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Summary

Predictions that conduction velocities are sensitive to the
distance between nodes of Ranvier in myelinated axons

have implications for nervous system function during
growth and repair [1–3]. Internodal lengths defined by

Schwann cells in hindlimb nerves, for example, can undergo
a 4-fold increase during mouse development, and regener-

ated nerves have internodes that are uniformly short [4, 5].
Nevertheless, the influence of internodal length on conduc-

tion speed has limited experimental support. Here, we exam-
ined this problem in mice expressing a mutant version of

periaxin, a protein required for Schwann cell elongation
[4]. Importantly, elongation of mutant Schwann cells was

retarded without significant derangements to myelination
or axon caliber. In young mice with short mutant Schwann

cells, nerve conduction velocity was reduced and motor
function was impaired. This demonstrates a functional rela-

tionship between internodal distance and conduction

speed. Moreover, as internodes lengthened during postnatal
growth, conduction velocities recovered to normal values

and mutant mice exhibited normal motor and sensory
behavior. This restoration of function confirms a further

prediction by Huxley and Stämpfli that conduction speeds
should increase as internodal distances lengthen until

a ‘‘flat maximum’’ is reached, beyond which no further gains
in conduction velocity accrue [6].

Results and Discussion

Huxley and Stämpfli proposed in 1949 that conduction veloc-
ities in myelinated nerves should increase with internodal
distance until a ‘‘flat maximum’’ is reached [6]; theoretical
models have tended to support this view [1–3]. However, the
relationship between the distance between nodes of Ranvier
and the speed of nerve conduction has not been settled exper-
imentally [3]. The potential sensitivity of conduction speed to
internodal length has important implications for nervous
system function because the Schwann cells of peripheral
nerves such as those that innervate limbs can increase in
length dramatically during postnatal development, by 4-fold
in mice [4]. Furthermore, regenerated and remyelinated
peripheral nerves in rodents have uniformly short internodal
lengths [5]. We have previously shown in a mouse model of
the human recessive Charcot-Marie-Tooth disease 4F that
Schwann cell elongation is highly retarded and that peripheral

nerve conduction velocities are severely depressed [4, 7–9].
Periaxin is a component of a complex with Drp2 and dystrogly-
can that assembles appositions between the abaxonal surface
of the myelin sheath and the Schwann cell plasma membrane,
thus creating cytoplasm-filled channels called Cajal bands
beneath the surface of the plasma membrane [4, 9]. Periaxin-
null peripheral nerves have disrupted Cajal bands, and their
Schwann cells have an impaired ability to elongate. In contrast,
loss of Drp2, though it also disrupts Cajal bands, does not
affect Schwann cell growth [10]. However, further study of
the relationship between internodal length and conduction
velocity in periaxin-null mice is not possible due to the onset
of a severe demyelinating neuropathy that is also character-
istic of the human disease [8, 11]. Hence, we wished to
generate mice expressing a form of periaxin that affected
Schwann cell elongation without the other major deleterious
effects on peripheral nerve myelination observed in periaxin-
null mice. Here we have taken advantage of a periaxin mutant
with a highly ameliorated phenotype to examine the relation-
ship between internodal lengths and conduction velocities.

Generation ofMice ExpressingDPDZ-Prx in SchwannCells
We wished to uncouple the role of periaxin in regulating
Schwann cell elongation from the severe morphological and
functional consequences of its complete absence. With this
goal, we generated several mouse lines expressing mutant
periaxins. In the mutant described here, the N-terminal PDZ
domain of periaxin was deleted. This domain homodimerizes
and has been predicted to play a role, among others, in form-
ing appositions and Cajal bands [12].
To obtain DPDZ-Prx mice expressing periaxin lacking the

