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Abstract

We present the first comparison of global transcriptional changes in canine and human diffuse large B-cell lymphoma
(DLBCL), with particular reference to the nuclear factor-kappa B (NF-kB) pathway. Microarray data generated from canine
DLBCL and normal lymph nodes were used for differential expression, co-expression and pathway analyses, and compared
with analysis of microarray data from human healthy and DLBCL lymph nodes. The comparisons at gene level were
performed by mapping the probesets in canine microarrays to orthologous genes in humans and vice versa. A considerable
number of differentially expressed genes between canine lymphoma and healthy lymph node samples were also found
differentially expressed between human DLBCL and healthy lymph node samples. Principal component analysis using a
literature-derived NF-kB target gene set mapped to orthologous canine array probesets and human array probesets clearly
separated the healthy and cancer samples in both datasets. The analysis demonstrated that for both human and canine
DLBCL there is activation of the NF-kB/p65 canonical pathway, indicating that canine lymphoma could be used as a model
to study NF-kB-targeted therapeutics for human lymphoma. To validate this, tissue arrays were generated for canine and
human NHL and immunohistochemistry was employed to assess NF-kB activation status. In addition, human and canine B-
cell lymphoma lines were assessed for NF-kB activity and the effects of NF-kB inhibition.
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Introduction

The use of engineered murine cancer models in cancer drug

research and development has been criticized as being inadequate

for reflecting spontaneous cancers in humans with respect to

latency, genomic instability, heterogeneity, cancer recurrence and

metastasis1. Where murine models have been invaluable in

unravelling the molecular mechanisms underlying the cancer

phenotype, in drug development, rarely do drugs that have

proved successful in mouse models translate to success in human

clinical trials. Recently, there has been increasing evidence that

spontaneous cancers in dogs could provide model systems to

support human cancer drug development [1]. The genetic

diversity, phenotypic heterogeneity, anatomical and physiological

similarities with humans, large body size, common living

environment and sufficient life span supports the dog as a model

system for human oncology. Further, the exponential growth in

our understanding and ability to study individual genomes has

highlighted the rich conservation of gene sequences between man

and the domestic species such as the dog. Coupled with the high

incidence of cancer in this species [2–5], there is an ideal

opportunity to utilize this model of disease.

In dogs, the non-Hodgkin Lymphomas, (NHLs) are the most

common haematologic malignancies. In people, they represent 5%

of all new cancer cases, the fifth leading cause of cancer death, and

the second fastest growing cancer in terms of mortality [6–8]. In

dogs, NHL accounts for approximately 10% of all malignant

tumours (83% of all haematopoietic malignancies [9]). NHL is
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initially highly responsive to standard chemotherapy in both

species, with first-remission rates of approximately 90%; however,

drug resistance occurs in most cases, resulting in disease

recurrence. In recent years it has become clear that aberrant

deregulated nuclear factor kappa B (NF-kB) activation is a major

feature of lymphoid malignancies in man.

Constitutively active NF-kB pathway is involved in most

lymphoid malignancies, particularly in human diffuse large B cell

lymphoma (DLBCL) [10,11]. However, the expression of NF-kB

pathway related genes differ between subtypes of DLBCL,

establishing their molecular classification [12–15]. The germinal-

centre B-cell–like (GCB) subgroup of DLBCL originates from the

centroblasts and specifically expresses BCL6 whereas the activated

B-cell–like (ABC) subgroup originates from plasmablasts and

expresses XBP1, PRDM1 and IRF4 among hundreds of other

differentially expressed genes [16]. However, studies involving

molecular characterisation of canine large B-cell lymphoma are

absent in the literature. This may be due to the inherent difficulty

of establishing lymphoma cell lines and the restricted availability of

standardized large B-cell canine lymphoma cell lines with stable

genotypes in addition to the lack of appropriate canine-specific

antibody reagents [17].

We present the first comparison of global transcriptional

changes taking place in canine and human DLBCL, specifically,

investigating the integrity of the NF-kB pathway as a target for

therapy. This analysis was supported by immunohistochemical

and cell line studies on NFkB Inhibition. The data indicates that a

number of common therapeutic targets exist in canine and human

DLBCL and highlights the potential of naturally occurring

lymphoma in the dog as a model for therapeutic drug develop-

ment in humans.

Materials and Methods

Canine dataset
All biopsy procedures were approved by institutional ethical

review panels (University of Wisconsin-Madison, School of

Veterinary Medicine IAUAC and the Royal (Dick) School of

Veterinary Studies Veterinary Ethical Review Committee (VERC)

and included mandatory written consent from patient owners.

Lymph node biopsies were taken, as part of normal diagnostic

procedures, from dogs newly diagnosed with lymphoma (naı̈ve)

and samples from dogs that had relapsed following standard

CHOP chemotherapy. Only dogs with confirmed DLBCL after

pathological grading were used (histopathological grading by two

independent pathologists and CD3/PAX5 marker analysis).

Normal lymph node samples were obtained from canines that

were euthanized for non-lymphoma conditions. The samples were

snap frozen in liquid nitrogen, transported on dry ice and stored at

280uC prior to RNA extraction.

Microarray data generation
RNA extraction was performed in two balanced random

batches. cDNA probes were generated from the RNA, biotin

labelled, hybridised onto the Affymetrix GeneChipH Canine

Genome 2.0 array and scanned to obtain data. This dataset, with

33 samples that passed QC, was deposited at Gene Expression

Omnibus (GEO) database with the accession number GSE30881.

Human datasets
Public databases were searched for human DLBCL microarray

datasets generated from Affymetrix 2.0 technologies (for techno-

logical match with the canine array) and GSE12195 (E-GEOD-

12195) dataset from ArrayExpress was selected and downloaded

for this study [18]. This dataset has raw data from 83 frozen

biopsy samples including 73 DLBCL samples and 10 samples of

tonsillar B-cells generated using Affymetrix GeneChipH Human

Genome U133 Plus 2.0 arrays.

Data analysis
The quality of the datasets was assessed by box plots,

histograms, RNA degradation plots, array-array intensity correla-

tion plots, principal component analysis plots and QC metrics

retrieved by ‘yaqcaffy’ [19] and ‘AffyQCReport’ [20] R/bio-

conductor packages [21,22] figure SF 11 in File S3 shows the flow

chart of the bioinformatics analysis. Two of the 35 samples in the

canine dataset and 28 of the 83 samples in the human dataset did

not pass the stringent quality control and were removed from

further analysis. Data from 33 (23 DLBCL and 10 healthy)

samples in the canine dataset (GSE30881) and 55 (45 DLBCL and

10 healthy) samples in the human dataset (GSE12195) were used

for analysis. Supplementary tables (ST 1 and ST 2 in File S1) show

the included and excluded samples in canine and human datasets.

NF-kB target gene expression
The datasets were normalised using RMA normalisation

method [23,24] 120 NF-kB target genes (supplementary table

ST 3 in file S1) were derived from literature [18] and were

mapped to 199 probesets in the canine array and 259 probesets in

the human array using web-based NetAffx- Batch Query tool [25].

Hierarchical clustering and principal component analysis of the

datasets using the expression levels of mapped NF-kB probesets

were performed. The choice of this this NF-kB target gene set was

based on the fact that it was derived from many published sources

and comparatively more comprehensive than NF-kB gene sets

which are available in different databases.

Differential expression analysis
Analysis of variance (ANOVA) in the RMA normalised datasets

between the cancer and healthy samples were performed using

PartekH software [26] (version 6.5) and differentially expressed

gene lists were created based on the ANOVA log2 fold change

.62 at adjusted p-value with FDR ,0.05. The gene lists were used

as inputs in the DAVID Functional Annotation Tool [27] for

Gene-Enrichment and Functional Annotation Analysis. In addi-

tion, the gene lists were analysed for NF-kB target gene

enrichment using the literature derived NF-kB target genes list.

