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ABSTRACT 
 

Conditional probability functions are commonly used for source identification purposes in air pollution studies. CBPF 
(conditional bivariate probability function) categorizes the probability of high concentrations being observed at a location 
by wind direction/speed and investigate the directionality of local sources. PSCF (potential source contribution function), a 
trajectory-ensemble method, identifies the source regions most likely to be associated with high measured concentrations. 
However, these techniques do not allow the direct identification of areas where changes in emissions have occurred. This 
study presents an extension of conditional probability methods in which the differences between conditional probability 
values for temporally different sets of data can be used to explore changes in emissions from source locations. The 
differential CBPF and differential PSCF were tested using a long-term series of air quality data (12 years; 2005/2016) 
collected in Rochester, NY. The probability functions were computed for each of 4 periods that represent known changes 
in emissions. Correlation analyses were also performed on the results to find pollutants undergoing similar changes in 
local and regional sources. The differential probability functions permitted the identification of major changes in local and 
regional emission location. In Rochester, changes in local air pollution were related to the shutdown of a large coal power 
plant (SO2) and to the abatement measures applied to road and off-road traffic (primary pollutants). The concurrent effects 
of these changes in local emissions were also linked to reduced concentrations of nucleation mode particles. Changes in 
regional source areas were related to the decreases in secondary inorganic aerosol and organic carbon. The differential 
probabilities for sulfate, nitrate, and organic aerosol were consistent with differences in the available National Emission 
Inventory annual emission values. Changes in the source areas of black carbon and PM2.5 mass concentrations were highly 
correlated. 
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INTRODUCTION 
 

Air pollution is decreasing in many developed countries 
(Colette et al., 2011; Guerreiro et al., 2014; Ahmed et al., 
2015; Masiol et al., 2017a), including the United States 
(Parrish et al., 2011; Pouliot et al., 2015; Duncan et al., 
2016; Nopmongcol et al., 2016; Emami et al., 2018; Masiol 
et al., 2018; Squizzato et al., 2018). Downward trends 
reflect the implementation of legislation and regulations 
(Gerard and Lave, 2005; Parrish et al., 2011), the application  
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of increasingly stringent emissions standards, improved 
abatement technologies, changes in fuel sulfur content 
(Klimont et al., 2013; Kheirbek et al., 2014), road (Dallmann 
and Harley, 2010; Russell et al., 2012; U.S. EPA, 2016) 
and off-road (Eyring et al., 2010; IMO, 2013; Masiol and 
Harrison, 2014; U.S. EPA, 2016; Zetterdahl et al., 2016) 
fuels, economic drivers (Tong et al., 2016), and energy 
policy. Over the past decades, those measures took place at 
different scales across the U.S., from local, city, and 
metropolitan area to state, regional, and even continental 
scales. Recently, Emami et al. (2018) and Masiol et al. (2018) 
have reported the changes in air pollution concentrations 
measured in Rochester, NY, a moderate sized city typical 
of the northeastern United States. A major research challenge 
is to determine if the trends represent positive/negative 
feedbacks of specific mitigation measures or the synergy 
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of implementation of multiple policies at different scales 
rather than the consequence of changes in human habits, a 
reflection of recent economic conditions, and/or the 
direct/indirect effects of climate change. 

Many methods are used to investigate the location or 
direction of emission sources relative to the sampling 
location(s). These methods include nonparametric wind 
regression (NWR) (Henry et al., 2002; Kim and Hopke, 
2004; Yu et al., 2004), polar plots (Carslaw et al., 2006; 
Carslaw and Beevers, 2013; Grange et al., 2016), polar 
plots with background subtraction (Carslaw et al., 2006; 
Masiol and Harrison, 2015), conditional probability function 
(CPF) (Kim et al., 2003; Kim and Hopke, 2004; Penkey et 
al., 2006), and conditional bivariate probability function 
(CBPF) (Uria-Tellaetxe and Carslaw, 2014). Long-range 
transported pollutants are evaluated with trajectory ensemble 
methods based on back-trajectories, including clustering 
(Harris and Kahl, 1990; Brankov et al., 1998; Cape et al., 
2000; Abdalmogith and Harrison, 2005; Squizzato et al., 
2012), potential source contribution function (PSCF) 
(Ashbaugh et al., 1985; Malm et al., 1986; Polissar et al., 
2001; Poirot et al., 2001; Penkey et al., 2006), concentration 
field analysis (CFA) (Seibert et al., 1994), residence time 
weighted concentration (RTWC) (Stohl et al., 1996; Zhou 
et al., 2004), quantitative transport bias analysis (QTBA) 
(Keeler, 1987), simplified QTBA (SQTBA) (Zhou et al., 
2004), and concentration weighted trajectory (CWT) (Hsu 
et al., 2003; Zhou et al., 2004). Such methods extensively 
reviewed and tested elsewhere (Lupu and Maenhaut, 2002; 
Hsu et al., 2003; Zhou et al., 2004; Penkey et al., 2006; 
Kabashnikov et al., 2011; Fleming et al., 2012; Brereton 
and Johnson, 2012; Squizzato and Masiol, 2015; Hopke, 
2016). However, these techniques do not identify areas 
where emission changes have occurred. 

