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ABSTRACT 
 

The performance of a low-cost ozone monitor (the Aeroqual Series 500 portable gas monitor coupled with a metal oxide 
sensor for ozone; model OZL) was assessed under field conditions. Ten ozone monitors were initially calibrated in clean-
air laboratory conditions and tested at controlled ozone concentrations of 5 to 100 ppb. Results showed good linearity and 
a fast response with respect to a conventional research-grade ozone monitor. One monitor was then co-located at a 
regulatory air quality monitoring station that uses a U.S. federal equivalent method (FEM) ozone analyzer. Raw data from 
the Aeroqual monitor collected over 4 months (June–October) at a 10-minute time-resolution showed good agreement (r2 = 
0.83) with the FEM values but with an overestimation of ~12%. Data were averaged to different time resolutions; 1-h time 
averaged concentrations showed the best fit with the FEM results (r2 = 0.87). An analysis of the ratio of FEM/monitor 
concentrations against chemical and meteorological variables suggested potential interference due to temperature, relative 
humidity, nitrogen oxides, and volatile organic compounds. Three correction models using temperature, humidity, and 
nitrogen dioxide (NO2) were then tested to better relate the monitor concentrations to the FEM values. Temperature and 
humidity are two variables commonly available (or easily measurable) at sampling sites. The model (#3) that added NO2 
did not substantially improve the fit. Thus, the proposed models with only temperature and humidity can be easily adopted 
and adapted by any user. The corrected data explained up to 91% of the variance and showed a statistically significant 
improvement in the fit as well as a decreased influence from the interfering variables on the diurnal and weekly patterns. 
The correction models were also able to lower the effect of seasonal temperature changes, allowing the use of the monitors 
over long-term sampling campaigns. This study demonstrated that the Aeroqual ozone monitors can return “FEM-like” 
concentrations after appropriate corrections. Therefore, data provided by a network of monitors could determine the intra-
urban spatial variations in ozone concentrations. These results suggest that these monitors could provide more accurate 
human exposure assessments and thereby reduce exposure misclassification and its resulting bias in epidemiological studies. 
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INTRODUCTION 
 

Tropospheric ozone (O3) is a greenhouse gas and an air 
pollutant (Stevenson et al., 2013; Cooper et al., 2014; Monks 
et al., 2015) known to be harmful to human health (Jerrett 
et al., 2009; Bell et al., 2014; Turner et al., 2016) and 
ecosystems (Fowler et al., 2009; Ainsworth et al., 2012). In 
U.S., the National Ambient Air Quality Standards (NAAQS) 
set the limit values for the protection of public health (primary 
standard) and public welfare (secondary standard) of six 
“criteria” air pollutants, including ozone. Concentrations of 
ozone are measured using federal “reference” or “equivalent” 
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methods (FRM and FEM, respectively) in accordance with 
Code of Federal Regulations (40 CFR Part 53; USEPA, 
2017). Compliance with NAAQS within major cities is 
routinely evaluated at one or a few static urban stations. 
The spatial coverage of monitoring networks is therefore 
insufficient to capture the spatial variability due to the effect 
of major roadways, complex terrain, urban heat island 
effects, and the locations and strengths of local sources of 
ozone precursors, i.e., nitrogen oxides (NOx = NO + NO2), 
carbon monoxide (CO), and reactive volatile organic 
compounds (VOCs) of biogenic and anthropogenic origin. 

Recent advances in micro-scale technology have made 
available inexpensive and reliable sensors and low-power 
electronic circuits and memory, allowing the development 
of a series of low-cost (and relatively low-cost) air quality 
monitors. These devices are much less expensive than 
research-grade instruments, have low power requirements, 
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and are physically smaller and lighter (mostly portable). 
Although the use of this technology increases the potential 
spatial resolution of monitoring networks, current monitors 
are not designed to meet rigid performance standards and 
generate less accurate data than research-grade instruments 
(White et al., 2012; Snyder et al., 2013; Kumar et al., 2015). 
This limitation can be addressed by careful calibration of 
the units and post-processing of the raw data before they 
can be used for scientific purposes. 