N-terminal PDZ domain, we first generated mice with Prx
alleles in which loxP sequences flanked exon 5 (Prxfl/fl) (see
Figure S1A available online). These are referred to hereafter
as controls. The normal initiation codon is in exon 4 of the
Prx gene, and the N-terminal PDZ domain is encoded by exons
5 and 6 [12]. Cre-mediated recombination of exon 5 is pre-
dicted to introduce an in-frame stop codon close to the 50

end of exon 6; hence, translation of the periaxin mRNA ought
to be terminated (Figure 1A). However, previous studies have
shown that ribosomal subunits can continue to scan for
a downstream initiation codon in a favorable Kozak context
[13–15]. The recombined Prx gene sequence lacking exon 5
reveals three potential initiation codons in exon 6 (Figure 1A),
but downstream of the first two of these are two in-frame
termination codons (Figure 1A). Nevertheless, the third
initiation codon (in red) in exon 6 is in a strong Kozak context,
is in frame, and is predicted to be a translation restart site
[15–17]. We speculated that translation reinitiated at this site
would give rise to a protein that lacked the first 116 amino
acids at the N terminus, including the PDZ domain (amino
acids 13–97) [12].
Genomic PCR showed that Cre-mediated recombination

using Cnp-Cre mice was very efficient in sciatic nerve (Fig-
ure S1B). Western blot analysis of sciatic nerve lysates re-
vealed a mutant protein expressed at levels similar to the
wild-type protein and with a size consistent with the absence
of the extreme N terminus of wild-type periaxin (Figure 1B),*Correspondence: peter.brophy@ed.ac.uk
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which was confirmed using an antipeptide antibody, N-Term
(Figure 1B) [12]. In contrast, the putative DPDZ-Prx protein
was readily detectable using antibodies directed against
a peptide comprising amino acids 713–728 (Repeats) [18]
and a peptide sequence at the C terminus of the protein, amino
acids 1350–1369 (C-Term) [9] (Figure 1B). The translational
initiation site and the amino acid sequence of the novel N
terminus of DPDZ-Prx, the mutant protein, were confirmed
by sequential sequencing from the N terminus by automated
Edman degradation [19]. The absence of a functional
N-terminal PDZ domain in DPDZ-Prx was further confirmed
by the inability of the mutant protein to dimerize with wild-
type periaxin (Figure 1D).

DPDZ-Prx Peripheral Nerves Have a Highly Ameliorated
Phenotype Compared to Periaxin Nulls

Immunofluorescence analysis of DPDZ-Prx peripheral nerves
showed that the PDZ domain is required for the formation of
domains enriched in Drp2-periaxin-dystroglycan complexes
in the plasma membrane of Schwann cells, and loss of appo-
sitions was confirmed by electron microscopy (Figure 2B).
Despite the loss of Cajal bands, myelination was unaffected
and levels of the major peripheral nervous system myelin
proteins P0 and myelin basic protein (MBP) were unaffected
in themutant (Figure S2A). Consistent with normalmyelination,
the mutant had normal g ratios at 3 weeks (0.61 6 0.02 and
0.64 6 0.01, mean values 6 SEM, n = 3 for control and mutant
respectively, p = 0.24) and normal axon diameters (2.65 6
0.05 mm and 2.55 6 0.09 mm, n = 3 for control and mutant
respectively, p = 0.43). The distribution of myelin thickness
with respect to axonal diameter was also unaffected in the
mutant (Figure S2B).