This study presents an extension of conditional probability 
methods helpful in the investigation of long-term series of air 
quality data. The differences between conditional probability 
values for temporally different data sets were used to 
explore changes in local and regional air pollution sources. 
CBPF (conditional bivariate probability function) categorizes 
the probability of high concentrations (> threshold criterion) 
being observed at a location by wind direction/speed and 
aims to investigate the directionality of local sources. 
PSCF (potential source contribution function), a trajectory-
ensemble method, allows the identification of the source 
regions most likely to be associated with high measured 
concentrations (> threshold criterion). Its utility has been 
previously examined by Cheng and Lin (2001) and Begum 
et al. (2005). The differential CBPF and differential PSCF 
were tested using a long-term series of air quality data 
(12 years; 2005/2016) collected in Rochester, NY, a 
typical medium-sized metropolitan area in northeastern 
United States. Negative differential probabilities highlight 
areas where emissions are decreased. Conversely, positive 
differential probabilities point out areas where emissions 
have increased. Probability functions were computed over 
4 multiple year periods that represent known changes in 
emissions. 
 

MATERIALS AND METHODS 
 
Data Sources, Handling, and Consistency 

Air quality data used in this study were collected at the 
NYS Department of Environmental Conservation reference 
site for Rochester (Fig. S1). The site is representative of 
citywide air quality, but also lies ~300 m from the 
intersection of two major highways (I-490 and I-590) with 
an average traffic of ~230,000 vehicles day–1.  

Hourly CO, NO, total reactive nitrogen (NOy), SO2, O3, 
and PM2.5 concentrations were routinely measured in 
accordance with federally mandated methods. NO2 was 
estimated as NOy-NO. Equivalent black carbon (BC) 
(Petzold et al., 2013) and Delta-C (DC, difference between 
absorbance at 370 and 880 nm used to estimate biomass 
burning PM) (Sandradewi et al., 2008; Wang et al., 2011a), 
were measured using aethalometers with PM2.5 cut-off 
cyclones (Table S1). Twenty-four hour integrated PM2.5 
species data were retrieved from the U.S. EPA chemical 
speciation network, including elemental (EC) and organic 
(OC) carbon, nitrate, sulfate, ammonium, and K+ (Solomon 
et al., 2014). Data were processed to return a consistent 
dataset over the 2005–2016 period. Details are reported in 
supplementary materials. Since secondary material needs 
to be estimated to account for local and regional sources 
(Wang et al., 2012a; Masiol et al., 2017b), OC was also 
split between primary (OCpri) and secondary (OCsec) using 
the EC tracer method (Turpin and Huntzicker, 1995; Lim 
and Turpin, 2002; Cabada et al., 2004). Details are provided 
in the supplementary materials. 

Particle number concentrations (PNCs) from 11 to 470 nm 
were measured with a scanning mobility particle spectrometer 
(SMPS). Details are reported elsewhere (Jeong et al., 
2004; Masiol et al., 2018). SMPS spectra were split into 3 
ranges roughly representative of nucleation (11–50 nm; 
PNC11-50), Aitken nuclei (50–100 nm; PNC50-100) and 
accumulation (100–470 nm; PNC100-500) particles. 
 
Meteorological Data 

Wind data from the Greater Rochester International 
Airport (KROC) were retrieved from the NOAA NCDC 
repository (https://www.ncdc.noaa.gov/data-access). Back-
trajectories were calculated using the NOAA/ARL Hybrid 
Single-Particle Lagrangian Integrated Trajectory 
(HYSPLIT_4) model (Stein et al., 2015; Rolph et al., 
2017), using the NCEP/NCAR Reanalysis data (Kalnay et 
al., 1996). HYSPLIT was run backward in time for 120 h 
using the vertical mixing model with a starting height of 
500 m a.g.l. (Cheng et al., 1993) and 1-h intervals (24 
trajectories per day).  
 