A cost-efficient ozone monitor using gas-sensitive 
semiconducting oxide (GSS) technology was co-located 
over 4 months to a routine air quality monitoring station in 
a medium-sized city of the northeast U.S. (Rochester, NY). 
Ozone concentrations were compared with those measured 
by a FEM instrument and an extensive series of additional 
air pollutants and weather data measured with scientific-
grade or conventional instruments. A series of chemometric 
approaches were adopted to (i) calibrate the monitor, (ii) 
evaluate the effects and interferences with other measured 
air pollutant species under field conditions, (iii) correct the 
data for interferences to return unbiased concentrations as 
similar as possible to the reference method (FEM), and (iv) 
discuss strengths and limits of using GSS technology for 
scientific purposes. 
 
MATERIALS AND METHODS 
 
Study Area 

Rochester, NY (~210,000 inhabitants, 2010 Census), is 
the center of the Greater Rochester metropolitan area (~1.1 
million inhabitants) and lies on the southern shore of Lake 
Ontario. It is typical of NE U.S. moderately sized urban 
areas. Road traffic is a major source of CO, NOx, and PM2.5 
(Fig. S1 in the supplemental information file). This study 
was performed at the regulatory air quality station in 
Rochester (ROC; USEPA 36-055-1007) operated by the 
New York State Department of Environmental Conservation 
(NYSDEC). The site lies ~300 m from the intersection of 
two major highways with an average traffic of ~230,000 
vehicles/day (Fig. S1). Diesel-powered trains operate on a 
mainline track affect the site with a switching yard about 
1.5 km NW of the site. Regional advection of polluted air 
masses from Buffalo (NY), the Ohio River Valley, eastern 
coast of the U.S., and occasionally from Toronto (ON) also 
affect local air quality (Emami et al., 2018).  
 
Experimental 

Ten Aeroqual (Auckland, New Zealand) Series 500 
portable gas monitors coupled with metal oxide (WO3) 
GSS sensors for ozone (model OZL) were purchased in 
April 2017. Technical details of these monitors are discussed 
elsewhere (Aliwell et al., 2001; Williams et al., 2009, 2013) 
and summarized in Table S1. The sensor operates in the 0 
to 0.5 ppm O3 concentration range and has a minimum 
detection limit (MDL) of 0.001 ppm with an accuracy of 
0.008 ppm over the 0 to 0.01 ppm range and < ±10% for 
the rest of the range. Preliminary tests of this type of sensor 
under field conditions reported promising results. Bart et al. 
(2014) reported that differences (GSS-reference instrument) 

in hourly average ozone concentrations were normally 
distributed with a mean = –0.001 ppm and standard deviation 
= 0.006 ppm. Lin et al. (2015) reported a high coefficient 
of determination (r2 = 0.91) with values measured with a 
reference ultraviolet absorption O3 analyzer. 

In this study, one monitor was placed on the roof of the 
NYSDEC ROC station (Fig. S2) in a waterproof plastic-
fiberglass enclosure with two 90°-bend inlets (2 cm in 
diameter) and a USB-powered fan (4500 RPM) to promote 
air throughput (Fig. S2). A single layer of screening was 
placed on each inlet to prevent coarse debris and insects 
from entering the enclosure. A low-cost PM monitor (Speck, 
Airviz Inc., PA) that also has a temperature sensor was 
installed in a similar box side-by-side with the ozone monitor 
(Zikova et al., 2017). This latter monitor was used to measure 
the air temperature inside the enclosures, i.e., monitoring 
the potential diurnal temperature from increasing solar 
irradiance heating. The monitor was powered with a 12 V 
DC power supply, but also had a Li-ion 2700 mA h–1 
battery to eliminate the effects of short-term power outages 
(up to ~8 h). The sampling campaign extended over 4 
months (June 9–October 11, 2017). Date were collected with 
a time resolution of 10 minutes. Periodic checks of the fan 
operation, downloads of the data, and cleaning of the inlets 
were performed throughout the sampling campaign. 
 