Disturbances to myelination at older ages were very mild in
DPDZ-Prx mice, and onion bulb profiles with supernumerary
Schwann cells, an indicator of demyelination and remyelina-
tion, were much less abundant in DPDZ-Prx mice compared
to periaxin nulls (Figures 2C). Interestingly, the low percentage
of onion bulbs in DPDZ-Prx at 36 weeks was comparable to
that in Drp2-null mice, which also have disrupted Cajal bands
and a mild phenotype [10], in marked contrast to periaxin-null
nerves at the same age (Figure 2D). Also similar to Drp2-null
nerves, there was no decrease in the number of Schmidt-
Lanterman incisures in DPDZ-Prx mice measured at 8 weeks;
in fact, there was a modest increase (2.20 6 0.04 per 100 mm
and 2.63 6 0.09 per 100 mm, n = 4 for control and DPDZ-Prx
mice respectively, p < 0.05) (Figure 2E) [10]. In contrast, and
as we have observed previously [8], Schmidt-Lanterman
incisures were barely detectable in periaxin-null nerves (Fig-
ure 2E), again underlining the ameliorated nature of the pheno-
type in DPDZ-Prx mice. Other key structural features that
could affect nerve function include the organization of the
nodal, paranodal, and juxtaparanodal domains, but these
were unaffected in the mutant (Figures S2C and S2D).
Because disruption of Cajal bands per se does not influence

either Schwann cell elongation or conduction velocity [10], the
DPDZ-Prx mice appeared to be excellent subjects in which to
investigate how internodal lengths influence conduction
velocity during postnatal development through to maturity.

Reduced Schwann Cell Elongation in DPDZ-Prx Mice

Retards but Does Not Prevent Development of Normal
Conduction Velocities to a Maximum Value

Wehave shown previously that the absence of periaxin inhibits
Schwann cell elongation when nerves are lengthening during

Figure 1. Generation of DPDZ-PrxMice Express-

ing a Mutant Form of Periaxin Lacking the

N-Terminal PDZ Domain

(A) The exon structure that encodes the N

terminus of periaxin is shown with the normal

initiation codon in exon 4 highlighted in yellow.

Exon 5, which is deleted after Cre-mediated

recombination, is outlined in gray, and the first

in-frame stop codon in exon 6 is shown in

green followed by two potential initiation codons

in blue. These are followed by two in-frame

stop codons in green, after which the putative

initiation codon utilized in DPDZ-Prx mice is

highlighted in red. The amino acid sequence

recognized by the N-Term anti-periaxin antibody

is shown (EARSRSAEELRRAE), as is the putative

N-terminal amino acid of the DPDZ-Prx protein

(MKGPRAKVAKLN).

(B) Western blot showing that an antibody

raised against the peptide EARSRSAEELRRAE

at the N terminus of wild-type periaxin (N-Term)

does not recognize the DPDZ-Prx protein in

extracts of sciatic nerves from 4-week-old mice,

although the mutant protein reacts with two

antibodies (Repeats and C-Term) that were

raised against peptides encoded by exon 7. The

shift to an increased mobility was also consistent

with the mutant protein being slightly smaller

than wild-type periaxin. g-actin was the loading

control.

(C) Although there was some ambiguity at

four positions, sequential amino acid sequencing of the purified DPDZ-Prx protein from the N terminus by the Edman degradation technique for 12

rounds confirmed the new N terminus of the DPDZ-Prx protein depicted in (A).

(D)Coimmunoprecipitation from lysates ofHEK293cells transfectedwith cDNAsencodingmyc-taggedwild-type periaxinwith either FLAG-taggedwild-type

periaxin or the myc-tagged mutant DPDZ-Prx showed that the mutant protein lacking the N-terminal PDZ domain did not interact with wild-type periaxin.

Current Biology Vol 22 No 20
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limb growth [4]. When wild-type periaxin was replaced by
the DPDZ-Prx protein at an early stage of postnatal develop-
ment, Schwann cell elongation was similarly compromised
(Figure 3A). Consistent with the shorter internodal lengths,
there was a proportionate increase in the number of Krox-
20- and Sox10-positive Schwann cells (Figure S3). Reduced
internodal lengths were reflected at 3 weeks in a >50% reduc-
tion in conduction velocity in the mutant (Figure 3B), at a time
when g ratios and axon diameters were normal (see above).
The conduction velocities of DPDZ-Prx mice were similarly
depressed compared to periaxin nulls at 3 weeks (8.5 6
0.5 ms21 and 12.6 6 1.1 ms21, DPDZ-Prx and Prx2/2 mice
respectively, n R 8, p = not significant), although we found
a small difference in their abnormally short internodal lengths
(328.7 6 2.4 mm and 302.7 6 3.9 mm, DPDZ-Prx and Prx2/2

