 14

(K + tan β) Z = 0, (3)

where the diagonal matrix tan β is a function of the accumu-
lated radial phase β in each channel. Bound states appear as
a result of resonances in the external Coulomb potential (via
the accumulated phase β). The short-range scattering matrix
K remains nearly constant between resonances.

The end result is a Rydberg state wave function which
can be written in the form,

� =
Nc∑
j=1

|�+
j 〉

[
1

r
Ylj mj

(ϑ, ϕ)Rj (r)

]
, (4)

where the sum runs over the Nc channels. The square bracket
contains the Rydberg electron wave function. The radial wave
function, Rj(r), is a sum of fj(r)δjk − gj(r)Kjk components
from Eq. (1), multiplied by the weights Z from Eq. (2).
Green’s theorem makes it possible to normalize the Ryd-
berg wave function without knowing the internal r < rc part
explicitly,14, 15, 18 and antisymmetrization of the total Rydberg
wave function is not required due to the small overlap of the
core and Rydberg electron wave functions.17 In the next sec-
tion, wave functions of the form in Eq. (4) are used to calcu-
late electron densities.

B. Electron density from Rydberg wave functions

The x-rays diffract from the total electron density, ob-
tained by integrating out all but one electronic coordinates in
the probability density for the system. The total N electron
density for a Rydberg state, ρ

(N)
tot , has three components,

ρ
(N)
tot (r) = ρ(1)

r>rc
(r) + ρ(N−1)

r<rc
(r) + Pr<rc

ρ(N)
r<rc

(r), (5)

where ρ(1)
r>rc

is the Rydberg electron density, ρ(N−1)
r<rc

is the N−1
electron density of the ion core, and ρ(N)

r<rc
is the N electron

density of the collision complex. The subscripts indicate the
radial range of each component with rc the radius of the colli-
sion complex, while the superscripts correspond to the num-
ber of electrons in each component. The density coordinate is
r = (r, ϑ, ϕ).

Although the collision complex density, ρ(N)
r<rc

, could be
calculated by the R-matrix method,17 it is disregarded in the
present treatment because it changes very little going from
one Rydberg state to another. Accounting for state-specific
changes in the dipole transition moment, it gives a constant
background that can be subtracted. In addition, the prefactor,
Pr<rc

, in Eq. (5) is small. In this paper we focus on the two
most variable components of the wave function, correspond-
ing to the terms in Eq. (5) that originate from the Rydberg
wave function in Eq. (4), i.e., the diffuse Rydberg electron,
ρ(1)

r>rc
, and the compact core, ρ(N−1)

r<rc
.

The Rydberg electron density outside the core, ρ(1)
r>rc

, is
given by

ρ(1)
r>rc

(r) = 1

r2

Nc∑
j=1

|Ylj mj
(ϑ, ϕ)|2|Rj (r)|2, (6)

where we integrate out the N − 1 core electrons such that
〈�+

j |�+
j ′ 〉 = δjj ′ . The total probability that the Rydberg elec-

tron resides outside the core is

Pr>rc
=

∫
r>rc

ρ(1)
r>rc

(r) dr =
Nc∑
j=1

∫
r>rc

|Rj (r)|2 dr, (7)

where we use the orthonormality of the spherical harmonics
Ylm. The probability that the Rydberg electron is inside the
core is Pr<rc

= 1 − Pr>rc
and appears in Eq. (5).

The electron density from the core N − 1 electron wave
function is given by integrating out the Rydberg electron and
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all electrons in the core except one,

ρ(N−1)
r<rc

(r) =
Nc∑
j=1

ρ
(N−1)
j,r<rc

(r)
∫

r>rc

|Rj (r)|2 dr, (8)

where ρ
(N−1)
j,r<rc

is the electron density for the core in the elec-
tronic state corresponding to channel j. No cross-terms appear
in Eq. (8) since each channel has different set of angular and
spin quantum numbers. We assume that the core density for
each channel, ρ

(N−1)
j,r<rc

, can be written as a radial density func-
tion multiplied by an orbital angular momentum,

ρ
(N−1)
j,r<rc

= 1

r2
|Ylj mj

(ϑ, ϕ)|2|Rj (r)|2. (9)

For a complex atom, we must ensure that the total wave func-
tion has the correct total angular momentum, which leads to
a weighted sum over different quantum numbers m in each
channel. This is discussed for the case of Xe atoms at the end
of Sec. III. This leads to spatial correlation between the core
wave function and that of the Rydberg electron which makes
it possible to use diffraction from the core to infer information
about the Rydberg electron (see discussion in Sec. IV B).