Air Quality and Weather Variables 

Concentrations of CO, NOx, total reactive nitrogen (NOy), 
SO2, O3, PM10 and PM2.5 were routinely measured by NYS 
DEC in accordance with federally mandated methods at a 
1-minute time resolution. NO2 was estimated as NOx – NO. 
PM2.5-bound equivalent black carbon (BC) was measured 
using an aethalometer (Magee model AE-22). Particle number 
concentrations (PNC) were measured with a scanning 
mobility particle spectrometer (SMPS) at 5-min resolution 
time. The number concentrations were split into three ranges 
roughly representative of nucleation (NUC: 11–50 nm), 
Aitken nuclei (AIT: 50–100 nm), and accumulation (ACC: 
100–470 nm) particles. Details are reported in Table S2. 
FEM ozone was detected with a Teledyne API T400 
photometric analyzer based on ultraviolet absorption 
(automated equivalent method EQOA-0992-087) (NYSDEC, 
2017; USEPA, 2017). The FEM analyzer is regularly 
calibrated weekly to a secondary transfer standard reference, a 
photometric O3 calibrator/analyzer (Teledyne, Advanced 
Pollution Instrumentation, model API 703E). This secondary 
reference standard is regularly checked (bi-annually) with 
a NIST primary reference O3 standard in Albany, NY, as per 
the Ozone Transfer Standard Guidance Document 10/2013 
(USEPA, 2013). 

Meteorological data (air temperature [°C], relative 
humidity [RH, %], barometric pressure [hPa], wind speed 
[m s–1] and direction) were measured at a 1-h time 
resolution. Since ROC wind data are potentially affected 
by surrounding buildings and street canyon effects, the 
same set of weather variables (including precipitation) 
measured at the Greater Rochester International Airport 
(KROC) at 1-h intervals were retrieved from the NOAA 
National Climatic Data Center. Relative humidity values 
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were estimated using data provided by the dense network 
of personal weather stations across Monroe County. The 
reliability of data provided by these personal stations was 
carefully evaluated and checked with the help of the 
modeled humidity data provided by the NOAA-NCEP 
North American Regional Reanalysis (NARR) model at 
32-km spatial resolution (every 3 hours). 

Additional 3-hour time-resolved meteorological variables 
estimated by meteorological models were retrieved from 
NOAA’s National Centers for Environmental Prediction 
(NCEP) North American Regional Reanalysis (NARR; 
Mesinger et al., 2006). These results included downward 
long- and short-wave radiation fluxes (W m–2), upward 
long- and short-wave radiation fluxes (W m–2), planetary 
boundary layer height (m), and forecasted total cloud cover 
(%). The NARR spatial resolution is ~32 km. Final data 
were calculated as averages within a circular buffer of 
radius 32 km from the sampling station coordinates. 
 
Data Analyses 

Air pollutant data were matched with wind data to 
investigate the potential local source locations by using 
polar-plots and polar-annuli. Briefly, polar-plots present 
the statistics of variables by mapping wind speed and 
direction as a continuous surface with the surfaces 
calculated using smoothing techniques (Carslaw et al., 
2006). Polar-annuli allow mapping wind direction and time 
of day as continuous surfaces and can present conditional 
bivariate probability function (CBPF; Uria-Tellaetxe and 
Carslaw, 2014) or Pearson correlations between pairs of 
variables (Grange et al., 2016). The linear trends of the 
FEM/Aeroqual ratios throughout the sampling campaign 
were assessed with the Theil-Sen nonparametric estimator of 
slope (Theil, 1950; Sen, 1968) that assumes monotonic 
linear trends and is robust against outliers. Slopes were 
computed over daily-averaged data (calculated when at 
least 75% of data are available).  
 
