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Abstract 10 

This paper reports work that compares slow pyrolysis and MW pyrolysis of two different 11 

feedstock (willow chips and straw), with particular focus on physical properties of resulting 12 

chars and their relation to biochar soil function. In these experiments, slow pyrolysis 13 

laboratory units at the University of Edinburgh and the MW pyrolysis units at the University of 14 

York were used to produce biochar from identical feedstock under a range of temperatures. 15 

Physical properties and stability of thus produced biochar from both systems were then 16 

analysed and compared. 17 

The results showed that using MW, pyrolysis can occur even at temperatures of around 18 

200 °C, while in case of conventional heating a higher temperature and residence time was 19 

required to obtain similar results. This paper presents new data not only on the comparison 20 

of biochar from microwave and slow pyrolysis in terms of physical properties, but also in 21 

respect to their carbon sequestration potential, i.e. stability. 22 

1 Introduction 23 

Biochar is a carbon-rich solid product of thermal stabilisation of organic matter created for 24 

safe and potentially beneficial storage in soil. It differs from other solid products of 25 

thermochemical conversion in that long-term carbon storage is the primary objective, rather 26 

than creation of feedstock for processing industries or fuels such as charcoal, coke and 27 

activated carbon. Due to this distinct function, and often a combination of several functions, 28 

e.g. soil improvement or remediation, the requirements on biochar are different to those 29 

other uses of solid carbonaceous residues. In particular it is necessary to ensure that 30 
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biochar produced from a particular feedstock by any given technology is at least 31 

environmentally benign, or even has positive effects (e.g., on plant growth, soil structure, 32 

water management etc.). The current state-of-the-art knowledge on biochar and its 33 

interaction with the environment has recently been reviewed by Sohi et al. [1] and Lehmann 34 

and Joseph [2]. In addition to its environmental impact, biochar must also be highly stable to 35 

ensure long-term carbon sequestration. The global potential for sustainable global biochar 36 

deployment has been recently analysed by Woolf et al. [3], and the potential benefits and 37 

risks of biochar were assessed in a report to the UK Department of Energy and Climate 38 

Change (DECC) [4]. This report, besides analysing the potential for biochar deployment in 39 

the UK also discusses benefits and issues of biochar deployment. It particularly highlights 40 

the need to better understand the economics of “pyrolysis biochar systems” (PBS) and the 41 

long term stability of biochar. 42 

The distinctly new use of the material (biochar) presents a number of requirements and 43 

challenges that are different from its other (more traditional) uses, such as combustion or 44 

activated carbon. As a result, new, or modified traditional thermochemical processes are 45 

being proposed that target  the specifics of biochar production. This offers the opportunity to 46 

produce and test a wide range of biochar and assess its suitability for application under 47 

different environmental, economic and agricultural scenarios. Yet, to date there are only very 48 

few studies attempting to compare biochar produced from the same feedstock by alternative 49 

technologies [5], [6]. This is why we decided to study and compare biochar produced by a 50 

novel technology of low temperature microwave (MW) pyrolysis with biochar produced under 51 

similar thermal regime by slow pyrolysis (relatively established technology suitable for 52 

biochar production).  53 

Microwave heating offers several advantages over conventional heating, as it is often more 54 

controllable [7], [8] energy [9–11] and cost [12] efficient and therefore in many cases may 55 

offer a potentially attractive alternative to “conventional” pyrolysis systems. Microwave 56 

processing has been shown to be effective at both pilot scale [13] and at industrial scale for 57 
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the production of plant material extracts of outstanding stability and purity [14]. Efficiency of 58 

microwave treatment for pyrolysis of biomass has been proved in a number of publications 59 

[15–17]. Furthermore, several researchers looked at comparing MW pyrolysis with 60 

conventional pyrolysis and identified considerable differences between the two methods [18–61 