Co-expression analysis
For co-expression analysis, expression data from cancer samples

alone were used, excluding the data from healthy samples. The

datasets were normalised using MAS 5.0 normalisation method in

Linux-R/bioconductor and probesets with ‘‘P’’ calls in at least

one-third of the dataset were included for the analysis [28] Co-

expression matrices were constructed using a rigorous cut-off p-

value of less than 0.0001 with statistical power .80% between the

correlated probesets, visualised in Cytoscape [29] and clustered

using MCODE [30] plugin (parameters: Haircut = True, Fluff =

False, Node Score Cutoff = 0.3, K-Core = 2). The co-expression

clusters were explored in the Ingenuity Pathway Analysis [31] with

emphasis on canonical pathways and networks.

Comparison between canine and human datasets
The similarity between the two species were compared at

different levels including the similarity between the differentially

expressed genes, Gene Ontology enrichment, NF-kB target gene

enrichment, global NF-kB target gene expression signatures, co-
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expression clusters, canonical pathways and networks. For gene

level comparison, the probesets from canine array were mapped to

orthologous human genes and probesets in the human array and

vice versa whereas comparison at other levels were direct.

Tissue samples and tissue array construction
78 cases of human diffuse large B-cell lymphoma (DLBCL) with

formalin fixed paraffin wax embedded biopsy tissue were available,

with ethical approval (Ethical approval for the use of archival

human biopsy material in this study was granted by Lothian

Research Ethics Committee), for study, together with formalin fixed

paraffin wax embedded biopsies from 17 cases of treatment naı̈ve

canine DLBCL, and 5 cases of post-treatment (relapsed) canine

DLBCL as described above. Tissue microarrays were constructed

using 2 mm diameter cores (between 1 and 5 per case) cut from all

78 cases of human lymphoma and from 20 cases of canine

lymphoma (17 treatment naı̈ve, 3 post-treatment). In two cases of

post treatment canine DLBCL, the biopsies were too small for use in

tissue microarrays, so whole tissue sections were used instead.

Immunohistochemistry
Immunohistochemistry for p65/p52 was performed using

standard laboratory techniques and appropriate controls (no

primary antibody and isotype matched). Briefly, sections (4 mm)

of tissue microarrays constructed from formalin fixed, paraffin wax

embedded lymph nodes were used. Antigen retrieval was carried

out in 0.1 M citrate buffer pH 6.0 110uC for 15 minutes followed

by blocking of non-specific binding using the Dako REAL system

(Dako, Ely, UK) for 10 minutes at 25uC. After overnight

incubation with primary antibody at 25uC, specific binding was

visualized using the Envision + System-HRP (Dako) according to

the manufacturer’s instructions, followed by counterstaining with

haematoxylin. Primary antibodies used were NF-kB-P100/p52

(Ser865 rabbit polyclonal, Thermo Fisher Scientific at 1/25) and

NF-kB/p65 (Rel A, ab-1 rabbit polyclonal Thermo Fisher

Scientific at 1/50). Activation of the canonical and alternative

NF-kB pathways was measured using a semi-quantitative

technique to assess the degree of nuclear staining with antibodies

to p65 and p52 respectively. All immunohistochemistry sections

were scored by two independent pathologists (JG and EM). In any

one tumour, a score of between 0–4 was attributed on the basis of

the percentage of cells staining positively with a particular

antibody, calculated over all the available cores for that biopsy;

0 = completely negative, 1 = 1–25% of tumour cell nuclei positive,

2 = 26–50% of nuclei positive, 3 = 51–75% of nuclei positive and

4 = .75% of nuclei positive. The intensity of the nuclear stain

tended to be uniform throughout any one case and was scored as

negative (0), weakly positive (1), moderately positive (2) or strongly

positive (3). A final nuclear histoscore of between 0 and 12 was

then calculated by multiplying the percentage score by the

intensity score. It was possible to score all cases of human and

canine DLBCL for p65, and all cases of canine DLBCL for p52.

Only 77 cases of human DLBCL were assessed for p52 due to

missing material in the TMA sections.

Cell lines and culture conditions
All human cell lines were obtained from the ATCC (LGC

standards, Middlesex, U.K) and were certified EBV-negative. JM1

is a pre-B lymphoblastic lymphoma line which was maintained

and propagated using Iscove’s modified Dulbecco’s medium with

4 mM L-glutamine adjusted to contain 1.5 g/L sodium bicarbon-

ate (ATCC-LGC standards, Middlesex, U.K.) and supplemented

with 0.05 mM 2-mercaptoethanol (Sigma-Aldrich, Dorset, U.K.),

100 U/ml Penicillin, 100 mg/ml Streptomycin (Invitrogen, Pais-

ley, U.K.) and 10% (v/v) foetal bovine serum (Invitrogen, Paisley,

U.K.). Jurkat, Clone E6-1, a T cell lymphoma line, RL, a B cell

non-Hodgkin’s lymphoma cell line with t (14;18) translocation and

Pfeiffer, a diffuse large B cell lymphoma (DLBCL) also with the

typical t (14;18) (q32; q21) translocation of follicular lymphomas

were all maintained and propagated in RPMI-1640 medium

(Invitrogen, Paisley, U.K.) and supplemented as above with

Penicillin, Streptomycin and foetal bovine serum. Canine 3132 is a

suspension B cell lymphoma culture derived from a dog with

multi-centric lymphoma. This line most resembles the human

equivalent of lines derived from diffuse large B-cell lymphoma

(DLBCL). The canine lymphoma line, 3132, was established from

ascitic fluid from a dog with malignant lymphoma [17] and

propagated in supplemented RPMI-1640 medium as detailed

above.

Chemotherapeutic reagents and NF-kB/IKK inhibitors
Drugs used for the in vitro studies include doxorubicin, which

was purchased from Pfizer Ltd (Kent, U.K.) and vincristine sulfate

from Mayne Pharma Plc (Warwickshire, U.K.). In Solution NF-kB

activation inhibitor and IKK inhibitor VII were sourced from

Calbiochem (Nottingham, U.K.).

MTT assays
Cells were seeded in 96-well plates at 56103 cells per well and

incubated for 24 h at 37uC, 5% CO2. Drugs and inhibitors were

added in triplicates for each concentration before incubation at

37uC for 72 h. CellTiter 96H AQueous One Solution Reagent

(Promega, Southampton, U.K.) was added to each well and

incubated for 1 hour at 37uC before absorbance at 490 nm was

read. Data was analyzed and IC50 values calculated using

GraphPad prism 5.0 (La Jolla, U.S.A.) and drug combination

index was defined using the Chou and Talalay equation [32].

Antibodies for western blotting immunodetection (WB)
NF-kB/p65 (Rel A, used 1:200 WB) antibody (RB-1638; used

1:200 WB), NF-kB-p100/p52 (Ser865) antibody (RB-10608; used

1:200 WB), NF-kB-p105/p50 (Ser907) antibody (RB-10611; used

1:200 WB) and Cyclin D1/BCL-1 (SP4) antibody (RM-9104; used

1:200 WB) were obtained from Thermo Fisher Scientific

(Cheshire, U.K.), while BCL-2 antibody (sc-492; used 1:200 WB)

was sourced from Santa Cruz (Santa Cruz, U.S.A.) and I-kBa
[E130] antibody (ab32518; used at 1:10000 WB) and b-actin

antibody (ab6276; used 1: 10000 WB) from Abcam (Cambridge,

U.K.). The swine anti-rabbit HRP conjugated antibody (used at

1:1000) was purchased from DAKO (Ely, Cambridgeshire, U.K.).

ECLTM Western Blotting detection reagents from GE Health-

care/Amersham Biosciences (Buckinghamshire, U.K.) were used.