Overview of Probability Functions 

Conditional probability functions (CPF, CBPF, and 
PSCF) are widely used to locate the potential local and 
external sources affecting a site. CPF assesses the probability 
of wind directions associated with specific threshold 
criteria (usually the 75th–90th percentiles). CPF was further 
extended to the bivariate case to produce a conditional 
bivariate probability function (CBPF) plot using wind speed 
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as a third variable plotted on the radial axis (Uria-Tellaetxe 
and Carslaw, 2014): 
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where m∆θ,∆v and n∆θ,∆v are respectively the occurrence of 
observations exceeding the threshold C and the total number 
of data in the wind sector ∆θ and wind speed interval ∆v. 

For distant sources, PSCF identifies the potential source 
regions located within a grid cell at latitude i and longitude 
j with probabilities of exceeding a threshold criterion: 
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where ni,j represents the number of times the trajectory 
endpoints fell into cell i,j in the domain grid, and mi,j is the 
number of times the observed concentration exceeds the 
threshold C. 

In this study, differential CBPF and PSCF functions are 
defined as the difference between the probabilities estimated 
in each of the two different periods τ1 and τ2, with ∆τ = τ2 – 
τ2: 
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A single criterion C (75th percentile) was calculated over 

the whole period (2005–2016), and was then applied to 
single periods, i.e., Cτ1 = Cτ2. The criterion, C, values used 
for each variable (and relative concentrations) are listed in 
Table S2. Wind speed/direction data and back-trajectories 
have 1-h time resolution and are matched with the 
concentration of hourly-measured variables (gases, PM2.5, 
BC, and Delta-C). However, PM compositional data are 
available for integrated 24-hour samples. Each value is 
matched with the 24 wind values or for the 24 trajectories 
that were calculated for each day (Kim and Hopke, 2004).  

PSCF values may be affected by grid cells containing 
only a few endpoints that may be overestimated. Multiple 
weighting functions, Wi,j, have been proposed to avoid this 
issue (Polissar et al., 2001; Begum et al., 2005; Kim and 
Hopke, 2006). The weighting function used here was: 
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where pc is the probability corrected for the function 
W(ni,j), p is the probability value from the uncorrected 
function, and N̅ is the average number of endpoints over 
the grid cells with at least one endpoint. Since single 
PSCFs are weighted, ∆PSCFi,j,∆τ was not weighted further. 
However, the PSCF values were computed only for cells 
having with more than 100 endpoints. The PSCF analyses 
were made for grid cells of 1° latitude by 1° longitude. 

In a similar way, CBPF probability is less reliable for 
small numbers of observations (n∆θ,∆v). A weighting function 
was applied: 
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The CBPF analyses were made using a sector size ∆θ of 

10° and wind speed increments, ∆v, of 1 m s–1. The major 
issue in the computation of CBPF values is the choice of 
the best wind speed/wind direction bins (the choice of 
∆θ,∆v intervals is arbitrary). The “original” CBPF approach 
proposed in Uria-Tellaetxe and Carlsaw (2014) applied 
smoothing to the CBPF values to avoid individual points 
having excessive impact on the surface prediction. The 
rationale for smoothing is presented in Carlsaw (2015). In 
this study, smoothing was applied to the simple CBPFs. 
However, due to the nature of ΔCBPFs (negative to 
positive), smoothed surfaces did not properly depict the 
calculated results. Therefore, smoothing was not applied to 
ΔCBPFs. In addition, ΔCBPFs were computed only if there 
were at least 4 observations available for both periods. 
 
RESULTS AND DISCUSSION 
 

The two periods (τ1 and τ2) to be compared in the 
differential probability functions should be chosen based 
on known changes in local and regional emissions. 
However, while the selection of relatively short periods may 
result in a high temporal resolution, a short time interval 
also decreases the number of data values and lowers the 
reliability of ΔCBPF and ΔPSCF values.  