20]. These papers emphasise the key differences between the different pyrolysis methods 62 

as being temperature of decomposition, heating rates and requirement for feedstock pre-63 

processing (e.g. shredding or drying).  However, only few studies looked at MW biochar 64 

production [21], [22] and to our best knowledge, direct comparison of bio-char properties 65 

obtained by conventional pyrolysis and MW pyrolysis have never been reported. 66 

In this study we focussed on low temperature thermochemical conversion (up to 350°C), as 67 

this is the operating range of the new promising low temperature MW pyrolysis technology 68 

and we compared the solid products with those produced by slow pyrolysis/ torrefaction in 69 

the same temperature range. This paper presents results from our experimental 70 

investigation of the impact of production conditions, i.e. pyrolysis temperature and heating 71 

method on the biochar product, its properties and stability. 72 

2 Materials and methods 73 

2.1 Materials 74 

The raw materials used in our experiments were willow wood chips (WC), supplied by 75 

Renewable Energy Suppliers Ltd (Koolfuel 15), and mixed straw pellets (StP) consisting of 76 

equal portions of wheat and rape straw, supplied by Straw Pellets Ltd. The properties of the 77 

feedstock are shown in   78 
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Table 1. The feedstock was used as received, without any additional pre-processing. 79 

2.2 Experimental apparatus and procedure 80 

2.2.1 Slow pyrolysis/ Torrefaction using conventional heating 81 

The slow pyrolysis apparatus used, as shown in Figure 1, was a fixed-bed reactor 82 

comprising a quartz glass reactor tube (50mm i/d) with a sintered glass plate at the base. 83 

The reactor tube was  heated by a 12kW infrared image furnace (ULVAC RHL-P610C) with 84 

temperature control based on a thermocouple immersed within the test sample. Inert gas 85 

(nitrogen) is supplied at a controlled rate and, after preheating in the bottom part of the 86 

reactor, it passed up through the sample carrying volatiles and syngas into a condenser train. 87 

The train consisted of two parts; first the gas passed through a heated filter (170±15 °C) 88 

where any entrained particulates were separated, as well as some heavy tars. Second, the 89 

particulate-free gas passed through an air condenser with ambient-temperature receiver and 90 

two cold traps maintained at -50 to -30 °C using liquid nitrogen-cooled acetone. The 91 

composition of the non-condensable gases leaving the second trap was continuously 92 

monitored using an online quadrupole mass spectrometer (Hiden HPR-20 QIC, Hiden 93 

Analytical Ltd,). The gases were collected in a series of gas bags (Cali-5-Bond™ and SKC 94 

flex-foil) for offline analysis at the end of the run. The volume of gas collected was 95 

determined by passing it through a volumetric gas flow meter (Ritter, TG5). Differential 96 

pressure over the sample bed and gauge pressure at the reactor head were also monitored. 97 

In a typical slow pyrolysis experiment a biomass sample (approx. 50g) was charged to the 98 

reactor tube before assembling the apparatus. Pressure sensors were zeroed and the 99 

reactor was purged with nitrogen before establishing a steady flow rate of nitrogen as carrier 100 

gas; an inlet flow of 0.33 l min-1 was used giving a calculated linear cold flow velocity within 101 

the empty reactor tube of 3 mm s-1.  102 

The sample was heated at an average heating rate of 5 °C min-1 to the required hold 103 

temperature (200, 250, 300 and 350 °C). The hold temperature was maintained for 10 104 
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minutes before the heating was stopped and the sample cooled under nitrogen(rapid cooling 105 

ensured by built in water cooling of the furnace). 106 

Throughout each experiment sample temperature, reactor pressure and differential pressure 107 

were monitored and logged. Product yields are given as recovered yields expressed as 108 

percent by weight of dry feed. Not all solid and liquid products could be recovered from the 109 

apparatus; handling losses were estimated at 5-10% in total 110 

2.2.2 Microwave pyrolysis 111 

The MW treatment of biomass was carried out using a Milestone ROTO SYNTH Rotative 112 

Solid Phase Microwave Reactor (Milestone Srl., Italy) fitted with a VAC 2000 vacuum 113 

module in series. Samples were exposed to a maximum MW power of 1200W with an 114 

operating microwave frequency of 2.45 GHz (wavelength 12.2 cm). Samples of wood chips 115 