C. X-ray diffraction

We now turn to the x-ray diffraction from the electron
density calculated in Sec. II B. Because the lifetimes of Ry-
dberg states are significantly longer than the duration of the
x-ray probe pulse,16 we can treat the problem as diffraction of
a continuous x-ray beam from a static target.19, 20 Within the
first Born approximation the N-electron diffraction operator
L(s) for x-rays is (see, e.g., Ref. 21)

L(s) =
N∑
i

eısri , (10)

where the vector s = k0 − k is the difference between the in-
cident wave vector k0 and the scattered wave vector k, with
k0 = E/¯c for x-ray photon energy E and c the speed of light.
For off-resonant x-ray photon energies it is sufficient to dis-
cuss elastic diffraction, k0 = k. The diffraction amplitude, also
known as the atomic form factor, f (s), from a bound and nor-
malized N electron wave function φ(r1, . . . , rN ) is

f (s) ∝ 〈φ|L(s)|φ〉 =
∫

ρ
(N)
tot (r)eısrdr, (11)

where we make use of the fact that the electrons are indistin-
guishable. From Eq. (11) it is clear that it is the N electron
density, ρ

(N)
tot , that diffracts the x-rays. Experimentally, the in-

tensity of the diffracted signal is proportional to |f (s)|2. For
an atom it is reasonable (see Eqs. (6) and (9)) to write the elec-
tron density ρ(r) as a sequence of radial densities, |Rj(r)|2/r2,
multiplied by corresponding angular densities given by the
spherical harmonics, |Ylj mj

(ϑ, ϕ)|2. This gives electron densi-
ties of the form,

ρ(r) = 1

r2

Nc∑
j=1

|Ylj mj
(ϑ, ϕ)|2|Rj (r)|2. (12)

To solve the integral for f (s) in Eq. (11) we expand the plane
wave in spherical partial waves,

eısr = 4π

∞∑
l=0

+l∑
m=−l

ılY ∗
lm(ϑs, ϕs)jl(sr)Ylm(ϑ, ϕ), (13)

where jl(sr) are the spherical Bessel functions. Inserting this
expansion and the generic electron density from Eq. (12) into
Eq. (11), we obtain

f (s) = 4π

Nc∑
j

2lj∑
l=0

ılY ∗
lm(ϑs, ϕs) Qlj mj lm Bjl(s), (14)

which is the main result of this section. The factor Qlj mj lm

corresponds to the integral over three spherical harmonics and
is zero unless m = 0 and 0 ≤ l ≤ 2lj. According to the Wigner-
Eckart theorem Qlj mj lm is

Qlj mj lm =
√

(2l1 + 1)(2l2 + 1)

4π (2l3 + 1)
〈lj l00|lj 0〉 〈lj lmjm|ljmj 〉.

(15)
The factor Bjl(s) in Eq. (14) is a Bessel transform of the radial
probability density,

Bjl(s) =
∫

|Rj (r)|2jl(sr) dr, (16)

which essentially amounts to a Fourier transform of the ra-
dial density. In the proposed experimental setup shown in
Figure 1, the atoms are excited by a laser with planar polar-
ization along the ẑ-axis, and probed by an x-ray beam with
wave vector k0 along the x̂-axis. The diffracted x-ray beam
is measured by a detector positioned in the direction k, de-
fined by spherical angles θ , φ relative the direction of k0. We,
therefore, calculate the form factor f (s) in Eq. (14) as a func-
tion of θ , φ, since s = s(θ, φ). In this setup, the amplitude of s
only depends on θ , i.e., s = 2k0sin (θ /2). Consequently, Bjl in
Eqs. (14) and (16) only depends on the radial diffraction angle
θ and all information about the radial wave function is con-
tained in the θ dependence of the scattering pattern. To avoid
confusion, note the difference between the diffraction angles
θ , φ and the angles ϑ , ϕ used in the spherical harmonics in
the wave functions. These latter angles have the standard def-
inition relative the laboratory frame coordinate system, with
ϑ forming an angle with the ẑ-axis.