From 2005 to 2016, regional and local emissions have 
changed significantly (Emami et al., 2018). Vehicle emissions 
have been significantly reduced (Mariq, 2007; Bishop and 
Stedman, 2008; Bishop et al., 2012; McDonald et al., 
2013; May et al., 2014) with improved emissions controls 
and cleaner fuels. In 2007, new heavy-duty diesel trucks 
were required to have particulate filters. NOx controls were 
added in 2010. However, credit flexibilities have allowed 
the sale of engines with NOx emissions greater than the 
2010 limit (0.2 g bhp-hr–1) through model year 2014. The 
light-duty vehicle (< 6,000 lbs gross weight) Tier 2 
emissions program (extended to vehicles up to 10,000 lbs) 
required an average sulfur standard of 30 ppm (from 120 
ppm) with a sulfur cap of 80 ppm (from 300 ppm) phased-
in from 2004 to 2009. On-road diesel fuel sulfur content 
dropped from < 500 ppm to ultralow sulfur diesel fuel 
(ULSD; < 15 ppm) in 2006. ULSD fuels were subsequently 
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required for non-road vehicles by 2010 and for locomotives 
and marine vessels by 2014. Additionally, all distilled oil 
sold in NYS for any purpose (including building heating) 
were required to be ULS after July 1, 2012. The implemented 
regulations and associated technological improvements 
resulted in a sharp decrease of NOx (–52%), SO2 (–85%), 
and CO (–45%) in NYS between 2005 and 2016. These 
reductions were mostly associated with the decrease in the 
emissions from highway and off-highway vehicles and fuel 
combustion for electric power generation (Emami et al., 
2018; Masiol et al., 2018; Squizzato et al., 2018). 

Local changes also occurred in Rochester, including the 
2008 shutdown of a 260 MW coal-fired power plant (~15 km 
NNW of sampling site, noted as RG & E in Fig. S1), a 
major source of SO2 and ultrafine particles (Kasumba et 
al., 2009; Wang et al., 2011b, b), and decreased emissions 
from a coal-fired cogeneration plant (~8.5 km NW). The 
monitoring site is adjacent to a mainline railroad and 
several interstate highways so the changes in on-road and 
non-road fuel sulfur content between 2006 and 2014 were 
expected to be significant. 

There were also substantial changes in major upwind 
sources such as electric generating stations driven both by 
regulatory policies and economics. These changes are 
discussed in detail by Emami et al. (2018) and Squizzato et 
al. (2018). Although several major efforts by the U.S. 
Environmental Protection Agency (Clean Air Interstate 
Rule and Cross-State Air Pollution Rule) were voided by 
the courts, many utilities implemented controls. There were 
also reductions because of legal actions such as the consent 
decree between American Electric Power and the U.S. 
EPA. Ontario moved to eliminate all fossil fuel combustion 
for electricity generation that was completed in 2014. Thus, 
significant reductions in sulfate and nitrate have been 
observed in Rochester (Emami et al., 2018) and across 
NYS (Squizzato et al., 2018). 

Four 3-year intervals (τ1 = 2005 to 2007, τ2 = 2008 to 
2010, τ3 = 2011 to 2013, and τ4 = 2014 to 2016) were 
defined. These periods roughly represent time intervals in 
which important changes in emissions occurred with many 
beginning near the end of τ1 and extending through τ3. 
 
CBPFs 

Individual CBPF plots calculated for the each 3-year 
period are provided in Figs. S3–S8. The plot surfaces were 
smoothed (Carslaw, 2015); wind speed/wind direction bins 
with less than 4 observations are omitted (grey surfaces). 
For most pollutants, it is possible to see changes in the 
conditional probabilities from one 3-year period to the next 
when all of the plots use the same criterion value across 
the entire period. The highest conditional probabilities for 
most variables were found for low/moderate westerly wind 
regimes with probability peaking toward the SW (PM2.5, 
BC, PNC50-100, PNC100-500, CO, NO, NO2, NOy, OCpri, 
OCsec, sulfate, ammonium). Most pollutants are emitted by 
vehicular traffic (both exhaust and resuspension) and the 
CBPFs point toward the I-490 and I-590 highways 
suggesting that local road emissions dominated other local 
sources. However, a railway is also adjacent to the south 

and west of the site. Therefore, the contribution of diesel-
powered rail engine emissions must be considered.  