(ca. 130g) and straw pellets (ca. 175g) were placed in a 2L glass flask within the microwave 116 

cavity (see Figure 2). MW pyrolysis was carried out under constant MW power (1200W) and 117 

vacuum (initial pressure ca. 30 mbar and increasing up to 0.3 bar at the maximum heating 118 

rate temperature point). In a preliminary experiment microwave pyrolysis of biomass was 119 

carried out under the flow of nitrogen at atmospheric pressure, however, under these 120 

conditions significant amounts of bio-oil condensed and then polymerised within the sample 121 

vessel. Results from this set of tests showed that the yield of char and its characteristics 122 

obtained both under low vacuum and under flow of nitrogen were very similar and therefor 123 

further experiments were carried out under vacuum, to avoid condensation issues. Due to 124 

differences in MW irradiation absorption efficiency, biochar (and co-products) from WC and 125 

StP were obtained at different temperatures (170°C and 200°C respectively). Monitoring of 126 

the process was carried out by measuring temperature using two different methods; 127 

temperature of volatile fractions was measured by thermocouple on the exit tube, and that of 128 

solid material was measured by infrared detector within the MW cavity (see Figure 2).  The 129 

sample temperatures were found to be within 15 oC indicating good correlation of 130 

temperature measurement. Due to the instantaneous evaporation of the newly formed bio-oil, 131 
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the heat of evaporation retarded potential overheating at pyrolysis centres, whilst the vapour 132 

heated the bulk of the solid as it diffused out from the pyrolysis centre [23]. At temperatures 133 

below 70°C physisorbed water was collected; with increasing temperature chemisorbed 134 

water was observed around 110-120°C and finally at temperatures between 130 and 160°C 135 

non-compressible gases and bio-oil were observed  The process pressure was monitored at 136 

all times.  Liquid fractions were collected via the water-cooled vacuum trap, which collected 137 

and condensed vapours produced during the process. 138 

2.3 Characterisation of products 139 

2.4 FTIR 140 

Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectra were recorded 141 

on a Bruker EQUINOX-55 instrument equipped with a liquid N2 cooled MCT detector. 64 142 

scans, 2 cm-1 resolution was used.   143 

2.4.1 True density 144 

The true density of biochar was determined using a helium pycnometer (Ultrapyc 1200e, 145 

Quantachrome Instruments). For these tests, approximately 8 cm3 of biochar (as produced) 146 

per test was used. The measurement procedure included repeated flushing (purging) of the 147 

sample cell with helium followed by repeated measurements (typically 20) until a satisfactory 148 

standard deviation value  was achieved. 149 

2.4.2 Porosity 150 

Biochar porosity was determined by mercury porosimetry using a Quantochrome 151 

Poremaster 90 at the University of Strathclyde. The measurements were done in two stages 152 

and the combined data were used to calculate pore size, volume etc. The stage 1 analysis 153 

was conducted in the pressure range of ~0-345 kPa (50 psi) and the stage 2 analysis was 154 

conducted at pressure up to 413.7 MPa (60,000 psi). 155 

2.4.3 Elemental analysis 156 

The CHN content of biomass and biochar samples was determined using an Exeter CE440 157 

Elemental Analyser.  158 
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2.4.4 Stability 159 

The carbon contained in biochar can be classified into several fractions depending on its 160 

stability, i.e. resistance to environmental degradation. The stable carbon fraction was 161 

determined for all biochar using an accelerated ageing assay. This assay involved thermal 162 

and chemical oxidation of milled biochar samples. Accelerated ageing using oxidation was 163 

used given that degradation of biochar in soils is a typically oxidative process. Samples were 164 

placed in 5% hydrogen peroxide and heated to 80 °C, and carbon stability then was 165 

calculated gravimetrically using the %C data of samples before and after oxidation. 166 

2.4.5 Thermogravimetric analysis 167 

Thermogravimetric analysis (TG was performed using a Netzsch STA 409 at scan rates of 168 

10°C min-1, with typically 80 mg sample under flowing N2 at 100 mL min-1. 169 

3 Results and discussion 170 

3.1 Product yields 171 

The main objective of this work was to compare the differences between MW and 172 

conventional slow pyrolysis in terms of product yields and their properties, with focus on the 173 

solid products (biochar). From the yield data shown in Table 2 it is immediately obvious that 174 

the distribution of products from MW pyrolysis is considerably different to that from slow 175 

pyrolysis. Despite the low pyrolysis temperature, MW preferentially generated liquids and 176 

gases, yielding only 33.7wt% and 27.3 wt.% of biochar for StP and WC respectively. In the 177 

temperature range deployed, slow pyrolysis on the other hand yielded mostly solid products, 178 

with yields decreasing with increasing temperature.  The yields of MW biochar are 179 

considerably lower compared to those obtained by slow pyrolysis in similar temperature 180 

range or even at over 150 °C higher temperature. Similar results have been reported in 181 

the literature [18] and attributed to the activation of amorphous cellulose under MW 182 

irradiation. 183 
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3.2 Biochar characteristics 184 