RESULTS AND DISCUSSION 
 
Initial Laboratory Calibration  

Although the sensors used in this study were new with 
factory calibration certificates, the 10 monitors were 
calibrated under laboratory conditions prior to the co-
location campaign. Historical data measured in Rochester 
(Emami et al., 2018; Squizzato et al., 2018) indicate that 
summertime hourly ozone peaks never exceeded 100 ppb 
after 2012. Consequently, the span was calibrated at 
100 ppb through a 24-h co-location with an ultraviolet 
photometric ozone analyzer (Model 49i, Thermo Scientific, 
Franklin, MA; automated equivalent method EQOA-0880-
047). This laboratory reference instrument was calibrated 
using the same secondary API 703 used to calibrate the 
FEM analyzer at ROC. Ozone was generated in a clean-air 
room (trace NO and NO2; and PNC < 100 particles cm–3) 
with a Corona spark discharge (model V5-0, Ozone Research 
and Equipment Corp., Phoenix, AZ) coupled with an ozone 
calibrator (model 1008-PC, Dasibi Environmental Corp., 
Glendale, CA). After the span calibration, the monitors were 

operated overnight with laboratory clean-air O3 concentrations 
(< 5 ppb). They were checked again the following day at 
50 and 100 ppb. Very good agreement was found (mean ± std. 
deviation of reference instrument/Aeroqual ratio at 100 ppb = 
0.99 ± 0.02). The linearity of the Aeroqual monitor responses 
was again tested at the end of the campaign with the same 
laboratory procedure for > 2 hours and 3 concentration 
steps (5, 50, and 100 ppb). Results indicated very good linear 
response to the varying ozone concentrations (r2 = 0.99 
using 132 readings). However, there were small shifts in the 
slopes of the response curves from the initial calibration.  
 
Field Co-Location 

One monitor was co-located at the ROC site with the 
FEM monitor. Figs. S3 and S4 show the boxplots and 
diurnal profiles of variables measured at ROC. The ambient 
air temperature recorded during the co-location study 
(average: 20.8°C, range: 5–35°C) was within the operating 
range of GSS sensors (0–40°C) as well as the temperature 
inside the enclosure (average: 21.9°C, range: 0–38°C). 
However, ~19% of data were collected under RH levels 
exceeding the operating range (> 90%), mostly occurring 
overnight (1–5 a.m.; Fig. S5).  

During the co-location study, the average ozone 
concentrations measured with FEM and Aeroqual were 31 
and 34 ppb, respectively. The average FEM/Aeroqual ratio 
was 0.88. Since the monitor was initially calibrated under 
clean air conditions, the ~12% overestimation is an indication 
of the interfering substances that affect the GSS sensor 
sensitivity under field conditions. Aeroqual overestimation 
(lower ratios) was more frequent during overnight periods 
(Fig. S4), particularly in the early morning (5–7 a.m. local 
time), when lowest air temperature and highest RH were 
observed. A fast increase of FEM/Aeroqual ratio occurred 
during 7–10 a.m., concurrent to the morning rush hours for 
road traffic (peaks of nitrogen oxides, CO and BC; Fig. S4) 
and increasing solar irradiance. 

Pearson product-moment correlation coefficients were 
calculated among the available variables to explore the 
linear relationships at different time resolutions. Results are 
arranged as correlograms in Fig. S6. The FEM/Aeroqual 
ratio is moderately (r > 0.6) positively correlated with 
FEM ozone concentration, temperature (both ambient air 
and enclosure) and weakly to moderately (0.4 < |r| < 0.6) 
negatively correlated with RH at both 10-min and 1-h 
time-resolutions. The positive correlation with temperature 
reflects the known decrease in the GSS sensors sensitivity 
with increased temperature. Since the sensitivity of the 
monitor was highly linear under lab conditions (R2 = 0.99 
over the 5–100 ppb concentration range), the correlation of 
the ratio with the FEM ozone concentrations likely reflects 
the correlations between O3 and air temperature (r = 0.73 
and 0.74, for 10-min and 1-h average data, see Fig. S6) rather 
than a non-linear response of GSS sensors. The potential 
interference of other atmospheric oxidants (possibly radicals) 
cannot be disregarded. The moderate correlation with RH, 
but not absolute humidity, is another indication of the 
temperature effects on the sensor sensitivity. The sensitivity 
of GSS to ambient water vapor was previously reported by 
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Bart et al. (2014). However, this study found a small 
systematic error associated with variation of atmospheric 
relative humidity. 