Biomass burning (BB) accounts for up to 30% of 
Rochester’s winter PM2.5 mass (Wang et al., 2011a). BB 
tracers (DC and K+) (Andreae and Merlet, 2001; Koppmann 
et al., 2005) showed CBPFs similar to the other pollutants, 
but also high probabilities toward southeasterly suburban 
areas (Figs. S3 and S8, respectively). BB from heating, 
cooking (wood-fired pizza), or recreational purposes is the 
likely local source. The probabilities for PNC11-50 (Fig. S4) 
are similar to the other pollutants. However, high 
probabilities extend into the NW quadrant, i.e., toward the 
two power plants (Fig. S1). The effect of local emissions is 
evident for SO2 (Fig. S6), showing two potential source 
locations, i.e., traffic (SW) and power plants (NW) in the 
first two periods, then only power plants. This result well 
depicts the drop of traffic emissions due to the application 
of stringent rules for fuel sulfur content. Ozone decreases 
with wind speed (lower probability under calm wind 
regimes, Fig. S6) suggesting a regional rather than local 
origin give the low probability values. Titration with 
locally emitted NO for low wind speeds may reduce the 
local values by depleting ozone on a timescale of minutes. 

Nitrate exhibits increased probabilities for the SW and 
ESE sectors (Fig. S7). Particulate nitrate originates from 
gaseous nitric acid and ammonia. Rapid oxidation of NO2 
emitted by vehicles on the major adjacent roadways and by 
the railroad engines would be one contributor to nitrate. 
Cars as well as residences to the southwest would provide 
the ammonia. However, ammonia transported from several 
large sewage treatment plants along the Lake Ontario 
shore (north and northeast of the site) may also result in 
increased formation of particulate nitrate.  
 
Differential CBPFs 

The results of the ΔCBPFs between the first and last 
periods (2005/2007 and 2014/2016, ΔCBPFmax) are shown 
in Figs. 1–2. Figs. S9–S14 show the incremental ΔCBPFs 
for each pair of consecutive periods, namely ΔCBPF1 
(2008/2010–2005/2007), ΔCBPF2 (2011/2013–2008/2010), 
and ΔCBPF3 (2014/2016–2011/2013). Negative values 
indicate sectors where the probability of being a local source 
decreased. This region around the origin in these plots 
presents results for samples with low wind speeds and thus, 
poorly defined wind directions. Thus, the probabilities are 
very similar across the multiple periods and their differences 
are typically zero or very small. The probability changes were 
moderately low for most species, and thus, no smoothing 
was performed on the plot surfaces.  

Particulate variables prevailingly linked to primary road 
emissions (PM2.5, BC, PNC > 50 nm, OCpri) show moderate 
(|0.3| < differential probability < |0.5|) to high (> |0.5|) 
ΔCBPFmax decreases from the southern sectors, reflecting 
changes in highway and railway emissions. The incremental 
ΔCBPFs (Figs. S9–S10) for these pollutants suggest the 
effects of mitigation strategies for mobile emissions in 
North America, showing the largest declines in the first 
two periods and, then, lower changes during ΔCBPF3. 
These changes reflect reduction in the sulfur content of 
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Fig. 1. Results of the differential CBPF between 2005/2007 and 2014/2016 for “FRM-like” PM2.5 (TEOM corrected), 
aethalometer and SMPS data over the three selected size ranges. 

 

on-road and nonroad diesel fuels and the increasing impact 
of new heavy-duty diesel vehicles with catalytic regenerative 
traps that were required after July 1, 2007. Secondary 
inorganic aerosol (SIA) species exhibited a similar pattern 
reflecting reduced emissions from road and rail transport. 
However, nitrate showed increasing probabilities during 
ΔCBPF3. The formation of ammonium sulfate is favored 
with respect to ammonium nitrate (Seinfeld and Pandis, 
2016), but the strong decline in sulfate concentrations in 
the last decade (Emami et al., 2018) has made more 
ammonium available to be neutralized by nitrate and, thus, 
has likely driven the increases seen for ΔCBPF3.  

OCsec exhibited higher ΔCBPFmax values toward the 
southern sectors mostly resulting from the strong 
incremental effect during ΔCBPF3 (Fig. S13). BB tracers 
(DC, K+) showed low and noisy ΔCBPFmax with an overall 
drop of probabilities in ΔCBPF2 and an increase in 
ΔCBPF3. The increase of OCsec in recent years may be in 
part due to the reductions in NOx and SOx emissions that 
would permit more oxidation of organic vapors. The rates 
of reaction of the inorganic species with OH are substantially 

higher than with organic compounds and thus, their decreased 
concentrations could lead to greater SOA formation. BB 
emissions provide both SOA precursors as well as directly 
emitted oxidized primary carbon during the smoldering phase. 