3.2.1 FT-IR 185 

The considerable differences in yields between MW and slow pyrolysis suggest that the 186 

characteristics of the resulting biochar will also differ. We used ATR- FTIR spectroscopy to 187 

assess the progress of biomass conversion and to identify whether there were any 188 

similarities between the MW and slow pyrolysis biochar. Dramatic changes in FTIR spectra 189 

of biochar derived from WC during conventional heating take place at temperatures above 190 

250°C (see Figure 3 A), where the process of decomposition of cellulose becomes more 191 

significant and the cellulose band in the FTIR spectra (peak at 1030 cm-1) is dramatically 192 

reduced in comparison with the peak at 1604 cm-1 representing the lignin aromatic system 193 

(see Figure 3 B). The peak at 1705 cm-1 corresponds to the cellulose aldehyde group 194 

therefore further emphasising the cellulose decomposition. 195 

FTIR spectra of biochar obtained by microwave pyrolysis at 170°C and conventional heating 196 

at 350°C appear largely similar (see Figure 3 A). Furthermore, the exponential 197 

approximation of lignin-to-cellulose ratios ( measured as A1600-1/A1030-1) obtained under 198 

slow pyrolysis at different temperatures (solid line in Figure 3B) showed that properties of a 199 

microwave obtained sample (170°C) were very similar to the slow pyrolysis sample which 200 

could be obtained at temperature of approx. 330°C (see Figure 3 B). Therefore to achieve 201 

the same composition of a wood biochar sample the microwave process requires a 202 

temperature which is 160°C less than that needed in the slow pyrolysis process. The 203 

additional peak at 1317 cm-1 in Figure 3 A (corresponding  to  deformation  vibration  of  204 

CH2-C  bond)  [24]  is  indicative  of  MW pyrolysis operating in a different manner to slow 205 

pyrolysis.   206 

The same trends are seen for StP shown in Figure 4 with an increased impact of lignin. The 207 

results show again that to achieve the same composition of a straw biochar sample the 208 

microwave process requires a temperature which is 157°C less than that needed in the slow 209 

pyrolysis process (see Figure 4 B). 210 
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3.2.2 Thermo-Gravimetric Analysis (TGA) 211 

To both further assess the extent of conversion of the original material under the different 212 

pyrolysis conditions and to quantitatively analyse the remaining biomass composition TGA 213 

analysis was used.  Figure 5 shows an example of the TG analysis applied to wood chips to 214 

estimate composition, based on work of Carrie et al. [23]. 215 

As can be seen in the trace, water content for WC was approximately 9%, cellulose 40%, 216 

hemi-cellulose 38% and lignin 25%, which is in good correlation with literature data for the 217 

relative composition of wood based on TG analysis [24].  The 9% water content is likely to 218 

be responsible for the highly efficient microwave absorption observed during microwave 219 

pyrolysis of wood chips. 220 

The TG data for all W C derived biochar samples is shown in Figure 6A; the data falls into 221 

two groups. The first group, with a TG trace similar to the original material and therefore a 222 

similar structural component composition, are samples prepared below 250°C using 223 

conventional heating.  The second group, with lower mass loss at high temperatures, are 224 

samples prepared at 300°C and 350°C by conventional heating and the microwave sample 225 

prepared at 170°C.  These samples have reduced volatile carbon content – through 226 

decomposition of hemicellulose and cellulose.  Figure 6B shows the relative cellulose 227 

content for the various bio-chars.  The chart shows a small rise in relative cellulose content 228 

between feedstock and slow pyrolysis samples prepared between 200°C and 250°C; this is 229 

due to decomposition of hemi-cellulose increasing the relative cellulose content.  Above this 230 

temperature for slow pyrolysis samples there is a dramatic change caused by decomposition 231 

of cellulose at the elevated temperatures.  MW pyrolysis prepared bio-chars (170°C) have 232 