Electrophoresis, western blotting and immunodetection
40 mg of protein from whole cell lysates were electrophoresed

on 10% (v/v) denaturing polyacrylamide gels and transferred onto

Hybond ECLTM membranes (GE Healthcare, Buckinghamshire,

U.K.) using standard electrophoresis and western blotting

procedures. Membranes were blocked in 5% (w/v) skimmed milk

(Sigma-Aldrich, Dorset, U.K.) in phosphate-buffered saline (PBS),

incubated at 4uC overnight with antibodies at the appropriate

concentrations before washing in phosphate-buffered saline with

0.1% (v/v) NP-40 (Sigma-Aldrich, Dorset, U.K.; PBST), incuba-

tion with secondary HRP conjugated antibodies. After further

washes in PBST, ECL detection agents were used and Hyperfilm

ECLTM (GE Healthcare, Buckinghamshire, U.K.) were exposed

for appropriate durations to the membranes.
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Nuclear protein extraction and electrophoretic mobility
shift assay (EMSA)

Harvested cells were resuspended in 25 mM HEPES, 5 mM

KCl, 0.5 mM MgCl2 and gently lysed with the addition of equal

volume of 25 mM HEPES, 5mM KCl, 0.5 mM MgCl2, 1% (v/v)

NP-40, incubated for 15 min with rotation at 4uC before

centrifugation and removal of cytoplasmic proteins. Nuclear

pellets were washed before adding nuclear lysis buffer (25 mM

HEPES, 10% (w/v) sucrose, 350 mM NaCl, 0.01% (v/v) NP-40)

for 1 hour with rotation at 4uC before centrifugation to obtain the

nuclear extracts. All nuclear extraction solutions contained 1x

Roche Mini Complete protease inhibitor cocktail solution (Roche

applied science, Burgess Hill, U.K.). 22-mer NF-kB consensus

oligonucleotide (Promega, Southampton, U.K.) was labelled

according to manufacturer’s instructions using the DIG gel-shift

kit (Roche Applied Science, Burgess Hill, U.K.). 10 mg of nuclear

extracts were used per binding reaction as detailed in the

manufacturer’s protocol, with some control reactions using NF-

kB unlabelled oligonucleotide or non-specific negative control

OCT1 consensus oligonucleotide (Promega, Southampton, U.K.)

for competition or the NF-kB p65 antibody (Thermo Fisher

Scientific, Loughborough, U.K.) for supershift reactions. Reac-

tions were run on 6% (v/v) DNA retardation gels (Invitrogen,

Paisley, U.K.) and blotted and cross-linked onto positively charged

nylon membranes (Roche Applied Science, Burgess Hill, U.K.)

before immunodetection.

Results

Global expression profiles of the canine (GSE30881) and
Human (GSE12195) dataset

To understand the global expression profiles of the canine

dataset, principal component analysis (PCA) and hierarchical

cluster analysis (HCA) were performed. Using the first three

principal components that captured over 36% of the variance in

the dataset, the samples were plotted in 3-dimensional space. The

PCA plot showed all the 33 samples in the dataset clustered into

two distinct clusters, in line with their disease status (Figure 1).

Hierarchical clustering of the dataset using Euclidean dissimilarity

also showed two distinct top-level clusters separating the DLBCL

samples from the healthy samples (data not shown).

Exploratory data analysis (PCA and HCA) was performed to

understand global expression profiles of the human dataset. The

three dimensional PCA plot, using the first three principal

components that captured over 38% of the variance in the dataset

showed two distinct clusters: all the 45 DLBCL samples in one

cluster and all the 10 healthy samples in another cluster (Figure 1).

Predictably, the HCA plot of the human dataset using Euclidean

dissimilarity also showed the two sample groups in distinct top

level clusters, separating the DLBCL samples from the healthy

samples (data not shown).

Canine and human NF-kB target gene set expression
profiles

We investigated the global behaviour of a set of genes previously

identified as the target gene set for the NF-kB pathway in our

canine expression data. The healthy canine and DLBCL samples

formed two separate clusters in the PCA plot using the expression

levels of the NF-kB target 199-probesets (Figure 2). Significantly,

the DLBCL and normal samples are separated by the first

principal component, which captures 23.6% of the variance. This

suggests the disruption of the NF-kB pathway in canine DLBCL.

Three DLBCL samples were located with the healthy samples on

the basis of the first principal component, but they were removed

from the healthy cluster due to their incongruence in second and

third principal components. Hierarchical clustering of the canine

dataset using the expression levels of the same NF-kB target 199-

probesets separated the datasets into three top-level clusters: two

DLBCL clusters and one healthy cluster (Figure 3). While the two

exclusive DLBCL clusters had 19 and 2 samples, the healthy

Figure 1. PCA of global gene expression profiles of canine and human datasets. Three dimensional plots of the PCA of canine and human
datasets using the first three principal components of global gene expressions. The PCAs show two distinct clusters in both the datasets: the healthy
cluster and DLBCL cluster. Blue spheres denote the healthy samples and red spheres denote DLBCL samples. An ellipse was drawn around each of the
clusters to mark the limit of the distance of 3 standard deviations from the centre. (A) In the canine dataset (GSE30881), the healthy cluster has all the
10 healthy samples and the cancer cluster has all the 23 canine DLBCL samples. The amounts of variance captured by the first three principal
components are 22.7%, 6.97% and 6.75% respectively. (B) In the human dataset (GSE12195), the healthy cluster has all the 10 healthy samples and the
cancer cluster has all the 45 human DLBCL samples. The amounts of variance captured by the first three principal components are 17.3%, 14.7% and
6.6% respectively.
doi:10.1371/journal.pone.0072591.g001
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cluster had all the healthy samples with two remaining DLBCL

samples. A PCA plot using the 259 NF-kB target probesets on the

human dataset showed clustering of the samples into DLBCL and

healthy groups (Figure 2). The separation of the clusters was

mainly by the first principal component that captured 31.1% of

the variance. Further, HCA plot using the same 259 NF-kB target

probesets demonstrated two top level clusters, one entirely made

up of DLBCL and the other having all the healthy samples with

two DLBCL samples (Figure 3).

Differential expression patterns in canine and human
data set

The difference in the expression patterns of genes between the

healthy and DLBCL samples in the canine dataset was analysed

Figure 2. PCA of canine and human datasets using exclusively the expression levels of the NF-kB target genes (probesets). Three
dimensional plots of the PCA of canine and human datasets using the first three principal components of the expression levels of the NF-kB target
genes (probesets) show clear separation of DLBCL samples from the healthy samples in both the datasets. Blue spheres denote the healthy samples
and red spheres denote the DLBCL samples. The ellipsoids drawn around the clusters mark the limit of the 2 standard deviations from the centre in 3-
dimensional space. (A) In the canine dataset (GSE30881), the amounts of variance captured by the first three principal components are 23.6%, 14%
and 8.52% respectively. (B) In the human dataset (GSE12195), the amounts of variance captured by the first three principal components are 31.6%,
7.87% and 6.54% respectively.
doi:10.1371/journal.pone.0072591.g002

Figure 3. Hierarchical clustering of canine and human datasets using exclusively the expression levels of the NF-kB target genes
(probesets). Hierarchical clustering of the canine (A) and human (B) datasets using exclusively the expression levels of the NF-kB target gene set.
The samples are arranged in the columns (blue squares denote healthy and red squares denote DLBCL) and the probesets are in the rows. The
dendrograms are drawn using Euclidean distances with average linkage method. (A) In the canine dataset (GSE30881), the 199 NF-kB target
probesets separate the dataset into three top-level clusters. While the first and the third clusters have exclusively of DLBCL samples, the second
cluster has all the healthy samples with two DLBCL samples. (B) In the human dataset (GSE12195), the 259 NF-kB target probesets separate the
dataset into two top-level clusters. The first cluster has 12 samples that include all the healthy samples and two DLBCL samples, while the second
cluster is solely of 43 DLBCL samples. The numbers above each column refer to sample identification numbers.
doi:10.1371/journal.pone.0072591.g003
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using one-way ANOVA. Using an adjusted p-value with FDR less

than 0.05 and an absolute log2 fold change of greater than 2, 3286

probesets were found to be differentially expressed between the

healthy and DLBCL samples (data not shown). Of these, 926

probesets were up-regulated and 2360 probesets were down-

regulated in canine DLBCL. The important lymphoma specific

up-regulated genes include Dihydrofolate reductase (DHFR);

CD20 (MS4A1), Myelocytomatosis viral oncogene (MYC), DNA

Polymerase-alpha 1 (POLA1), DNA Polymerase-epsilon (POLE),

Ribonucleotide reductase M1 (RRM1), DNA Topoisomerase II

alpha (TOP2A) and Thymidylate synthase (TYMS). Similarly,

one-way ANOVA was performed to understand the difference in

the expression patterns of genes between DLBCL samples and

healthy samples in the human dataset. Using a FDR adjusted p-

value of less than 0.05 and absolute log2 fold change of greater than

2, 4388 probesets differentially expressed between the healthy and

DLBCL samples were identified from the ANOVA results (data

not shown). Of these, 2564 probesets were up-regulated and 1824

probesets were down-regulated in DLBCL.