CO, another tracer of mobile road emissions, 
experienced high decreases for all wind directions mostly 
during ΔCBPF2 (Fig. S11), while no changes were found 
in ΔCBPF3. The absence of directionality may indicate 
changes in local CO emissions from diffuse sources, such 
as domestic heating. However, the ΔCBPFmax and ΔCBPF2 
are probably biased by the change of monitors near the end 
of 2010 (lower limit of detection and higher sensitivity; 
Table S1). 

SO2 exhibited moderate to high decreases in the 
southeastern and both western quadrants, indicating an 
overall decline in concentrations for the major local sources 
(Fig. 1). However, larger incremental changes were observed 
in the first two periods (Fig. S12). The highest negative 
differential probabilities for ΔCBPF1 were found toward 
NW reflecting the shutdown of the coal-fired power plant 
in 2008. Probability decreases toward SW were dominant 
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Fig. 2. Results of the differential CBPF between 2005/2007 and 2014/2016 for PM2.5-bound major species. 

 

in ΔCBPF2 likely reflecting the local effect of the reduction 
in sulfur content in non-road rail fuel. The increase to the 
northwest likely reflects some of the rebound from the 
2007–2009 recession and related increased emissions from 
the cogeneration plant. ΔCBPF3 shows much lower 
decreases only toward the cogeneration plant.  

Ozone showed generally low but generally positive 
ΔCBPFmax without any clear directionality. Winter ozone 
has been increasing in Rochester with the decreases in NOx 
(Emami et al., 2018). Period-to-period incremental changes 
(Fig. S12) show increases when wind speeds were greater 
than 5 m s–1 suggesting transport of regional air masses to 
Rochester contributing to local ozone. Nitrogen oxides 
were only measured beginning at the end of 2010 so there 
is generally insufficient data to observe clear patterns, 
except for NO that would only be affected by local sources 
and showed moderate decreases in all directions.  
 
PSCFs 

Figs. S15–S17 show single PSCFs. For completeness, 
PSCFs are reported for all the variables except for the 
particle number concentrations of particles with diameters 
below 100 nm. However, the overall consistency of PSCFs 
for highly reactive species (nitrogen oxides, SO2) is likely 
biased by the known relationships between air parcel 
trajectories and local wind regimes. Generally, most variables 
exhibited higher probabilities for air mass pathways over 
the Ohio River Valley (PM2.5, BC, PNC100-500, CO, OCpri, 
OCsec, and sulfate) and moderate probabilities extending 
northwesterly (central part of Canada). Nitrate presents 
similar patterns, but higher probability toward the northwest 
suggesting the role of colder temperatures that accompany 
northwestern flow into the area. Consequently, ammonium 

has a mixed behavior relative to nitrate and sulfate. The 
two BB tracers show different patterns. DC shows higher 
probability toward the northwest (similar to nitrate), while 
K+ is stronger from the southeastern U.S., particularly the 
Gulf and southeast coasts. It is unclear why this difference 
in spatial patterns occurred. 

Apart from combustion processes, CO is also generated 
by photochemical oxidation of methane and non-methane 
hydrocarbons. Although CO has a 30–90 day lifetime in 
the troposphere (Seinfeld and Pandis, 2016), PSCFs only 
reveal potential source areas extended over all the continent 
in 2005/2007 and no patterns afterward; thus, local emissions 
likely represent its dominant source in Rochester. 
 
Differential PSCFs 

The results of the ΔPSCFs between the first and last 
period (ΔPSCFmax) are presented in Figs. 3–4. Figs. S18–
S20 show incremental ΔPSCF1 (2008/2010–2005/2007), 
ΔPSCF2 (2011/2013–2008/2010), and ΔPSCF3 (2014/2016–
2011/2013). Generally, most variables (PM2.5, BC, CO, SO2, 
OCpri, nitrate, sulfate, and ammonium) showed moderate to 
large decreases in ΔPSCFmax spanning the eastern continental 
U.S. and reflecting the implementation of national scale 
mitigation measures. However, incremental ΔPSCFs 
showed different temporal sequences of changes. Sulfate 
exhibited almost constant negative differential probabilities 
during the entire study period, while PM2.5, BC, and OCpri 
experienced larger declines for ΔPSCF1 and ΔPSCF3. Nitrate 
showed a similar ΔPSCF1, but increasing differential 
probabilities were recorded over the Gulf Coast and central 
U.S. regions during ΔPSCF2 possibly reflecting the 
increased electricity production following the end of the 
2008 recession. At the same time, sulfate did not exhibit an 
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Fig. 3. Results of the differential PSCF between 2005/2007 and 2014/2016 for “FRM-like” PM2.5 (TEOM corrected), 
aethalometer and SMPS data over the 100–500 nm size range. (*) ΔPSCF for DC was computed between 2008/2010 and 
2014/2016. 