similar cellulose content to that of higher temperature slow pyrolysis biochar; this shows that 233 

microwave irradiation decomposes cellulose at lower temperatures than conventional 234 

heating for this feedstock.  Comparing cellulose content of samples prepared by SP and MW 235 

pyrolysis shows a ~160°C difference between preparation methods, which is in good 236 

correlation with data previously observed by FT-IR (See Figure 3) 237 
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Data for straw pellet biochar is shown in Figure 7, a similar trend to that observed in WC 238 

biochar can be clearly observed.  Two clear behaviour groups were present in the TGA 239 

trace, one with low cellulose content formed at higher temperatures of preparation and by 240 

MW pyrolysis and one with higher cellulose content from lower temperature slow pyrolysis 241 

preparations (<300°C). The different decomposition patterns of WC and StP biochar were 242 

most likely due to the difference in composition of the starting material (see Table 1).   243 

3.2.3 Porosity and true density of biochar 244 

The physical properties of biochar have been assessed, as measures of the degree of 245 

conversion, based on porosity and true density. The true density values for the different 246 

chars are shown in Figure 8. It can be seen that the two materials show somewhat different 247 

trends. In case of WC the true density initially increased with temperature between 200 and 248 

250°C, followed by gradual decrease with further temperature increase up to 350°C. On the 249 

other hand, straw pellets showed gradual decrease of true density with increasing peak 250 

treatment temperature. Comparing the true density values for the MW pyrolysis char with 251 

those produced by conventional heating, it can be seen that StP (MW) produced at 200 °C 252 

has a true density comparable to that of StP 200, i.e. close to that of the starting material. In 253 

contrast, WC (MW) has a density in the range of WC 250 and WC 300, i.e. showing some 254 

structural development compared to the starting material. 255 

To gain further insight into structural changes of the two biomass feedstock as a result of 256 

MW or conventional heating, the porosity of the samples was assessed. The data in Table 3 257 

show that both surface area and pore volume are a function of temperature, with the lowest 258 

value at 200 °C and highest value at 350 °C (in the temperature range used). For both 259 

feedstock, the data show that MW pyrolysis considerably promotes porosity development, as 260 

both the surface area and pore volume were considerably higher for materials prepared by 261 

MW pyrolysis than for those prepared by conventional heating at comparable temperature. 262 

This was particularly evident in case of W C, where the surface area of WC (MW) was as 263 

high as 14 m2/g, i.e. more than three times higher than that of WC 200, and nearly two times 264 
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higher than that of WC 350. The reason for such relatively high porosity of MW chars even at 265 

these low temperatures is most likely the different heat and mass transfer mechanism during 266 

MW heating. As MW heating is a volumetric heating without any clear high temperature front, 267 

the volatiles formed within the particle can escape more freely. As release of volatiles is the 268 

main mechanism responsible for porosity development at temperatures below 500°C [25], 269 

the improved release of volatiles during MW pyrolysis results in higher porosity. In addition, 270 

due to the absence of a thermal front and the overall relatively low temperatures during MW 271 

treatment used in this work, the extent of secondary reactions that could cause formation of 272 

deposits and thus pore blockages was minimised. 273 

3.2.4  Carbon content, yield and stability 274 

One of the main features of biochar is its potential to stabilise carbon that is removed from 275 

the atmosphere by plants by photosynthesis and stored in cell walls during their growth, and 276 

therefore the amount of carbon contained in biochar, and the stability of this carbon is of high 277 

importance. Table 4 shows the concentration of carbon in char produced at different 278 

temperatures, as well as the yield of char at respective temperatures. There is a clear 279 

increasing trend in carbon content with temperature and a decreasing char yield. As a result, 280 

the carbon yield decreased with temperature from nearly 100% in case of WC 200 and StP 281 

200 down to just around 60% for chars prepared at 350°C. In comparison to slow pyrolysis, 282 

MW pyrolysis showed considerably lower char yield and consequently higher char carbon 283 

content. The carbon yield for both MW chars was also lower than for any of the slow 284 

pyrolysis chars, only around 40%. 285 

Table 4 also shows results of carbon stability measured by accelerated aging (using 286 

enhanced oxidation) and it can be seen that the overall trend is different and perhaps less 287 

clear. It can be seen that the relative stability does not change much with temperature up to 288 

at least 300 °C, and the stability remains at comparable level to that of the starting material 289 