III. NUMERICAL CALCULATION OF RYDBERG WAVE
FUNCTIONS

In order to calculate the actual diffraction pattern from
electronic Rydberg states, we need to calculate the wave func-
tions which in turn will give us the electron density. Below we
discuss aspects of calculating Rydberg wave functions in two
model systems, H and Xe atoms. In both cases, the calculated
energy levels agree well with experimental levels.

For H atoms, the wave functions are known analytically
and have the form,

�n(r) = r−1Rn(r)YLM (ϑ, ϕ), (17)

where YLM is a spherical harmonic and the bound energies are
En = −0.5/n2 in atomic units. Figure 2(a) shows the radial
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FIG. 2. Radial Rydberg electron wave functions Rj(r) for H and Xe atoms. The classical turning point, rtp, for the wave functions scales as rtp = 2n2. The wave
functions are bound-state normalized. (a) (H atom) Radial wave functions for L = 0 (M = 0) and principal quantum numbers n = 1 (top), n = 10 (middle), and
n = 20 (bottom). (b) (Xe atom) Radial electronic Rydberg wave functions for states E1 and E2 in channels j = 1–5 (see Table I). The core is contained inside
the volume rc < 5 a.u. The principal quantum numbers in the channels j = 1–3 are n ≈ 20, and n ≈ 5 in j = 4–5.

wave functions for three s orbital states (L = 0) with principal
quantum numbers n = 1, 10, and 20.

In Xe, we regard two adjacent bound Rydberg states with
total angular momentum J = 1. The two states, referred to
as E1 and E2, are listed by NIST22 and appear at energies
97 405.6 cm−1 and 97 430.0 cm−1. At these energies, Xe has
five dipole-allowed Rydberg channels, given in Table I and
identified by the state of the core, Xe+, and that of the Ryd-
berg electron. The calculated character for each state is given
in Table I. Although the states are adjacent, there is a signifi-
cant difference in their character, with channel j = 1 dominat-
ing E1 while E2 is dominated by j = 2–3. The calculations use
the K matrix and dipole transition moments from the relativis-
tic spin-orbit coupled MQDT calculations by Johnson et al.23

The radial Rydberg electron wave functions shown in Figure 2
are calculated by the Milne method24 and the radial wave
functions for the Xe+ core states are estimated from published
form factors for Xe (NIST25).

The electron density in the yz-plane for the Rydberg elec-
tron in state E1 is shown in Figure 3 for channels j = 1, 3, and
5. The radial electron density (including the nodal pattern)
is determined by the radial wave function, while the spatial
angular density distribution depends on the orbital angular
momentum. Channels j = 1 and 4 both have isotropic elec-

TABLE I. The calculated character of the two bound Xe states E1 and E2

given as the % population in each channel. The three channels j = 1–3 corre-
spond to the ground electronic state of the core and j = 4–5 to the first excited
state. Core states are given as 2S+1LJc , where Jc is the total, L is the orbital
and S is the spin angular momentum of the core. The Rydberg electron is
given as lje , where l is the electron orbital and je is the total electron angular
momentum, including the electron spin.

Channel ( j) 1 2 3 4 5

Core (Xe+) 2P3/2
2P3/2

2P3/2
2P1/2

2P1/2

Rydberg electron s1/2 d3/2 d5/2 s1/2 d3/2

Population E1 (%) 98 0.03 1.5 0.02 0.002
Population E2 (%) 1 79 21 0.02 0.04

tron density (l = 0, see Table I), while the remaining chan-
nels are anisotropic. To calculate the electron density we re-
quire the expansion of orbital angular momentum functions
that accompany each channel. We write the angular momen-
tum states as |JM〉, with angular momentum J and projec-
tion M. Single photon excitation from the ground state |00〉
wave function with linearly polarized light gives a total ex-
cited wave function |10〉. This excited state is described using
jj-coupling between the Rydberg electron and the core,

|10〉 =
∑

Mc+me=0

〈JcjeMcme|10〉 |JcMc〉|jeme〉. (18)