GSS sensors are sensitive to several gaseous species, 
including NO2 and VOCs. During the time of this study, 
nitrogen oxides were largely emitted by road traffic (Fig. S3) 
along with anthropogenic VOCs (with the additional 
emissions from building and domestic heating in the colder 
period at the end of the study period). In addition, highly 
reactive biogenic VOCs (isoprene and terpenes) are present, 
particularly during the summer (Palmer et al., 2003; 
Sindelarova et al., 2014). While NO2 leads to positive 
artifacts, VOCs (e.g., butane, heptane, propane, toluene, 
and particularly alkenes) may cause a reduction in the GSS 
sensitivity (Aeroqual, 2018). The VOCs are reactants that 
participate in ozone formation and react with oxidants in 
many atmospheric processes (Monks, 2005; Monks et al., 
2015; Seinfeld and Pandis, 2016). Unfortunately, VOCs 
are not measured hourly at the station. Therefore, their 
effects on the sensor cannot be evaluated directly. Since 
Lin et al. (2015) reported a limited effect of NO2 on GSS 
sensors, the poor (0.3 < |r| < 0.4) negative correlations with 
NO–NO2–NOy likely reflect the simultaneous effects of 
multiple species (mostly VOCs) rather than the sole 
interference of nitrogen oxides.  

The Theil-Sen nonparametric estimator of slope was 
computed on the daily-averaged FEM/Aeroqual ratios to 
detect the presence of significant slopes in the data that 
may be indicative of potential instrumental sensitivity drift. 
Fig. S7(a) shows a statistically significant (p < 0.001) negative 
slope (–0.016 week–1; 95% confidence interval: –0.021 to 
–0.011) indicating an increase in the GSS sensitivity 

throughout the sampling campaign. This result may be 
biased by air temperatures variations from June to October 
that showed a similar negative trend.  
 
Calibration Using FEM Data 

The linear response of the GSS sensor to ozone 
concentrations over the 5 to 100 ppb range, assessed under 
laboratory conditions indicated that a simple linear regression 
between concentrations measured by the monitor (dependent 
variable) and the FEM instrument (independent variable) is 
likely to be sufficient for calibration. Figs. 1(a)–1(e) show 
results from the linear regression models computed from 
10-min time resolution data as well as from increasingly 
longer time averaged data (from 20 minutes to 1 day). 
Fig. 1(f) presents the changes in the coefficient of 
determination and regression coefficients at the various 
time resolutions and the relative cross-correlations over 24-h 
lags. The results indicate that the Aeroqual and FEM have 
a similar response rate to ozone concentrations (cross-
correlations peaked at 0 lags using 10-min time intervals 
and over all the time resolutions). The Aeroqual data were 
able to explain between 74% and 87% of variability of 
FEM ozone, with a maximum r2 for the 1-h interval data. 
Regression slopes are also higher for 30 min to 2-h average 
data and have smaller intercepts. 