mice respectively, n R 5, p < 0.05). This suggests that the
PDZ domain in periaxin has a determining role in the ability
of this protein to regulate Schwann cell elongation in addition
to its role in the formation of appositions.
As the distance between nodes grew in the mutant nerves,

their conduction velocities increased (Figure 3B). However,
by 6 weeks, control nerves had reached their maximum
conduction velocity of around 40 ms21 (Figure 3B), whereas
the conduction velocity in mutant nerves was still retarded.
Nevertheless, by 16 weeks, the speed of conduction in
mutants had caught up with and was indistinguishable from
controls (Figure 3B). The attainment of normal nerve conduc-
tion by 16weeks in themutants was reflected in the restoration
of normal motor performance in the rotarod test (Figure 3C).
Sensory tests were also normal at this age using the
hindpaw withdrawal response after mechanical stimulation
(162.8 6 4.2 mN/mm2 and 178.3 6 9.6 mN/mm2, control and
DPDZ-Prx mice respectively, n R 9, p = 0.22) or withdrawal
latency from noxious thermal stimulation (7.1 6 0.5 s and
7.2 6 0.6 s, control and DPDZ-Prx mice respectively, n R 9,
p = 0.96). Although DPDZ-Prx mice had recovered normal
conduction speeds in their quadriceps nerves by 16 weeks
(Figure 3B), periaxin-null nerves still displayed highly
depressed rates of conduction (41.6 6 1.5 ms21 and 17.9 6
1.9 ms21, DPDZ-Prx and Prx2/2 mice respectively, n R 6,
p < 0.0001). The extensive demyelination that afflicts the
peripheral nervous system of periaxin-null mice likely affects
their ability to recover normal conduction speeds even though
their internodal lengths increase. Hence, although delayed, it
appears that the peripheral nerves of DPDZ-Prx mice attain
normal speeds of nerve impulse conduction and normal motor
and sensory function once the distance between nodes has
reached the threshold of the flat maximum [6].

Conclusions

This study on the relationship between internodal length and
conduction velocity in myelinated peripheral nerves exploited
a mouse whose Schwann cells express a mutant periaxin
protein that does not cause severe demyelination yet still
retains the retarded elongation phenotype of the periaxin-
null mouse [9, 18]. Computer simulations of conduction in
myelinated nerve fibers have suggested that nerve conduction
velocities should be sensitive to internodal length in the

Figure 2. DPDZ-Prx Peripheral Nerves Have an Ameliorated Phenotype

Compared to Periaxin Nulls

(A) Teased fibers from control and mutant quadriceps nerves were stained

by immunofluorescencewith antibodies directed at periaxin (Prx), Drp2, and

the cytoplasmic marker S100. Periaxin- and Drp2-stained appositions are

disrupted in the mutant, as are the Cajal bands delineated by S100 staining.

Scale bar represents 20 mm.

(B) Electron microscopy of transverse sections from control and mutant

quadriceps nerves showing the presence of appositions (asterisks) in

control but their absence in mutant myelinated fibers, resulting in a concen-

tric ring of cytoplasm around the myelin sheath. Scale bar represents 1 mm.

(C) Onion bulb formations are much less abundant in DPDZ-Prx or wild-type

nerves compared to periaxin-null (Prx2/2) nerves at all ages examined

(mean values 6 SEM, n R 3; ***p < 0.001).

(D)Comparisonof semithin cross sections ofquadricepsnerves fromcontrol

andDPDZ-Prxmice at 3 and 24weeks. At 3weeks,DPDZ-Prx nerves appear

normal, but by 24 weeks, there are numerous nerve fibers with myelin fold-

ings. However, onionbulb structureswith thinmyelin, indicative of demyelin-

ation and remyelination, are infrequent (red arrowheads). Onion bulb

structureswerenot detectable in control nerves. Scalebar represents 10mm.