For each channel j, the core momenta Jc, L, and S, and the
Rydberg electron momenta je, l, and s are given in Table I. To
find the expansion of orbital angular states for the Rydberg
electron, we expand the Rydberg electron angular momentum

|jeme〉 =
∑

ml+ms=me

〈lsmlms |jeme〉 |lml〉|sms〉 (19)

with |ml| ≤ l and |ms| ≤ s according to the triangle inequality.
Inserting Eq. (19) into Eq. (18) gives for channel j that

|10〉=
∑
ml,ms

〈JcjeMcme|10〉 〈lsmlms |jeme〉|JcMc〉|lml〉|sms〉,
(20)

where me is defined as me = ml + ms, Mc = −me, |Mc| ≤ Jc,
|ml| ≤ l, and |ms| ≤ s. As a consequence of Eq. (20), the radial
wave functions Rj(r) in Eq. (4) will be multiplied not by a sin-
gle spherical harmonic Ylj mj

function, but by a weighted sum
of spherical harmonics with the same lj but different mj. The
same procedure gives the expansion of orbital angular mo-
mentum states of the core. It should be noted that the angular
momentum distribution (and hence the spatial wave function)
of the core and the Rydberg electron are thus intrinsically
linked, meaning that the one can be inferred from the other
for instance via their diffraction pattern.
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FIG. 3. The Rydberg electron density in the yz-plane for state E1 in Xe (see Table I). (a)–(c) show channels j = 1, 3, and 5, respectively. The density is isotropic
in channels j = 1, 4, and anisotropic in the other channels. The electron density has been multiplied by the radius r, and re-normalized so that the maximum
value is 1 in each channel in order to aid visualization. (a) Channel j = 1. (b) Channel j = 3 (and channel j = 2 by a 90◦ rotation around the perpendicular
x̂-axis). (c) Channel j = 5 (note that j = 4 is similar in size and nodal pattern, but is isotropic like j = 1).

IV. RESULTS

A. Diffraction from H atoms

In order to establish the basic properties of diffraction
from Rydberg states, we examine the x-ray diffraction from
excited H atoms. We use Eq. (14) to calculate the diffraction
form factor, | f(θ , φ)|2, with wave functions determined by
Eq. (17) and do not at this stage take into account the excita-
tion process or the optical selection rules. The orbital angular
momentum gives a signature in the diffraction pattern which
is quite insensitive to the matching between the x-ray probe
wavelength and the spatial dimensions of the electron den-
sity. In contrast, in order to extract the maximum information
about the radial electron wave function from the diffraction
pattern, the wavelength must be matched to the radial dimen-
sions.

Figure 4 demonstrates the strong signature of the or-
bital angular momentum in the diffraction pattern. The left-
hand column shows contour plots of the diffraction pattern,
| f(θ , φ)|2, from H atoms with different orbital angular mo-
mentum L = 0, 1, and 2 (i.e., s, p, and d orbitals), but the
same quantum numbers n = 10 and M = 0. The righthand
column in the figure shows the electron density of each of
these states. Although the radial wave functions are almost
identical, the different angular spatial density leads to notably
different diffraction patterns. The diffraction pattern for the
isotropic s state is independent of φ, while both p and d states
have a distinct φ dependence. The diffraction pattern is also

FIG. 4. Diffraction patterns from states in H atoms with different angu-
lar momentum L, but otherwise identical quantum numbers n = 10 and M
= 0. The angular momenta L = 0 (top), L = 1 (middle), and L = 2 (bottom)
correspond to s, p, and d orbitals. The righthand column shows the electron
density for each state in the yz-plane (see Figure 3 for technical details) and
the lefthand column shows contour plots of the diffraction, | f(θ , φ)|2, along
the radial θ and angular φ coordinates (see Figure 1). The x-ray wavelength is
λ = 150 a.u. (156 eV) and the incoming x-ray is aligned with the x̂-axis. Note
that background diffraction from, e.g., ground state atoms is not included.
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sensitive to the direction of the incoming x-ray for a fixed ori-
entation of the excitation laser. For instance, the anisotropy of
the p and d orbitals with M = 0 in Figure 4 does not appear
if the incoming x-ray beam is aligned with the ẑ-axis. This
could be used to determine the value of quantum number M,
when relevant.