Since the 1-h data provided the best fit with the FEM 
data and this time resolution is commonly adopted by 
routine regulatory monitoring networks, the calibration of 
Aeroqual was calculated for the 1-h time-averaged data. 
This procedure returned FEM-calibrated data, i.e., Aeroqual 
data with null intercept, unitary slope and explaining 87% 
of the original variance (r2 = 0.87). A better estimation of

 

 
Fig. 1. Linear regression of Aeroqual O3 vs. FEM O3 at varying time resolutions (a: 10 min; b: 30 min; c: 1 h; d: 12 h; 
e: 24 h), and changes in the regression coefficients (f). The regression line is solid and red colored; the 95th confidence 
intervals are drawn in dashed blue. The regression plots (a–e) also report the cross-correlation curves (bottom right). 
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the average model prediction errors was assessed by the 
root-mean-square error (RMSE) and mean absolute error 
(MAE), two measures of the average differences (in ppb) 
between values measured by FEM and predicted by the 
linear model. Results show an average prediction error of 
4 ppb (MAE) and 5 ppb (RMSE). The calibration was able 
to approximate the average diel and weekly patterns in the 
FEM data (Fig. 2). However, the calibrated data still had a 
general underestimation during early mornings and on 
Sundays and an overestimation during the afternoon and on 
weekdays. The Theil-Sen slope analysis (Fig. S7(b)) found 
a lower negative slope of the FEM/Aeroqual ratios (–0.011 

week–1; 95% confidence interval: –0.02 to 0.002). However, 
the trend was still statistically significant at p < 0.05. 
 
Presence of an Edge 

Fig. 1(c) also shows the presence of an edge splitting record 
with unusually high FEM/Aeroqual ratios (n = 64, 2.3% of 
total collected data with 1-h time resolution). Fig. S8(a) 
highlights the edge and displays the occurrence of these 
events by day and by hour of day. Most of the “high-ratio” 
events (HRE) occurred at the beginning of the sampling 
campaign (middle of June), a few occurrences (4 records) 
on July 6. No events were detected between August and

 

 
Fig. 2. Results of the application of calibration and corrections. Each row of plots corresponds to a model, as in Table 1: 
calibration (A) and linear models (B = Model 1, C = Model 2, D = Model 3). The scatterplots on the left show the fit of 1-h 
averaged data with FEM (black lines represent the 1:1 relationship). The boxplots show the distribution of raw (grey) and 
corrected (red) data. Lines represent the medians, boxes are the 25–75th percentile ranges, whiskers show ± 1.5 × inter-
quartile ranges, circles are the arithmetic means. The plots on the right show the diurnal and weekly patterns of raw (grey) 
and corrected (red) data. Circles represent the averages, lines draw the 95th confidence intervals of the averages computed 
by bootstrapping the data (n = 2000). RMSE are also reported for comparing the goodness of the fits. 



 
 
 

Masiol et al., Aerosol and Air Quality Research, 18: 2029–2037, 2018 2034

October (Fig. S8(b)). All HRE occurred during daytime, 
peaking around noon (Fig. S8(c)). Fig. S8 also shows that 
the regression r2 increases from 0.87 to 0.9 by excluding 
these HRE observations.  

Fig. S9 shows the differences between the “non-edge” data 
and HRE for selected variables with Kruskal–Wallis one-way 
analysis of variance tests. Although these tests indicated 
statistically significant differences (p < 0.05) between the 
HRE and normal measurements, these differences were not 
able to fully explain the presence of the edge, i.e., HRE 
variability is within the variance of the “non-edge” 
observations. Wind directionality analysis was performed 
using polar-plots (Fig. S10) and polar-annuli (Fig. S11) to 
investigate possible interferences from local sources or 
peculiar wind regimes causing the HREs. The highest 
averages and the highest CBPF probabilities for the 
FEM/Aeroqual ratio were observed for high winds (speed 
> 6 m s–1) blowing from SW during the daytime with 
similar results for the FEM O3 concentrations. No unusual 
patterns were observed with respect to the correlations of 
FEM/Aeroqual ratio with FEM O3, air temperature, RH, or 
downward shortwave irradiation flux (Fig. S12). However, 
careful examination of the HRE occurrences in the bivariate 
plot of enclosure temperature vs. RH (Fig. S13) clearly shows 
that the HREs occurred when there were high temperatures 
and low RH. The reason(s) for this combination driving 
these unusual values is not understood. 
 