(not shown). This is not unexpected, as the degree of charring (conversion) achieved under 290 

the conditions used (slow pyrolysis) was minimal. In case of chars produced at higher 291 
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temperatures the stability clearly increases with temperature and can reach well over 95% 292 

[26]. As a result of the decreasing carbon yield and only moderate increase of its stability, 293 

the yield of stable carbon is slightly decreased with temperature, although the decrease was 294 

not very significant and the yield stabilised at around 30 %C for StP chars and at around 295 

35 %C for WC chars. 296 

MW chars on the other hand show relatively high stability, comparable to higher temperature 297 

slow pyrolysis chars. This is most likely due to the considerably higher degree of conversion 298 

achieved by MW heating, as evidenced by other data shown in this work (e.g. FT-IR, TGA, 299 

porosity etc.). Nevertheless, due to the low carbon yields of MW biochar the yields of stable 300 

carbon are low (around 21-25 %C) when compared to slow pyrolysis chars. This means that 301 

although MW pyrolysis conducted at very low temperatures (170-200 °C) produces chars 302 

with stability considerably higher than that of the starting material or even materials 303 

produced by slow pyrolysis at comparable temperatures, the overall carbon sequestration 304 

potential of this technology is limited by the low yield of stable carbon.  305 

4 Conclusions 306 

This work provided some new insights into the differences between biochar produced by 307 

microwave heating and conventional heating at low temperatures. For both feedstock, it is 308 

clear that only minimum transformation occurred in case of slow pyrolysis at temperatures 309 

below 300°C, with only some signs of conversion of hemicellulose. MW biochar on the other 310 

hand showed considerable degree of transformation, as evidenced by the higher 311 

decomposition temperature and slow decomposition rate in TGA analysis. It can be seen, 312 

that in case of straw pellets, even char produced at 350 °C showed a lower degree of 313 

volatiles release than the MW biochar. In case of WC, biochar produced at 300 and 350°C 314 

exhibited a comparable decomposition pattern to that MW biochar and thus it can be 315 

concluded that the material achieved similar levels of conversion. The higher degree of 316 

conversion of MW biochar was also reflected in its stability, as MW biochar showed 317 

comparable or higher stability than chars produced by slow pyrolysis at 300-350 °C, at least 318 
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in case of woody biomass. However, due to the significantly lower yields of char from MW 319 

pyrolysis, the carbon sequestration potential of the technology is limited and lower than that 320 

of slow pyrolysis, at least in the temperature ranges investigated. This apparent shortfall in 321 

carbon sequestration potential of MW pyrolysis is however likely to be offset by its high 322 

potential for production of renewable energy and materials, and a detailed LCA study would 323 

be needed to fully compare the two technologies. 324 
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Figure 1 - Laboratory batch pyrolysis unit at The University of Edinburgh 408 

Figure 2 - Microwave pyrolysis setup at The University of York 409 

Figure 3 – A) ATR-FTIR spectrum of willow chips derived biochar. B) Lignin-cellulose ratio 410 
as a function of pyrolysis temperature. 411 

Figure 4 - A) ATR-FTIR spectrum of straw pellets derived biochar. B) Lignin-cellulose ratio 412 
as a function of pyrolysis temperature. 413 

Figure 5 - Example of structural components analysis based on TG analysis of wood chips. 414 

Figure 6 - A) Comparison of TG curves of WC biochars produced by MW pyrolysis and slow 415 
pyrolysis methods. B) Influence sample preparation temperature on cellulose content within 416 
wood chips samples. 417 

Figure 7 - A) Comparison of TG curves of StP biochars produced by MW pyrolysis and slow 418 
pyrolysis methods. B) Influence sample preparation temperature on cellulose content within 419 
straw pellets samples. 420 

Figure 8 - True density of feedstock and char as a function of production conditions 421 
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Table 1 - Biomass feedstock composition 423 

Table 2 – Pyrolysis product yields 424 

Table 3 - Feedstock and biochar porosity, as determined by BET and Hg porosimetry 425 

Table 4 - Char yield, carbon content, stability and stable carbon yield 426 
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