In contrast, to extract maximum detail about the radial
wave function from the diffraction pattern, the incoming x-
ray photon wavelength λ = 2π /k0 must match the spatial di-
mensions of the wave function. The radial diffraction pattern
is determined by the factor Bjl(s) in Eq. (16), with the range
of s sampled by a particular k0 being 0 ≤ s ≤ 2k0, with the
value of s a function of the radial diffraction angle θ (see
Sec. II C). Figure 5 shows the radial diffraction pattern,
| f(θ )|2, for a n = 10 and L = 0 wave function for a range
of different x-ray wavelengths λ given in atomic units (1 a.u.
≈ 0.53 Å) and in eV. It can be seen that the most detail is re-
tained at λ = 75 a.u. (312 eV), which matches the dimensions
of the radial wave function reasonably well. Since the classi-
cal turning point (≈size) of the Coulomb wave functions is rtp

= 2n2 = 200 a.u. and the nodes are spaced by approximately
�r ≈ rtp/n = 20 a.u. we expect the most useful diffraction
patterns to occur for 20<λ<200 a.u. (1.2 keV–117 eV). In-
deed, in Figure 5 the probe x-ray wavelengths λ = 75 a.u. (312
eV) and 150 a.u. (156 eV) retain the greatest amount of detail.
If λ is too short, all the diffraction signal is observed at small
angles θ , as can be seen for λ = 5 a.u. (4.7 keV) in Figure 5,
and if λ is too long, most oscillations in the diffraction are
lost, as can be seen for λ = 600 a.u. (39 eV). There are a few
general remarks to be made. In the Bessel transform of the
radial density in Eq. (16), large features in real space r will
give rise to small features in reciprocal space s and vice versa,
and periodic structures (notably the nodes) in the wave func-
tion will give corresponding periodic structures in reciprocal
s space. Also, all form factors f have the value N in the direc-
tion θ = 0, where N is the number of electrons, since s = 0 in
Eq. (11).21
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FIG. 5. Diffraction signal as function of the radial angle θ for different x-
ray probe wavelengths λ from H atoms with angular momentum L = M
= 0 and principal quantum number n = 10 (classical turning point at
200 a.u.). The probe wavelength λ needs to be matched to the spatial di-
mensions of the radial wave function to avoid loss of information. The range
λ = 5–600 a.u. corresponds to photon energies 4.7 keV–39 eV. Details of the
diffraction pattern are shown in the insert.
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FIG. 6. The radial diffraction signal as a function of principal quantum num-
ber n. The greatest difference is between n = 1 and n = 2 (top), but it remains
significant for n = 10 and n = 11 (middle) and even for n = 20 and n = 21
(bottom). In each case, the x-ray wavelength λ is chosen to match the size of
the electronic state (λ = 6 a.u. at the top, λ = 150 a.u. in the middle and λ

= 250 a.u. at the bottom, corresponding to photon energies 3.9 keV, 156 eV,
and 94 eV, respectively). Angular quantum numbers are L = M = 0, and the
difference signal �n,n+1 is included as a dotted line in each plot.

For appropriately chosen x-ray wavelengths λ, the radial
diffraction pattern along θ can be used to distinguish states
with different principal quantum numbers and hence different
radial wave functions. In Figure 6 the radial form factor | f(θ ,
φ)|2 = | f(θ )|2 is compared for three sets of nearest-neighbour
wave functions with principal quantum numbers (n, n + 1) for
n = 1, 10, and 20. For each set, an appropriate x-ray wave-
length is chosen. We see that there is a strong difference in
diffraction pattern between n = 1 and its nearest neighbour
n = 2. Neither n = 1 nor n = 2 are truly Rydberg states, but
the difference in diffraction pattern persists for higher n states,
although it does become weaker. As shown in the figure, there
is still a discernible difference between n = 20 and n = 21.
In principle, this difference signal could be enhanced by mea-
suring the diffraction at several different wavelengths λ.

B. Diffraction from Xe atoms

We now turn to diffraction from Rydberg states in com-
plex atoms such as Xe. The main difference compared to the
simple H atom is that the additional electrons in the core
also diffract, and that coupling between the Rydberg elec-
tron and the core leads to composite (multichannel) Rydberg
wave functions. Here, adjacent electronic states can have dra-
matically different character, giving strong difference signa-
tures in the diffraction pattern. The electronic structure of the
Xe ground state is [Kr]4d105s25p6, with 18 outer electrons.
In a Rydberg state, one of these outer electrons is excited
to a high-lying electronic state. Angular momentum coupling
and conservation of total angular momentum ensures that the
spatial anisotropy of the Rydberg wave functions is matched
by anisotropy of the remaining 17 outer electrons. One can,
therefore, expect anisotropic diffraction signals from the Ry-
dberg electron (f 2

0 ∼ 1) as well as the outer electrons in the
core (f 2

0 ∼ 102), while the electrons in the closed inner shell
generally remain unaffected by the excitation and give rise
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to isotropic diffraction (f 2
0 ∼ 103). The electron density for