Corrections 

The calibration with FEM ozone through linear regression 
was sufficient to achieve a reasonable goodness of fit. 
However, the presence of the HREs potentially affected by 
temperature and humidity (Fig. S13) could be accounted 
for to better approximate Aeroqual data to FEM values. A 
series of subsequent approaches were tested to correct the 
data for temperature and RH. The choice of the best method 
depends on several factors: (i) atmospheric species having 
effects on the GSS sensitivity are not always measured where 
the monitors are deployed; (ii) the interplay of interfering 
species may cause different artifacts (positive, negative, or 
mixed) that are difficult to separate and adjust for; (iii) the 
effect of the interfering effects may not be linear; and (iv) 
there can be multicollinearity between independent variables 
that may obscure the statistical significance of the models. 

The first model (Model 1) developed linear relationships 
of the Aeroqual O3 with FEM O3, enclosure temperature, 
and RH. The results are reported in Table 1 and Fig. 2(b). 
They show an overall improvement in the goodness of fit 
from the initial calibration results. The adjusted r2 improved 
to 0.89, the partial F-test indicated statistically significant 
improvement of the fit at p < 0.001, RMSE, and MAE 
decreased, and all the independent variables were highly 
statistically significant (p < 0.001) in the model. Model 1 
also provided a better fit of the daily averages (RMSE = 
0.4) but not the weekly pattern and resulted in a further 
decrease in the Theil-Sen slope (Fig. S7). 

Fig. S14 shows the relationships of selected variables 
against the differences between the concentrations measured 
by the Aeroqual monitor and the FEM, suggesting that the 

relationship with temperatures (both ambient air and 
enclosure) is not linear. Thus, a second model (Model 2) 
was built using the enclosure temperature as a polynomial 
function. The best results were found by using a polynomial 
of second order (Table 1). Model diagnostics indicated a 
further improvement with respect to model 1 (adjusted r2 = 
0.90, RMSE = 4.4 ppb, and partial F-test p < 0.001). Model 
2 also exhibited an improvement of the fit of weekly-
averaged data (Fig. 2) and a non-statistically significant 
Theil-Sen slope (p > 0.1). This latter result confirms that 
Model 2 successfully corrected the negative effects of 
temperature on the GSS sensors. Therefore, this model 
represents a useful, easy way to correct data measured with 
GSS sensors to return “FRM-like” ozone concentrations by 
including two variables easily measurable (or available 
from existing monitoring networks). 

Another model (Model 3) was tested by adding NO2 to 
model 2. Despite results indicating an improvement in the 
goodness of fit with respect to model 2 (adjusted r2 = 0.91, 
RMSE = 4.2 ppb, and partial F-test p < 0.001), model 3 
also exhibited higher RMSE of the hourly- and weekly-
averaged data (Fig. 2) and a slight increase of the Theil-Sen 
slope (Fig. S7). Model 3 results showed larger differences 
during weekends (particularly on Sundays) that are likely 
related to the decreased NO2 concentrations with the lower 
road traffic emissions. It also confirms the work of Lin et 
al. (2015) showing that NO2 had only a limited effect on 
the O3 sensor.  
 
Viability of Proposed Models 

The main purpose in using low-cost monitors is to 
increase the spatial resolution of routine monitoring networks 
by deploying a larger number of sites. Since individual 
sensors may vary in performance, the 10 monitors were co-
located under lab conditions and exposed to different O3 
concentrations (< 5, 50, and 100 ppb). The inter-monitor 
Pearson correlation coefficients ranged from 0.97 to 0.99, 
indicating a very good agreement among the monitors. 
This result allows applying the proposed correction models 
to the multiple monitors deployed at locations other than 
where an FEM monitor is deployed. 