Functional annotation of the up-regulated and down-regulated

probesets in canine DLBCL using the DAVID Functional

Annotation Tool showed involvement of many cancer-related

pathways, as would be expected. The gene ontology and pathways

enrichment analysis results for the differentially expressed

probesets in canine DLBCL using DAVID are given in the

supplementary tables (ST 5–8 in File S2), but the principal

results are summarised in Table 1. Functional annotation of

the differentially expressed probesets between human healthy and

DLBCL using DAVID also showed involvement of cancer-

related pathways and gene ontologies. The gene ontology and

pathways enrichment analysis results for the up-regulated

and down-regulated probesets in DLBCL are given in the

supplementary tables (ST 4–8 in File S2) and the top results are

given in Table 1.

Ingenuity Pathways Analysis of the up-regulated and down-

regulated probesets in canine DLBCL also showed enrichment of

cancer related bio functions and canonical pathways (figures SF 3–

6 in File S3). The notable canonical pathways enriched in the up-

regulated probesets are related to cell cycle regulation that includes

mitotic roles of Polo-like kinase pathway (p-value 1.3E-08, ratio 14/

58), BRCA1 in DNA damage response pathway (p-value 1.91E-08,

ratio 13/61), cell-cycle checkpoint control pathway (p-value 9.65E-

08, ratio 10/35), ATM signalling pathway (p-value 1.07E-07, ratio

12/53) and p53 signalling pathway. Similarly, the notable bio

functions in the up-regulated probesets include cell cycle, genetic

disorder, DNA replication, recombination and repair and cellular

movement. The main canonical pathways enriched in the down-

regulated probesets are related to cellular immune response that

includes crosstalk between dendritic cells and natural killer cells (p-

value 7.39E-06, ratio 16/97), T helper cell differentiation (p-value

3.28E-07, ratio 15/70) and IL-12 signalling pathway. The main

bio functions enriched in the down-regulated probesets are

proliferation of normal cells, cell-to-cell signalling and interaction,

immune response, cellular development and apoptosis. Ingenuity

Pathways Analysis of the up-regulated and down-regulated

probesets in human DLBCL also showed enrichment of DLBCL

related bio functions and canonical pathways. Some of the

important signalling pathways enriched in the differentially

expressed probesets in DLBCL are IL-10, p53, IL-6, NF-kB, IL-

2, PI3K, BRCA1 in DNA damage response, NOTCH and PI3K/

AKT signalling pathways, which are common to the canine

system.

We compared the 3286 differentially expressed canine probesets

against the NF-kB target 199-orthologous probesets and found 25

Table 1. Top 20 Gene Ontology (BP) Enrichment in the differentially expressed probesets in canine DLBCL and human DLBCL
(ranking based on FDR in the DAVID functional annotation chart).

Canine DLBCL Human DLBCL

M phase immune response

cell cycle phase response to wounding

mitosis inflammatory response

nuclear division positive regulation of immune system process

cell cycle regulation of apoptosis

M phase of mitotic cell cycle regulation of programmed cell death

cell division regulation of cell death

organelle fission regulation of cell proliferation

mitotic cell cycle defense response

cell cycle process cell activation

chromosome segregation regulation of cell migration

regulation of leukocyte activation regulation of cell motion

regulation of cell activation blood vessel development

positive regulation of leukocyte activation vasculature development

positive regulation of cell activation regulation of cell activation

regulation of lymphocyte activation taxis

regulation of immune effector process chemotaxis

positive regulation of lymphocyte activation leukocyte activation

positive regulation of immune system process regulation of locomotion

immune response positive regulation of signal transduction

doi:10.1371/journal.pone.0072591.t001

Molecular Signatures in Dog and Human Lymphoma

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e72591



NF-kB target orthologous probesets corresponding to 17 genes

were present in the differentially expressed probesets (Table 2).

Interestingly, IPA analysis for the NF-kB signalling showed

CD40LG, LCK, LTBR and TNFSF11 were present in the

down-regulated probesets and EIF2AK2 and MYD88 were

present in the up-regulated probesets of canine DLBCL. As we

looked for differential expression of NF-kB target genes in the

human data, we compared the 4388 differentially expressed

probesets against the NF-kB target 259 probesets and found 101

NF-kB target probesets corresponding to 54 genes in the

differentially expressed probesets (Table 3 Figure 4). Further,

Ingenuity Pathway analysis of the differentially expressed probe-

sets showed up-regulation of IRAK3, LTBR and TNFSF13B and

down-regulation of LCK, MAP3K7 and TNFRSF17 in addition

to our NF-kB target gene set.

Co-expression patterns in canine and human DLBC
lymphoma

A gene co-expression network of canine DLBCL was built using

the microarray expression data from the 23 canine DLBCL

samples and 45 human DLBCL samples. For canine, expression

values of 26,154 probesets that were ‘‘present’’ in at least 8

DLBCL samples were used for building the network and using a

very strict Pearson correlation coefficient of 0.7999934 (p-value

0.0001 with a power of 80%), as a measure of co-expression

between the probesets, 16852 nodes (probesets) having 120,270

edges were selected for the co-expression network (figure SF1 in

File S3). Many highly interconnected co-expressed clusters were

derived from the network and found to be enriched with cell cycle

regulation, immune response, TGF-b, Wnt/b-catenin and ERK/

MAPK signalling pathways (Figure SF 10 in File S3). Gene co-

expression network of human DLBCL was built using the quality

control passed, MAS5.0 normalised 45 DLBCL samples in the

human dataset. Expression values of 25931 probesets that were

‘‘present’’ in at least 15 samples were used for building the

network. Using a very strict Pearson correlation coefficient of

0.6312203 (p-value 0.0001 with a power of 80%), as a measure of

co-expression between the probesets, 21,435 nodes (probesets)

having 421,777 edges were selected for the co-expression network

(figure SF 1 in File S3). Many highly interconnected co-expressed

clusters were derived from the network (figure SF 2 in File S3) and

analysed in DAVID and IPA.

Comparative analysis of differentially expressed genes in
canine DLBCL and human DLBCL

Comparison of the two species was achieved by mapping the

canine chip probesets on to orthologous human chip probesets and

vice versa as described earlier29. The comparisons of the number of

differentially expressed probesets in both the datasets are

presented in Figure 4. 644 orthologous probesets were common

between the differentially expressed genes of canine DLBCL and

human DLBCL. When we looked at the differentially expressed

probesets in both the diseases for NF-kB target genes, the human

DLBCL had 54 NF-kB target genes (out of the 120 genes list) and

the canine DLBCL had 17 NF-kB target genes (Figure 4, Table 2

and 3). Ingenuity pathway analysis of differentially expressed

probesets in canine DLBCL and human DLBCL also showed

enrichment of NF-kB signalling pathway in DCBL of both species

(figure SF 9 in File S3). Comparison of signalling pathways

enriched in the up-regulated and the down-regulated probesets

of canine DLBCL and human DLBCL showed enrichment of

many lymphoma specific pathways in both canine DLBCL and

human DLBCL (figures SF 7 and 8 in File S3).