 

increase in probabilities likely due to the shift from coal to 
cheaper natural gas for power generation, reducing SO2 
emissions. Between 2008 and 2009, coal used for power 
generation started to decline, and natural gas increased 
both at the state and national level because of changes in 
the operating costs driven by the relative costs of these 
fuels (Squizzato et al., 2018). The mirror image of this 
pattern was observed for ΔPSCF3 with net differential 
probabilities almost zero between 2008/2010 and 2014/2016. 
Consequently, patterns for ammonium were more similar 
to those of sulfate than nitrate. This result is expected since 
at low ambient ammonia concentrations, acidic sulfate 
neutralization is highly favored over ammonium nitrate 
formation.  

Secondary OC experienced a general increase for 
ΔPSCFmax driven largely by ΔPSCF3 (Fig. S20). The 
increased probabilities extended across North America, 
probably linked to decreasing SO2 and NOx emissions 
combined with increasing biogenic volatile organic species 
with the generally increasing summer temperatures. There 
are increased OCsec probability areas in eastern coastal, 
southern, and midwestern areas of the U.S. and in the 
boreal forest areas of Canada east of Hudson Bay where 

wildfires are common (Begum et al., 2005). 
DC and ozone maps show very low values but areas of 

increasing ΔPSCFmax. The increase in DC suggests 
additional wood combustion including increasing rates of 
wildfires in areas to the west of the calculation domain. 
Increases in ozone primarily reflect higher winter values 
resulting from NOx emissions reductions across the region 
that are reflected in lower NOx concentrations (Emami et 
al., 2018).  

The ΔPSCFs for SO2 reflect the substantial reductions in 
emissions over this period. Decreases in PSCF values were 
observed only during ΔPSCF1 and ΔPSCF2 when there 
were shifts in fuel from coal to natural gas because of the 
change in their relative costs, changes in transport and 
heating fuel sulfur content and decreased economic activity 
from 2007 to 2009 and the related need for electricity. 

To further examine the utility of the differential PSCF 
(DPSCF) plots, county-by-county emissions data for NH3, 
NOx, SO2, anthropogenic VOCs, and primary PM2.5 have 
been retrieved from the U.S. EPA’s National Emissions 
Inventory (NEI) for 2005, 2008, 2011, and 2014 (U.S. 
EPA, 2018). These values were normalized by the county 
area to provide an annual emission rate per unit area and 
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Fig. 4. Results of the differential PSCF between 2005/2007 and 2014/2016 for PM2.5-bound major species. 

 

then aggregated to 1° latitude by 1º longitude grid cells to 
correspond with the PSCF resolution. These plots are 
shown in Figs. S21–S25. The differences between adjacent 
periods (2008–2005, 2011–2008, 2014–2011) were calculated 
as well as the overall difference (2014–2005) for each 
species. These differential emissions plots are provided in 
Figs. S26–S30. The U.S. EPA has changed methodology 
for developing the NEI over time and thus, there is an 
unknown level of uncertainty in what differences those 
changes have made relative to the changes in actual 
emissions. Substantial reductions in SO2 and NOx emissions 
have occurred in the eastern U.S. and generally agree well 
with the areas in the PSCF with negative differential 
probabilities. There were both increases and decreases in 
the ammonia emissions between 2005 and 2014, but the 
DPSCF map for ammonium only shows strong negative 
probabilities for the overall period. Since the ammonium is 
only present in PM2.5 when associated with either sulfate 
or nitrate, its DPSCF pattern is driven the counter ion to 
which it is bound.  

The PM2.5 map (Fig. 3) shows mostly negative probabilities 
whereas there were net increases in the central Midwest in 
primary PM2.5 emissions between 2005 and 2014. However, 
since PM2.5 is composed mostly of secondary ammonium 
sulfate, secondary ammonium nitrate, and secondary 
organic aerosol (SOA), the decreases in these secondary 
species substantially exceeds the increases in primary PM 
emissions and the estimated negative probabilities are then 
what would be expected based on the observed ambient 
concentration changes (Emami et al., 2018) and the 
secondary species DPSCF results. 