Rydberg states in Xe consists of the three components listed in
Eq. (5), namely the core, the Rydberg electron, and the colli-
sion complex. As discussed in Sec. II B, the collision complex
component can be excluded to a good approximation, which
leaves a wave function in the format given by Eq. (4). We cal-
culate the total diffraction pattern | f(θ , φ)|2 using Eq. (14).
Although we include the excitation process using the dipole
transition moments from Ref. 23, the background diffraction
from the ground state Xe atoms is completely isotropic and
we therefore show the excited state diffraction only, rather
than the difference diffraction signal (“laser on” – “laser off”)
that would be measured in an actual experiment.19, 26

Figure 7 shows contour plots of the total diffraction pat-
tern, | f(θ , φ)|2, from the states E1 and E2 presented in Sec.
III at two different x-ray probe wavelengths. The large dif-
ference between the diffraction patterns for the two adjacent
states, regardless of the probe wavelength λ, illustrates how
the diffraction patterns can provide specific fingerprints of
each state, and therefore an unambiguous method to distin-
guish and identify different states in the spectrum. The strong
angular (φ) signature in the diffraction patterns originates
from the change in spatial angular distribution associated with
the change in character between the two states (see Table I).

By adjusting the probe wavelength λ one can collect sig-
nal predominantly from the core or from the Rydberg elec-
tron. The compact core will diffract most effectively for x-
ray wavelengths in the range λ = 1–10 a.u. (corresponding to
photon energies 23–2.3 keV), while the diffuse Rydberg wave
function diffracts for λ � 10 a.u., depending on the channel
and the principal quantum number n. For small λ, the diffrac-
tion from the Rydberg electron is contained at small angles θ

and the overall diffraction dominated by the core. Conversely,
for large λ the diffraction from the core depends only weakly
on the radial angle θ , while the nodal pattern of the Rydberg
electron emerges clearly. In Figure 7, at λ = 5 a.u. (4.7 keV)
the radial signature of the Rydberg electron, although present,
is not readily discernible and the strong signature of the spa-
tial angular distribution dominates the diffraction pattern. At λ
= 300 a.u. (78 eV) we see clearly a radial (θ ) diffraction pat-
tern corresponding to the nodal pattern of the real-space radial
wave function of the Rydberg electron. This pattern does not
change much between the two states E1 and E2, although it
can be distinguished for well-enough matched λ. It is worth-
while pointing out that in most elements, except H and He,
the diffraction signal from the core is stronger than from the
Rydberg electron. Hence, it may in some situations prove eas-
ier to study the Rydberg wave functions indirectly via the
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FIG. 7. Contour plots of the diffraction, | f(θ , φ)|2, from the Rydberg and the core electrons in Xe atom states E1 and E2 (see Table I and Figure 2(b)) for x-ray
probe wavelength λ = 5 a.u. (4.7 keV) and λ = 300 a.u. (78 eV). The diffraction angles θ , φ are defined in Figure 1. The short wavelength λ = 5 a.u. (bottom
row) predominantly probes the core, while λ = 300 a.u. (top row) is more sensitive to the Rydberg electron. The diffraction pattern for state E1 (left column)
is quite different from the pattern for state E2 (right column), due to the large change in channel populations between the two states, and associated change in
spatial angular distribution. (a) State E1, λ = 300 a.u. (b) State E2, λ = 300 a.u. (c) State E1, λ = 5 a.u. (d) State E2, λ = 5 a.u.
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diffraction from the core, rather than to image the Rydberg
electron directly.

The preceding discussion demonstrates that it is feasible
to distinguish different Rydberg states by their diffraction pat-
terns. However, it should also be possible to characterize each
individual state further by fitting a MQDT-derived model to
each diffraction pattern. The actual number of parameters that
have to be fitted is comparatively small, and a high degree of
oversampling is possible in the experiment since diffraction
from a large number of unique (θ , φ) points can be measured
experimentally. In analyzing the diffraction pattern from an
experiment one can set up the angular momentum couplings
and radial wave functions for each available channel. Such a
model can then be used to fit the Nc parameters corresponding
to the population in each channel, yielding channel popula-
tions and angular momentum compositions from the diffrac-
tion pattern. The determination of the radial principal quan-
tum number in each channel requires an additional set of Nc

parameters, and x-ray wavelengths that are matched to the ra-
dial dimensions of the wave function. The measured data are
easier to fit if they extend to comparatively large radial angles
θ . For composite Rydberg states with component wave func-
tions with quite different principal quantum numbers it may
prove beneficial to measure the diffraction pattern for more
than one probe wavelength λ.