Commonly co-regulated pathways in canine DLBCL and
human DLBCL

The co-expression clusters obtained from the positive co-

expression networks were analysed for enrichment of signalling

pathways using DAVID and comparison work flow of the IPA

(Figures 5 and 6). We could find many signalling pathways that are

Table 2. NF-kB target genes in the differentially expressed gene set of the canine DLBCL.

Sr. No. Gene Symbol Gene Title FDR adjusted p-value Log2 fold change

1 BUB1B budding uninhibited by benzimidazoles 1 homolog beta (yeast) 2.33E-09 5.8804

2 TPMT thiopurine S-methyltransferase 8.62E-08 2.60776

3 PRKCD protein kinase C, delta 6.20E-09 2.16004

4 NCF2 neutrophil cytosolic factor 2 6.53E-06 2.15934

5 CD83 CD83 molecule 4.12E-05 22.09458

6 CXCL13 chemokine (C-X-C motif) ligand 13 0.00991254 22.25478

7 ICAM1 intercellular adhesion molecule 1 2.89E-06 22.26415

8 PTPN3 protein tyrosine phosphatase, non-receptor type 3 3.05E-09 22.39125

9 EGR1 early growth response 1 0.00919512 22.15779

10 DLA-79 MHC class Ib 0.00362251 22.05517

11 HSPA1L heat shock 70kDa protein 1-like 9.32E-07 22.87401

12 CD36 CD36 molecule (thrombospondin receptor) 0.00858191 23.62725

13 RGS1 regulator of G-protein signaling 1 5.13E-05 24.05241

14 IL8 interleukin 8 0.0034537 24.40177

15 IL12B interleukin 12B (natural killer cell stimulatory factor 2, cytotoxic
lymphocyte maturation factor 2, p40)

4.92E-16 25.29585

16 IL2 interleukin 2 7.44E-10 28.65752

17 CD40LG CD40 ligand 4.89E-12 27.82082

doi:10.1371/journal.pone.0072591.t002

Molecular Signatures in Dog and Human Lymphoma

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e72591



Table 3. NF-kB target genes in the differentially expressed gene set of the human DLBCL.

Sr. No. Gene Symbol Gene Title p-value
Log2 fold
change

1 CXCL9 chemokine (C-X-C motif) ligand 9 1.21E-19 69.72

2 CXCL10 chemokine (C-X-C motif) ligand 10 3.46E-16 27.93

3 CXCL13 chemokine (C-X-C motif) ligand 13 2.43E-09 12.64

4 SDC4 syndecan 4 3.37E-17 12.39

5 CCL2 chemokine (C-C motif) ligand 2 1.19E-15 12.18

6 STAT1 signal transducer and activator of transcription 1, 91kDa 1.83E-11 10.58

7 IL32 interleukin 32 2.14E-18 9.28

8 SLAMF7 SLAM family member 7 1.02E-09 9.22

9 BCL2 B-cell CLL/lymphoma 2 2.78E-09 9.05

10 CD44 CD44 molecule (Indian blood group) 4.44E-10 7.20

11 SOD2 superoxide dismutase 2, mitochondrial 1.84E-14 7.13

12 ELL2 elongation factor, RNA polymerase II, 2 8.50E-12 6.69

13 CCL3 chemokine (C-C motif) ligand 3 8.87E-10 6.56

14 RGS1 regulator of G-protein signaling 1 2.52E-07 6.28

15 CCL4 chemokine (C-C motif) ligand 4 1.51E-11 6.02

16 CCND2 cyclin D2 4.51E-07 5.41

17 DUSP1 dual specificity phosphatase 1 4.97E-07 5.04

18 IER3 immediate early response 3 1.18E-11 4.79

19 ID2 inhibitor of DNA binding 2 4.39E-12 4.28

20 VIM vimentin 6.14E-15 4.03

21 IL10 interleukin 10 6.57E-07 3.81

22 IRF4 interferon regulatory factor 4 3.50E-05 3.81

23 LITAF lipopolysaccharide-induced TNF factor 2.99E-12 3.76

24 PECAM1 platelet/endothelial cell adhesion molecule 4.02E-10 3.68

25 CCR7 chemokine (C-C motif) receptor 7 0.00131648 3.50

26 NCF2 neutrophil cytosolic factor 2 3.92E-05 3.41

27 CD36 CD36 molecule (thrombospondin receptor) 7.49E-06 3.38

28 BATF basic leucine zipper transcription factor, ATF-like 3.20E-06 3.15

29 IL15RA interleukin 15 receptor, alpha 4.08E-13 3.04

30 CFLAR CASP8 and FADD-like apoptosis regulator 5.72E-08 2.84

31 FNDC3A fibronectin type III domain containing 3A 1.83E-12 2.83

32 AHR aryl hydrocarbon receptor 1.87E-06 2.61

33 CX3CL1 chemokine (C-X3-C motif) ligand 1 4.28E-06 2.56

34 ICAM1 intercellular adhesion molecule 1 3.95E-08 2.53

35 PTPN1 protein tyrosine phosphatase, non-receptor type 1 1.59E-05 2.44

36 IRF1 interferon regulatory factor 1 3.83E-05 2.44

37 CXCL2 chemokine (C-X-C motif) ligand 2 0.0045885 2.41

38 IL2RA interleukin 2 receptor, alpha 6.66E-05 2.36

39 TNFAIP3 tumor necrosis factor, alpha-induced protein 3 3.52E-06 2.35

40 JUNB jun B proto-oncogene 1.84E-07 2.29

41 PIM2 pim-2 oncogene 2.69E-05 2.25

42 IL6 interleukin 6 (interferon, beta 2) 0.00388045 2.11

43 NFKB2 nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 2.00E-09 2.08

44 CD69 CD69 molecule 0.0170441 2.07

45 RFTN1 raftlin, lipid raft linker 1 1.77E-05 -2.02

46 CEP110 centrosomal protein 110kDa 2.10E-07 22.06

47 MAP3K1 mitogen-activated protein kinase kinase kinase 1 7.79E-05 22.20

48 WTAP Wilms tumor 1 associated protein 1.25E-10 22.25

49 SLC2A5 solute carrier family 2, member 5 0.0017411 22.32
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important in the pathogenesis of lymphoma enriched in the co-

expressed clusters of DCBL in both species. As the genes present in

the densely connected co-expressed clusters are generally co-

regulated and expressed in similar fashion, we can safely assume

that the enriched pathways in these clusters are active and related to

each other. The notable signalling pathways that are enriched in co-

expressed clusters of DCBL in both species: PI3K signalling in B

Lymphocytes, NF-kB, p53, PI3K, JAK/Stat and PI3K/AKT

signalling pathways as well as upregulation of IL-10, IL-6, and IL-2.

Analysis of NF-kB pathways in canine and human tissue
sections demonstrates activation of both canonical and
alternative pathways

To support the array date, we performed immunohistochemical

analysis of human and canine lymphoma samples (Figure 7). All

cases of human DLBCL showed at least low levels of nuclear

staining for p65; range of histoscores = 1–12, mean = 6.2, median

= 6.25. In just over 40% of cases (33/78), there was more intense

Table 3. Cont.