(E) Teased fibers from quadriceps nerves of 8-week-old mice were stained

with fluorescent phalloidin to detect Schmidt-Lanterman incisures. DPDZ-

Prx fibers had incisures that were morphologically similar to those in the

control (arrowheads). In contrast, incisures were completely deranged in

Prx2/2 nerves. Scale bar represents 50 mm.

Internodal Growth Accelerates Conduction Velocity
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shorter range but become less sensitive at longer Schwann
cell lengths [20, 21]. An earlier study of nerve conduction
velocity in regenerated peripheral fibers showed that although
axons regained normal diameters and myelin sheath thick-
ness, their internodal lengths were reduced; nevertheless,
nerve conduction velocities were normal [22]. Based on their
theoretical analysis, Huxley and Stämpfli proposed that this
was because the internodal lengths of regenerated fibers
had reached the range where conduction velocity would no
longer be sensitive to internodal length [6]. As these authors
noted, ‘‘We should expect the difference in velocity (between
control and regenerated fibers) to be least if the normal
spacing were somewhat above, and the reduced spacing
below, the value which would give maximum velocity.’’ They
also pointed out the evolutionary significance of this prediction
in that natural selection is likely to have resulted in nodal
spacing in mature nerves that permits significant deviations
in internodal length without affecting conduction velocity.

This exposition is persuasive because, although values for
internodal lengths were not quoted by Sanders and Whitter-
idge [22], it can be inferred from their Figure 11 that internodal
lengths in rabbit peroneal nerves were still in excess of 800 mm
after axon regeneration. This is in marked contrast to the range
of internodal lengths studied in the DPDZ-Prx mutant (329 to
479 mm, from 3 weeks to 16 weeks respectively). Theoretical
considerations would suggest that the internodal lengths in
the regeneration study [22] would be within the flat maximum
[1, 4]. Similarly, the acquisition of normal rates of nerve
conduction in older DPDZ-Prx nerves appears to be a result
of Schwann cells having elongated sufficiently to allow for
optimal conduction, together with the normal increase in
axon diameter and myelin thickness that occurs during devel-
opment. This supports the view that the internodal lengths of
older DPDZ-Prx Schwann cells lie in the range in which math-
ematical models predict the flat maximum of Huxley and
Stämpfli [6].

We have shown that the velocity of nerve impulse conduc-
tion in myelinated nerves is determined by the distance
between nodes of Ranvier until a threshold of internodal
distance is reached, beyond which conduction rates plateau.
The fact that normal Schwann cells inmurine peripheral nerves
reach this maximum conduction speed before they have

reached their maximum length suggests that there is a consid-
erable safety factor to ensure that myelinated axons conduct
optimally. Furthermore, a delay in reaching these maxima in
mutant nerves appears to have no adverse effect on mature
motor and sensory behavior, showing that derangements to
Schwann cell growth need not ultimately compromise periph-
eral nerve function.

Experimental Procedures

Generation of DPDZ-Prx Mice

All animal work conformed to the UK Animals (Scientific Procedures) Act

1986 and to University of Edinburgh Ethical Review Committee policy.

Cnp1-Cre mice have been described previously and shown to be effective

in promoting Cre-mediated recombination in mouse embryonic peripheral

nerves before the radial sorting of axons [23–25]. Mice carrying a Prx floxed

allele were generated by homologous recombination as described in

Supplemental Experimental Procedures. Mice expressing mutant periaxin

in Schwann cells were generated by crossing mice carrying floxed alleles

of Prx with Cnp1-Cre mice [24].

cDNA Constructs and Transfection

Generation of rat full-length periaxin cDNA (nt 268–4421; aa 1–1384) in the

mammalian expression vectors pFLAG-CMV5a (Sigma) with an introduced

XbaI site and pCB6myc (gift of D. Russell, University of Texas) was per-

formed as described previously [7]. The constructs were expressed as

full-length periaxin with a C-terminal myc epitope tag or a C-terminal

FLAG tag, respectively, and were used as positive controls. Generation of

DPDZ-Prx cDNAs and transfections are described in Supplemental Experi-

mental Procedures.