V. EXPERIMENTAL CONSIDERATIONS

In an actual experiment, the number of elastically
diffracted x-ray photons must be maximized while minimiz-
ing background signal due to sample damage and inelastic
scattering events. The main parameters are the x-ray pulse
characteristics (photon energy, duration, intensity, and focus),
the sample volume and density, the excitation scheme, and
the efficiency of the detector. Away from absorption edges,
the number of diffracted photons is proportional to the prod-
uct Nλ Nat f 2

0 σT , where f 2
0 is the diffraction amplitude and

σT = (8π/3)r2
e = 6.65 × 10−29 m the total Thomson cross

section with re the Thomson radius. Both f0 and σ T are intrin-
sic to the material. On the other hand, the number of incident
photons, Nλ, and the number of atoms in the sample, Nat, can
be maximized in the experiment. Compared to a solid or a liq-
uid, the number of diffracting atoms is small, with the number
density for a Rydberg gas scaling approximately as n−6 with
principal quantum number n. This favours experiments with
comparatively small n.

Krause et al.5 estimated the number of diffracted photons
per pulse to approximately 102, an order of magnitude we es-
sentially agree with. For instance, from a sample of Nat = 1014

Xe atoms and an x-ray pulse I0 = 1015 W/cm2, photon energy
Eλ = 4.7 keV and pulse duration τ = 100 fs, with the form
factor for the core on the order of f0 ∼ 102 (17 diffracting core
electrons in the outer shell), and f0 ∼ 1 for the Rydberg elec-
tron, the number of diffracted photons per pulse excluding the
isotropic background diffraction from closed inner shell elec-
trons is on the order of 102.

At high intensities (e.g., I0 ∼ 1018 W cm−2 in Ref. 27),
multiphoton effects are known to become important. These
can be avoided by de-focussing the beam, which keeps the in-

tensity sufficiently low that multiphoton effects do not over-
whelm diffraction, while increasing the number of diffract-
ing atoms. Outside the multiphoton regime, the main source
of damage is the photoelectric effect. Photoelectric cross sec-
tions (attenuation factors) are greater at low energies (soft x-
rays), which provide a distinct advantage for hard x-rays. For
instance, for Xe atoms μPE = 3.45 × 104 cm2/g at Eλ = 79 eV,
while it is μPE = 2.28 × 102 cm2/g at Eλ = 4.7 keV.28, 29

The photoelectric cross sections are also smaller for atoms
with few electrons. It seems that the estimates in the paper by
Krause et al.5 were somewhat optimistic in not accounting for
soft x-ray sample damage.

In order to use Eq. (11) for the analysis of the x-ray scat-
tering signal, experiments should minimize inelastic (Comp-
ton) scattering. This favours low-n Rydberg states (n < 30)
and heavier elements. Compton scattering is also kept small
by ensuring that only stationary Rydberg states are excited
by using a long duration pulse or CW laser in the excitation
scheme and that x-ray pulses with as narrow bandwidth as
possible are used (the long life-times of Rydberg states allow
comparatively long duration x-ray pulses). The inelastic com-
ponent becomes more important for x-ray wavelengths � 6 Å,
which again favours low-n Rydberg states or indirect observa-
tion of Rydberg states via diffraction from the core. Finally,
the Compton scattering may itself contain useful information
on the electronic structure of the state, which could be ex-
tracted from the experimental data by extending the present
theoretical treatment to account inelastic scattering.26

Other effects such as nuclear scattering are orders of
magnitude weaker. Field ionization of the Rydberg electrons
by the oscillating x-ray field is not very efficient, especially
for hard x-rays, and in most cases, secondary damage due
to, e.g., Auger electrons and inelastic collisions in the sample
occur on slower time scales than the duration of the x-ray
probe pulse. For instance, avalanche ionization30 is slower
than the typical x-ray pulse duration from a FEL. Most im-
portantly, the proposed experimental setup, with the sample
continuously replaced between shots, reduces the effect of
secondary damage. Finally, the background diffraction is
generally isotropic, while the useful signal is frequently
anisotropic due to the alignment by the excitation laser (see
discussion in Sec. IV B). This significantly assists with
laser-on laser-off image subtraction and improves the signal
in the experiment. In the examples discussed in this paper
(H and Xe atoms), the M quantum number is well defined in
the ground state. In cases where the initial state has a thermal
distribution of different quantum numbers M, the Rydberg
state carries a corresponding range of M which gives a mixed
angular diffraction signal which nevertheless can be fitted.