Sr. No. Gene Symbol Gene Title p-value
Log2 fold
change

50 CD40 CD40 molecule, TNF receptor superfamily member 5 4.59E-07 22.49

51 IL8 interleukin 8 5.73E-05 22.93

52 RRAS2 related RAS viral (r-ras) oncogene homolog 2 1.31E-08 24.87

53 BANK1 B-cell scaffold protein with ankyrin repeats 1 0.000318229 25.07

54 REL v-rel reticuloendotheliosis viral oncogene homolog (avian) 2.87E-15 25.43

doi:10.1371/journal.pone.0072591.t003

Figure 4. Comparison of differentially expressed probesets in canine and human DLBCLs. Venn diagrams comparing the NF-kB target
genes in the differentially expressed probesets (between DLBCL and healthy) of canine DLBCL and human DLBCL and comparison of the number of
the differentially expressed probesets of canine DLBCL and human DLBCL. The differentially expressed probesets in the datasets were identified by
one-way ANOVA (DLBCL Vs. healthy) of the expression values; selecting probesets with log2 fold change over 2 with FDR adjusted p-value less than
0.05. (A) 25 NF-kB target probsets (17 NF-kB target genes out of the 120 genes) present in the differentially expressed probesets of canine DLBCL. (B)
101 NF-kB target probsets (54 NF-kB target genes out of the 120 genes) present in the differentially expressed probesets of human DLBCL. (C)
Comparison of canine array probesets converted to orthologous human array probesets. (D) Comparison of human array probesets converted to
orthologous canine array probesets.
doi:10.1371/journal.pone.0072591.g004

Molecular Signatures in Dog and Human Lymphoma

PLOS ONE | www.plosone.org 9 September 2013 | Volume 8 | Issue 9 | e72591



nuclear staining in at least 50% of nuclei (histoscore $6),

suggesting increased activation of the classic, canonical NF-kB

pathway. Similar patterns of staining were seen in treatment

naı̈ve and post-treatment canine DLBCL. However, although no

completely negative cases were seen, in most only weak nuclear

positivity was identified: histoscore range for treatment naı̈ve cases

= 1.5–3, mean = 2.18, and median = 2.0; histoscore range for

post-treatment cases = 2–4, mean = 3.0, median = 3.0. Staining

for nuclear p52 in human DLBCL was generally at lower levels

than for p65. In 9/77 cases staining was entirely negative, and

moderate or strong nuclear staining in .50% of tumour cell nuclei

(histoscore $6) was only seen in 8/77; histoscore range = 0–8.5,

mean = 2.24, median = 1.50. Conversely, nuclear staining for

p52 was generally more intense than for p65 in canine DLBCL.

All cases showed at least weak staining in most nuclei, and

moderate or strong nuclear staining in .50% of cells was

identified in 15/17 treatment naı̈ve DLBCL and 4/5 post-

treatment canine DLBCL; for treatment naı̈ve cases histoscore

range = 6–10, mean = 7.68, median = 8.0; post-treatment

histoscore range = 4–12, mean = 7.2, median = 6.0.

Using western blot analysis we demonstrate that all human

lymphoma lines and canine 3132 line express p65 and p50/105

subunits but little or none of the p52/100 subunit, indicating the

classical canonical pathway is activated in the lines tested

(Figure 8A). None of these lines are known to harbor the

t(11;14) translocation and consequently do not upregulate

expression of cyclin D1 as demonstrated in Fig. 5A. Pfeiffer cells

express high levels of I-kBa but also have high constitutive levels of

p65 and p50. Nuclear extracts were shown to contain translocated

NF-kB p65 complexes that bound to kB motifs in the NF-kB

oligonucleotides in nuclear extracts of the canine 3132 B cell

lymphoma line (lane 2, Fig. 8B). Specificity of bands (complexed 1

and 2) indicated was shown by the reduction of signal by

competition with cold unlabeled NF-kB consensus oligonucleotide

bands (lane 3, Fig. 8B) but not with non-specific cold Oct2A probe

(lane 4, Fig. 8B). ‘‘Supershift’’ of bands occurred in the presence of

the NF-kB p65 antibody (lane 5, Fig. 8B) but not the p53 antibody

(lane 6, Fig. 8B). Comparable NF-kB translocation and binding to

kB motifs were also demonstrated in nuclear extracts of human

Jurkat, RL, JM1 and Pfeiffer lines (lanes 3, 7, 11, 15, Fig. 8C).

Specificity of bands (complexes 1 and 2) indicated were shown by

the reduction or absence of signal by competition with cold

unlabelled NF-kB consensus oligonucleotide bands (lanes 1, 5, 9,

13, Fig. 8C) and ‘‘supershift’’ of bands in the presence of NF-kB

p65 antibody (lanes 4, 8, 12, 16 Fig. 8C). 2 NF-kB-probe

complexes were observed, with complex 2 being the primary band.

The non-specific band probably originated from the commercial

preparation of the NF-kB consensus oligonucleotides as the

‘‘labelled probe only’’ lanes (lanes 2, 6, 10, 14, Fig. 8C)

demonstrate the presence of this band but not in any of the lanes

with the kit controls that utilized labelled Oct2A probe and Oct2A

factor (not shown).

NF-kB inhibition combined with classical chemotherapy
treatment on cell viability and NF-kB activation

The array data and immunohistochemistry support the

hypothesis that the NK-kB pathway is a potential target in

lymphoma in both species. To support this conclusion, we

performed a number of drug and cytotoxicity assays on human

and canine lymphoma cell lines targeting this pathway. Utilizing

an MTT assay, dose response curves and IC50 values were

generated for doxorubcin and vincristine for all cell lines (data not

shown). The IC50 value of the NF-kB inhibitor on 3132 cells was

calculated to be 10nM. This NF-kB inhibitor is not thought to be

cytotoxic even at a high dose of 10mM. The drug only killed 50%

of 3132 cells at 10nM and further increases in the doses of NF-kB

inhibitor up to 1mM did not decrease viability of 3132 cells

(Figure 9A).

The IKK inhibitor VII exhibited a cytotoxic effect on 3132 cells

with an IC50 of about 0.7 mM-1mM and enhanced the cytotoxic

effects of doxorubicin (Fig. 9B). However, IKK inhibitor VII

antagonized the cytotoxic effects of vincristine (Fig. 9C). Using

the Chou and Talalay formula to calculate the combination index

[32] from IC50 values obtained using GraphPad Prism 5, IKK

inhibitor VII was found to be moderately to slightly synergistic

Figure 5. Comparison of enrichment of KEGG pathways in the co-expressed clusters of canine DLBCL and human DLBCL. The highly
connected gene clusters identified in the co-expression networks of canine DLBCL and human DLBCL were analysed for enrichment of KEGG
pathways using DAVID functional annotation tool. The results from the analysis of each cluster are compiled and the p-values of the enrichment score
computed by Fisher’s exact test are represented graphically as coloured icons.
doi:10.1371/journal.pone.0072591.g005
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with doxorubicin (CI = 0.87) but antagonistic to the action of

vincristine (CI = 1.99) in 3132 cells.

When IKK inhibitor VII was added to cultures of 3132, Pfeiffer,

JM1 and RL cell lines, constitutive nuclear NF-kB binding activity

was reduced compared with controls (Fig. 10). Combined

treatments with IKK inhibitor VII and doxorubicin attenuated

and downregulated NF-kB binding activity compared with

treatment with doxorubicin alone, the latter of which up-regulates

constitutive NF-kB binding activity. The EMSA profile demon-

strated by RL cells was similar to that of 3132 cells. There

was greater activation of NF-kB in Pfeiffer cells (especially with

respect to complex 2) in comparison with the other lines. JM1 pre-

B lymphoma cells also demonstrated nuclear NF-kB activity,

which is up-regulated in the presence of traditional chemother-

apeutics and attenuated by co-treatment with IKK inhibitor VII.

In addition to nuclear translocation and activation, there was

Figure 6. Comparison of enrichment of signalling pathways in the co-expression clusters of canine DLBCL and human DLBCL using
IPA. The highly connected gene clusters identified in the co-expression networks of canine DLBCL and human DLBCL were analysed for enrichment
of lymphoma related signalling pathways using IPA tool. The result of the comparison analysis is represented graphically. The numbers on the bars
denote the co-expression cluster numbers while the length of the bars show their significance, negative log of the p-value for the pathway computed
by Fisher’s exact test, in the relevant pathway.
doi:10.1371/journal.pone.0072591.g006
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downregulation of overall expression of p65 upon IKK inhibitor

VII treatment of 3132 cells and attenuation of the increased p65

expression upon doxorubicin treatment (Fig. 10A).