A potential limitation of the study is the deployment of 
monitors over only 4 months in summer/early fall weather 
conditions. The ambient air temperatures recorded throughout 
the sampling campaign varied between 0°C and 38°C, 
allowing the extension of correction models over the sensor’s 
operating temperature range (0°C–40°C). The deployment of 
these GSS sensors outdoors under colder weather conditions 
would likely be possible when the monitors are placed in a 
warmed enclosure (e.g., using a small light bulb for heating). 
However, a careful evaluation of the validity of the proposed 
correction under such conditions must be performed.  
 
CONCLUSIONS 
 

The poor and sparse spatial coverage of current air quality 
monitoring networks in the U.S. limits the assessment of 
exposure to O3 in epidemiological studies. Limited predictive 
accuracy may lead to potential exposure misclassification,



 
 
 

Masiol et al., Aerosol and Air Quality Research, 18: 2029–2037, 2018 2035

Table 1. Results of the regressions analyses to return “FEM-like” Aeroqual concentrations. 

Selected model 
Coefficients and estimators 

Unit Estimate Std. error t value p 
Calibration: Aeroqual = β0 + (β1·FEM) 

R2 — 0.87 — — — 
β0 ppb 8.64 0.211806 40.8 < 0.001 
β1 ppb 0.81 0.006041 134.8 < 0.001 
RMSE ppb 5.0 — — — 
MAE ppb 3.9 — — — 

Model 1: Aeroqual = β0 + (β1·FEM) + (β2·Encl.Temp.) + (β3·RH) 
R2 — 0.89 — — — 
Radj

2 — 0.89 — — — 
β0 ppb 20.139 0.771 26.1 < 0.001 
β1 ppb 0.912 0.009 105.6 < 0.001 
β2 °C -0.476 0.021 -22.4 < 0.001 
β3 % -0.059 0.006 -9.4 < 0.001 
RMSE ppb 4.6 — — — 
MAE ppb 3.5 — — — 

Model 2: Aeroqual = β0 + (β1·FEM) + (β2·Encl.Temp.) + (β3·Encl.Temp.2) + (β4·RH) 
R2 — 0.90 — — — 
Radj

2 — 0.90 — — — 
β0 ppb 11.730 0.901 13.0 < 0.001 
β1 ppb 0.925 0.008 111.5 < 0.001 
β2 °C 0.536 0.066 8.2 < 0.001 
β3 °C -0.025 0.002 -16.2 < 0.001 
β4 % -0.079 0.006 -12.8 < 0.001 
RMSE ppb 4.4 — — — 
MAE ppb 3.4 — — — 

Model 3: Aeroqual = β0 + (β1·FEM) + (β2·Encl.Temp.) + (β3·Encl.Temp.2) + (β4·RH) + (β5·NO2) 
R2 — 0.91 — — — 
Radj

2 — 0.91 — — — 
β0 ppb 13.953 0.865 16.1 < 0.001 
β1 ppb 0.875 0.008 104.3 < 0.001 
β2 °C 0.516 0.062 8.3 < 0.001 
β3 °C -0.023 0.001 -16.1 < 0.001 
β4 % -0.061 0.006 -10.2 < 0.001 
β5 ppb -0.415 0.024 -17.5 < 0.001 
RMSE ppb 4.2 — — — 
MAE ppb 3.1 — — — 

 

resulting in negatively biased health effect estimates. This 
study demonstrates that the Aeroqual Series 500 monitors 
coupled with O3 semiconductor oxide sensors could provide 
improved spatial coverage in routine monitoring networks. 
However, a careful calibration must be performed prior to 
their deployment to check or adjust the original calibration. 
The monitor worked well over 4 months with no 
substantial problems. The raw field data showed a ~12% 
overestimation bias with respect to the data measured 
under clean laboratory air conditions. The application of 
correction models, including the temperature in the monitor 
enclosure and ambient RH, was able to produce “FRM-
like” ozone concentrations explaining 90% of the variance.  
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