For anthropogenic VOCs, there are both increases and 
decreases in the estimated emissions over the study period. 
The increases in more recent years likely reflects the 
increased economic activity as the economy rebounded 

from the 2008 recession. The secondary organic aerosol 
DPSCF map (Fig. 4) shows increased probabilities in these 
southern areas. However, we cannot relate secondary organic 
aerosol only to anthropogenic VOCs. Anthropogenic VOCs 
typically represent about 25% of the VOC emissions with 
the remainder being biogenic. The OCsec probabilities reflect 
the increase in oxidant concentrations as reflected by the 
small upward ozone trend in Rochester reported by Emami 
et al. (2018). Increased concentrations of OCsec were 
observed in 2014–2016 compared to 2010–2013 across 
NYS (Zhang et al., 2018). Thus, the decreases in SO2 and 
NOx emissions may have reduced the sink for oxidants like 
hydroxyl radical and increased the formation of secondary 
organic aerosol.  
 
Correlations among the Differential Probabilities 

A correlation analysis was performed to qualitatively 
investigate the relationships among each set of differential 
probabilities. For the ΔCBPFmax results: (i) the differential 
probabilities of all variables in each wind sector ∆θ and 
wind speed interval ∆v were merged; (ii) only the ∆θ, ∆v 
pairs with differential probabilities computed in τ1 and τ4 
were retained; and (iii) a Pearson correlation matrix was 
computed. Similarly, the ΔPSCFmax of all variables in each 
i,j cell were merged; only cells with probabilities in τ1 and 
τ4 were retained, and correlations were computed. The 
results were presented as correlograms (Fig. S31). The 
variables were ordered by applying an agglomerative 
hierarchical cluster analysis using complete linkage method 
to group similar variables together using 1-correlation as 
distance (Murtagh and Legendre, 2014). High correlations 
identify pairs of variables affected by similar changes of 
local or regional sources.  

There were moderate (0.4 < r < 0.6) to strong (r > 0.6) 
ΔCBPFmax correlations among CO, PM2.5, BC, and PNC in 
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the two coarser size ranges, reflecting the negative differential 
probabilities over the SW–SE sectors (Figs. 1–2), i.e., the 
drop of local mobile emission sources. The lack of 
correlation between SO2 and this latter group of pollutants 
suggests local traffic is not the primary cause of the decrease 
in SO2 concentrations, i.e., industrial emissions likely 
dominated the SO2 concentrations in Rochester. Potassium 
was moderately correlated to PNC > 50 nm (BB emissions 
peak around 100 nm) (Petterson et al., 2011; Chandrasekaran 
et al., 2013), but also to OCsec and OCpri. Thus, changes in 
local BB emissions may be partially responsible for 
changes in differential probabilities for primary and 
secondary OC. Ammonium was strongly correlated with 
nitrate and sulfate indicating the local SIA production. 
However, neither sulfate nor nitrate were correlated with 
other variables indicating that changes in probabilities for 
SIA species are not linked to local primary emissions.  

Results show generally high correlations for ΔPSCFmax. 
A large group of variables linked to mobile sources and 
SIA exhibited moderate to strong inter-correlations. This 
result depicts the implementation of mitigation measures 
over North America. Ozone and OCsec were not correlated 
with any other variable. Potassium was moderately correlated 
with coarser PNC, OCpri, ammonium, and nitrate suggesting 
the influence of wood combustion on primary particles and 
ammonia concentrations (Hegg et al., 1988). 
 
CONCLUSIONS 

 
Differential probability functions are useful tools for 

investigating the changes in emission rates or locations of 
air pollutants. This study was performed over 12 years of 
air quality data (2005/2016) collected in Rochester, NY. 
The application of the differential probability functions 
allowed the identification of the major changes in local and 
regional emission scenarios that have affected the air quality. 
The major changes in air pollution due to local changes in 
emissions were related to (i) the shutdown of a large coal 
power plant (resulting in a reduction of SO2) and (ii) the 
abatement measures applied to road and off-road traffic 
(resulting in reduced concentrations of primary pollutants). 
The concurrent effects of these changes in local emissions 
also produced a decrease in the number concentration of 
particles in the nucleation mode (< 50 nm). Changes in 
regional emission scenarios mostly drove the decreases in 
secondary aerosol and black carbon concentrations observed 
in Rochester. 
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