Discussion

While mortality and incidence for most cancers are decreasing,

the age-standardised incidence for NHL increased by more than

a third (35%) in the twenty-year period between 1988–2007 in

the U.K. and canine and human NHL is the most common

haematological malignancy in dogs and humans respectively

[6–10]. In this study, we sought to establish whether canine

lymphoma is a valid model for human non-Hodgkin’s lymphoma

(NHL), specifically focusing on the NF-kB pathway. Dysregulation

of the NF-kB pathway has been consistently observed in human

lymphoid malignancies [33–36] the main mechanisms of dysreg-

ulation involving chromosomal mutations (e.g. p100) resulting in

pathway activation; BCL10, MALT1 and CARMA1 dependent

activation of IKK [37]; and viral protein stimulation of the IKK

pathway [33,38]. In activated B-cell-like diffuse large B-cell

lymphoma, CARD11-dependent chronic B-cell receptor signalling

is the mechanism by which NF-kB is constitutively activated, thus

preventing apoptosis [39] Finally, up-regulation of the anti-

apoptotic Bcl-2 family proteins (e.g. through activation of the

NF-kB pathway) has been shown to be a cause of chemotherapy

resistance [40].

In this study we show that array data in human and canine

lymphoma samples demonstrates activation of NF-kB pathways,

and is further supported by immunohistochemical data and drug

studies on cell lines. We performed expression analysis on canine

samples and then compared the data to human DLBC lymphoma

expression data available through standard databases. For all

canine patients RNA of sufficient quantity and quality was

retrieved for analysis. Principal component analysis of global

expression for canine DLBCL demonstrated separation of samples

into two distinct clusters: a healthy cluster (10 samples) and

lymphoma cluster (23 samples). However, at this global level PCA

did not separate samples that were either naı̈ve or were at relapse

(figure SF 12 in File S3).

For the canine samples, we compared the 3286 differentially

expressed probesets against the NF-kB target 199-orthologous

probesets and found 25 NF-kB target orthologous probesets

Figure 7. In vivo and in vitro Validation of NF-kB Status in Canine and Human DLBCL. NF-kB expression and activation in human T and B
cell lymphoma cell lines and canine B cell lymphoma cell line. Whole cell lysates from Jurkat, JM1, Pfeiffer, RL and 3132 cells were eletrophoresed and
immunoblotted for the detection of expression of signaling components of the NF-kB pathway (A). Nuclear protein from human T (Jurkat) and B (RL,
JM1, Pfeiffer) cell lymphoma lines as well as canine B (3132) cell lymphoma line, were extracted. EMSAs were performed on these samples using non-
radioactive DIG-labeled NF-kB consensus oligonucleotide probes in binding reactions. Specificity was tested by competition using unlabeled (cold)
specific and non-specific probes and ‘‘supershift’’ using specific antibody for NF-kB p65/RelA and a non-specific antibody (p53). Samples were then
subjected to electrophoresis in DNA retardation gels, before transfer onto nylon membranes and chemiluminescence detection of the DIG-labels.
EMSAs were performed using nuclear extracts of canine (B) and human (C) lymphoma cell lines. Bands are indicated by arrows and annotated. ‘+’ and
‘2‘ refer to components being added or omitted respectively, to standard gel shift binding reactions.
doi:10.1371/journal.pone.0072591.g007

Molecular Signatures in Dog and Human Lymphoma

PLOS ONE | www.plosone.org 12 September 2013 | Volume 8 | Issue 9 | e72591



corresponding to 17 genes were present in the differentially

expressed probesets. In addition to the core NF-kB gene sets, IPA

analysis for NF-kB signalling showed CD40LG, LCK, LTBR and

TNFSF11 were present in the down-regulated probesets and

EIF2AK2 and MYD88 were present in the up-regulated probesets

of canine DLBCL. These results provide evidence that the

classical/canonical pathway is activated in canine DLBCL rather

than the alternative pathway. Specifically, for down-regulated

genes: LTBR is a receptor for LTbeta in the NF-kB alternative

pathway in humans and CD40LG (or CD40L) can be a ligand for

NF-kB alternative pathway, both indicating canonical pathway

activation in lymphoma rather than alternative pathway activation

for NF-kB [41]. Interestingly, loss of LCK expression has been

linked to resistance to apoptosis in B cell tumours and down-

regulation of TNFS11 fits with the diagnosis of NHL in these dogs

[42]. For human DLBCL, it is interesting to note that LCK is also

down-regulated as for canine DLBCL. However, LTBR is up-

regulated, which may reflect a different initiating event that may

cause activation of the alternative pathway.

For up-regulated canine genes, EIF2AK2 encodes for double

stranded RNA-activated protein kinase, which phosphorylates

IKK. IKK phosphorylates I-kB for degradation, allowing NF-

kB translocation to the nucleus [43]. MYD88 is involved in

channelling activation of the p65 NF-kB pathway via TLR

stimulation and is considered a major player in certain forms of

human DLBC lymphoma [44]. This may reflect that canine

lymphoma could result from chronic B-cell inflammatory stimu-

lation or even viral infection. Further analysis of the human data

suggests an important role for NOTCH signalling. Hes1, a

canonical Notch target and transcriptional repressor, is responsible

for sustaining IKK activation in T-ALL. In addition, Notch-1

can increase NF-kB activity through a variety of mechanisms.

There is evidence in some B cell malignancies (e.g. B-CLL) that

Notch signalling plays a critical role in cell survival and apoptosis

resistance and suggests that it could be a novel potential

therapeutic target.

Both in vivo IHC data and in vitro cell line data indicate that the

NF-kB pathway is constitutively activated in human and canine

NHL. Conventional lymphoma chemotherapeutic drugs such as

doxorubicin and vincristine can inadvertently exacerbate the

disease and contribute to chemoresistance by upregulating NF-kB

activation. The custom tissue array data for both human and

canine lines suggest that both canonical and alternate pathways

are activated based upon both p65 and p52 staining. This is in

contrast to the cell line data where the canonical pathway

predominates. This is possibly explained by the heterogeneity of

the tissue arrays compared to cell lines. The immunohistochem-

istry did suggest subtle differences in expression patterns between

human and canine samples that again could indicate the

heterogeneity in tissue samples and the lack of molecular subtype

classification system in the canine samples. However, biologically

the canine and human lines have activation of this pathway and

respond similar to drug treatments. All human and canine cell

lines tested in this study indicate that high levels of the p65 subunit

and the p50/105 subunit are expressed whilst the p52/100 subunit

is virtually undetectable, suggesting that the classical canonical

NF-kB pathway is predominantly activated in these non-

Hodgkin’s lymphoma lines rather than the alternative pathway.

In contrast to the NF-kB inhibitor, IKK inhibitor VII was able to

reduce 3132, RL, JM1 and Pfeiffer cell viabilities (Supplementary

data in File S4) down to levels of 5% and below, demonstrating

that the IKK complex/subunits may have NF-kB-independent

consequences on cell survival, specificities of inhibitors notwith-

standing. Further, IKK inhibitor VII is able to potentiate cell

killing in conjunction with doxorubicin and vincristine in human

and canine B-cell lymphoma by inhibiting NF-kB activation as well

as IKK-dependent NF-kB-independent pathways. In addition, it is

able to act synergistically with doxorubicin, a chemotherapeutic

drug that activates the IKK complex through protein kinase C.

From these studies, IKK inhibitors show promise as therapeutic

agents for targeting aberrant NF-kB activation in canine and

human NHL, possibly reducing acquired chemoresistance thus

leading to enhanced patient survival. The results in this study also

support observations made by Gaurnier-Hausser et al in which

canonical NF-kappa B activity was evaluated by electrophoretic

mobility shift assays and immunoblot analyses, and NF-kappa B

target gene expression was measured by quantitative real time

PCR [45]. In that study constitutive canonical NF-kappa B activity

and increased NF-kappa B target gene expression were detected in

primary DLBCL tissue, as with the current study. Using a NEMO-

binding domain peptide the authors demonstrated that dogs with

relapsed DLBCL inhibited NF-kappa B target gene expression and

reduced tumor burden. This work underscored the dog as a

translational model for human DLBCL.