Immunostaining, Western Blotting, and Histology

All histology and immunofluorescence analyses were performed on quadri-

ceps nerves unless specified otherwise. The perineurium was removed

prior to immunostaining of teased fibers. Further preparation and the

method for immunostaining of cryosections or teased fiber preparations

were as described previously, and all primary and secondary antibodies

and nuclear stains have been described previously [4, 7]. Conventional

and confocal fluorescence, electron microscopy, and western blotting of

sciatic nerve lysates were performed as described in Supplemental Exper-

imental Procedures. Lightmicrographswere of toluidine blue-stained trans-

verse sections of quadriceps nerve.

Electrophysiology and Behavioral Testing

Acutely prepared quadriceps nerves from control and mutant mice were

placed in oxygenated mammalian HEPES physiological solution (137 mM

NaCl, 5 mMKCl, 2 mMCaCl2, 1 mMMgCl2, 5.5mMD-glucose, 5 mMHEPES

Figure 3. DPDZ-PrxMice Recover Normal Peripheral Nerve Conduction Velocities and Behavior after Retarded Schwann Cell Growth during Development

(A) Internodal lengths of teased quadriceps fibers from control and DPDZ-Prx nerves at 3, 6, and 16 weeks (mean values 6 SEM, n R 5 per group;

***p < 0.001).

(B) Nerve conduction velocities in control and DPDZ-Prx quadriceps nerves at 3, 6, and 16 weeks (mean values 6 SEM, n R 5 per group; ***p < 0.0001).

Conduction velocities at 16 weeks in DPDZ-Prx nerves were not significantly different from controls.

(C) Motor coordination was evaluated in control and DPDZ-Prxmice at 3 and 16 weeks using the rotarod test. At 24 rpm, there was no difference in rotarod

performance between control and DPDZ-Prx mice at both ages. However, under more demanding conditions at 32 rpm, DPDZ-Prx mice performed

significantly worse (mean values6 SEM, nR 12 per group; n.s., not significant, *p < 0.05). Motor coordination of 16-week-old DPDZ-Prxmice did not differ

significantly from control values at 32 rpm.
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[pH 7.2–7.4]). Nerve conduction velocities were measured as described

previously [4]. Fixed-speed rotarod analysis and sensory reflex testing

were performed as described previously [4, 26].

Edman Degradation

In order to determine the N-terminal sequence of the mutant DPDZ-Prx

protein by Edman degradation, we purified the protein using a GST-fusion

protein containing the third fibronectin III domain of b4-integrin, which

strongly interacts with the C terminus of periaxin. Briefly, the b4-integrin

third fibronectin III was amplified by PCR and subcloned in frame into

pGEX-KG for generation of GST fusion proteins. GST fusion constructs

were overexpressed in E. coli and purified as described previously [7].

The mutant protein was purified by SDS-PAGE, and the N terminus was

then sequenced by the Edman degradation method (Aberdeen Proteomics,

University of Aberdeen).

Morphometry

The diameters of axons, axons plus myelin, the resulting g ratios, and inter-

nodal lengths were calculated from aminimum of 100 axons per animal, and

a minimum of 3 animals were used per condition as described previously

[4, 25]. Schmidt-Lanterman incisures were visualized with Alexa Fluor

568-phalloidin.

Statistical Analysis

Statistical analysis was performed by unpaired Student’s t test (unless

specified otherwise) or by ANOVA with GraphPad Prism 5.0c software.

Supplemental Information

Supplemental Information includes three figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.cub.2012.08.025.
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