An alternative route for the experiments proposed in this
paper could be to use an electron beam as a probe, instead
of x-ray photons.31–35 Electron diffraction is increasingly be-
coming a tool for ultrafast dynamics studies,36 and has the
advantage of greater diffraction cross sections than photons.
The mathematical form of the operator for electron diffraction
is similar to the one for x-ray diffraction in Eq. (10), except
that the total charge of the system contributes, including the
nucleus. Thus, the ideas and formulas presented in this paper
would still largely apply.
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VI. CONCLUSIONS

In this paper, we demonstrate the potential utility of x-ray
diffraction to identify, distinguish and characterize Rydberg
states. The spatial information provided by diffraction could
greatly aid spectroscopic assignments. Although we discuss
diffraction from H and Xe atoms specifically, Rydberg states
in atoms and molecules are very similar,13 and the results and
conclusions can be extended to molecules easily. We calculate
diffraction patterns from Rydberg states in H and Xe atoms,
and find that the calculated diffraction patterns differ substan-
tially from the isotropic ground state atomic form factors37

used to fit the positions of atoms in conventional crystallog-
raphy. In particular, there is a strong spatial anisotropy due to
the alignment inferred by the excitation laser, and the subdivi-
sion of angular momentum between the core and the Rydberg
electron. Angular momentum coupling between the two en-
sures that the spatial electron distribution of the Rydberg elec-
tron is matched by that of the core. For multichannel states of
atoms and molecules, rapid changes in character between ad-
jacent states lead to large changes in the spatial angular distri-
bution of electron density. These provide robust signatures in
the diffraction pattern, that are not sensitive to the x-ray probe
wavelength, and which can be used to distinguish and identify
states.

A more detailed characterization of the observed Ryd-
berg states can be obtained by fitting parameters in a theoret-
ical model to the diffraction pattern. In the present paper, we
use the MQDT formalism to calculate the electron density and
diffraction patterns of excited Rydberg states, thereby pro-
viding a unified theoretical framework for both spectroscopy
and diffraction, and a direct link between spectroscopy and
diffraction-based assignments of the observed states. Using
such a model, information about the angular momentum com-
position, the radial wave functions, and the character of ex-
cited electronic states can be extracted from the diffraction.
The inherently continuous nature of the diffraction signal (as
opposed to crystalline diffraction) provides many unique data
points and makes it feasible to fit the relatively modest num-
ber of model parameters required for detailed analysis. This is
similar to how oversampling of a continuous diffraction per-
mits direct phase retrieval for non-crystalline objects.38 It is
also worthwhile to point out that in some cases, it may prove
easier to observe the Rydberg electron indirectly, via diffrac-
tion from the many-electron core.

Apart from the intrinsic interest in direct observation of
electron wave functions and the utility of unambiguous spec-
troscopic assignments, it is likely that diffraction techniques
will be particularly useful in ultrafast dynamics, to identify
transient Rydberg states10 and provide a time-dependent Ry-
dberg fingerprint spectroscopy.8 The static treatment of the
x-ray scattering used in the current paper is appropriate for
Rydberg states, which generally have life times on the order
of ps or ns, and it could even be used for slowly evolving Ryd-
berg electron wave packets. However, for very rapidly predis-
sociating molecular Rydberg states or rapidly evolving elec-
tron wave packets, where the dynamics occurs in a few fs, it
is necessary to account for the quantum electrodynamics of
the x-ray scattering39 because Compton-like transitions be-

come more important. Work is currently underway to extend
the present MQDT-based theory to include this situation. It
is clear that a successful experiment will have to maximize
the number of diffracting atoms in the sample and the number
of photons in the pulse, and it is conceivable that more in-
formation could be extracted from the experimental signal by
including the material response to the electromagnetic field of
the x-ray pulse explicitly,40 especially if high intensity cannot
be avoided. Finally, a rather speculative idea is to create a pe-
riodic structure to amplify the diffraction signal by trapping
Rydberg atoms or molecules in an optical lattice.
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