While this study focused specifically on NF-kB activity between

human and canine lymphoma, we also explored differentially

expressed genes in canine lymphoma and non-lymphoma. The

Figure 8. Illustrative photomicrographs showing different
nuclear staining intensities for p65 and p52. p65 staining in
human DLBCL; weak (a), strong (b). p65 staining in canine DLBCL weak
(c), strong (d). p52 staining in human DLBCL; weak (e), strong (f). p52
staining in canine DLBCL; weak (g), strong (h).
doi:10.1371/journal.pone.0072591.g008
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difference in the expression patterns of genes between the healthy

and DLBCL samples in the canine dataset highlighted important

lymphoma-specific up-regulated genes including DHFR, MS4A1,

MYC, POLA1, POLE, RRM1, TOP2A and TYMS. These gene

sets are of particular importance in lymphoma for a number of

reasons, including their role in drug resistance or as novel

therapeutic targets. As an example, amplification of the DHFR

has been linked to resistance of lymphoid malignancies to

antimetabolite chemotherapy drugs such as methotrexate [46].

In addition, Pralatrexate, a potent DHFR inhibitor is currently

Figure 9. Sensitivity of 3132 cells to NF-kB inhibitor, IKK inhibitor VII, doxorubicin and vincristine. Cell viability of 3132 cells were
measured post-treatment with NF-kB inhibitor (A), doxorubicin (B) or vincristine (C) in the presence/absence of IKK inhibitor VII or with IKK inhibitor
VII only, using Promega CellTiter 96H AQueous One Solution Cell Proliferation MTT assays. Data from doxorubicin and vincristine single treatments are
depicted in B and C respectively as small closed diamond points on short dashed lines while IKK inhibitor VII (B and C) and NF-kB inhibitor (A) single
treatments are represented as large closed square points on long dashed lines. Combination treatments of doxorubicin (B) or vincristine (C) with IKK
inhibitor VII are presented as open triangular points on solid lines.
doi:10.1371/journal.pone.0072591.g009
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showing promise in Phase II clinical trials for human non-Hodgkin

lymphoma [47]. Identification of DHFR during molecular

diagnosis, may help to guide drug selection processes. As a

further example with relation to drug resistance, The RRM1gene

encodes the regulatory subunit of ribonucleotide reductase, an

essential enzyme that catalyzes the reduction of ribonucleoside

diphosphates to the corresponding deoxyribonucleotides. RRM1

is involved in carcinogenesis, tumor progression, and the response

of non–small-cell lung cancer to treatment. It is the molecular

target of gemcitabine (29,29-difluorodeoxycytidine), an antimetab-

olite with activity in several malignancies including lymphoma.

Overexpression of RRM1 in canine lymphoma may suggest

resistance to these classes of drugs. Interestingly, TOP2A

expression (and up regulation in this current study) has been

linked to sensitivity of tumours to anthracyclines such as

doxorubicin. The amplification of TOP2A in breast cancer

predicts increased sensitivity to anthracylines in women [48].

The results from the canine lymphoma samples suggest why

anthracylines are considered to be the most important component

of treatment regimes in dogs. As well as indicators of drug

resistance, expression of some genes may also reflect markers of

poor prognosis. In this study we identified upregulation of cMyc.

Myc is considered to be a key oncogene transcription factor

involved in cell cycle control and cell proliferation. In humans,

approximately 5% to 10% of diffuse large B-cell lymphomas

harbor a MYC oncogene rearrangement and is considered to be a

negative prognostic marker [49].

In terms of potential therapeutic targets, MS4A1 (also referred

to as CD20) has been demonstrated as a strong therapeutic target

in human DLBCL. Rituximab is a chimeric monocloncal antibody

targeted to CD20 that has demonstrated efficacy in the treatment

of human DLBCL in combination with the CHOP protocol [50].

Rituximab does not efficiently bind canine CD20 or provide any

therapeutic benefit in the dog. However, this finding adds support

for groups currently trying to make monoclonal antibodies against

canine CD20 for both diagnostic and therapeutic purposes. In this

study we also identified upregulation of TYMS, which is also

involved in responsiveness to chemotherapeutic drugs. TYMS

catalyzes the methylation of deoxyuridylate to deoxythymidylate

using 5,10-methylenetetrahydrofolate (methylene-THF) as a

cofactor. This function maintains the dTMP (thymidine-5-prime

monophosphate) pool critical for DNA replication and repair. The

enzyme has been of interest as a target for cancer chemothera-

peutic agents. It is considered to be the primary site of action for 5-

fluorouracil, 5-fluoro-2-prime-deoxyuridine, and some folate

analogs.

For canine and human samples, the co-expression clusters

obtained from the positive co-expression networks were analysed

for enrichment of signalling pathways using DAVID and

comparison work flow of the IPA. The notable signalling pathways

that are enriched in co-expressed clusters of both canine and

Figure 10. The effect of doxorubicin and IKK inhibitor VII on the activation of NF-kB in human B cell lymphoma cell lines and canine
B cell lymphoma cell lines. Nuclear protein from human B (RL, JM1, Pfeiffer) cell lymphoma lines as well as canine B (3132) cell lymphoma line
treated with doxorubicin (A) and/or IKK inhibitor VII (B), were extracted. EMSAs were performed on these samples using non-radioactive DIG-labelled
NF-kB consensus oligonucleotide probes in binding reactions. Samples were then subjected to electrophoresis in DNA retardation gels, before
transfer onto nylon membranes and chemiluminescence detection of the DIG-labels. Bands are indicated by arrows and annotated. ‘+’ and ‘2’ refer to
components being added or omitted respectively, to standard gel shift binding reactions. Expression of classical pathway NF-kB subunits in 3132
nuclear extracts when 3132 cells are treated with doxorubicin and/or IKK inhibitor VII at IC50 doses was detected by western blotting of whole cell
lysates (B).
doi:10.1371/journal.pone.0072591.g010
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human diseases are: NF-kB, p53, JAK/Stat and PI3K/AKT

signalling pathways. In addition, up-regulation of IL-10, IL-6, and

IL-2 supports a role for inflammatory pathways maintaining the

malignant phenotype and suggest that there may be common

therapeutic targets in both species. Interestingly the PI3/AKT

pathway also has a major influence on NF-kB signalling, playing a

critical role in NF-kB-dependent survival in DLBCL. Taken

together, the conclusions from the global expression profiles for

canine and human DLBCL are:

N In canine DLBCL there are a number of up-regulated genes

that have therapeutic and prognostic importance and may

influence drug choices during therapy.

N There is activation of the classical/canonical NF-kB pathway

in canine lymphoma.

N Human and canine DLBCL share pathways, which have

potential therapeutic implications including NF-kB, PI3/

AKT, Notch and JAK/STAT.

N Canine lymphoma may represent a natural model of human

disease and may offer a system to rapidly advance novel

compounds to the clinic.

Conclusion

It has been suggested that the dog may provide a more valid

model for human cancer drug development as both species share

comparable responsiveness to chemotherapy and development of

drug resistance, in addition to comparable molecular and

histological features [1–5]. The results from this study support

these observations and complement the recent study by Frantz

et al [51]. The prevalence of naturally occurring canine lympho-

ma is sufficient for clinical trials with multi-modality protocols

being feasible in animals of this size. Information gained on drug

activity, toxicity, dose regimen, biomarker development and use in

combination therapies in dogs, can be employed in the develop-

ment of novel therapies in human cancer management, the

translation of biological concepts in cancer to in vivo models and

the generation of new information about cancer.
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