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Abstract—The Open Information Extraction Project1 is one
of the most ambitious attempts in the area of automatically
constructing ontologies by harvesting information from the web.
What we will call their KnowItAll Ontology contains about 6
billion items, consisting of triples and rules. The downside of
such automatically constructed ontologies is that they contain a
vast number of errors: some arising from errors in the original
web data and some from errors in extracting the data. In this
project we explore whether techniques we have developed in the
domain of ontology repair can be used to detect and correct some
of these errors. In particular, we explore whether the errors in
their ontology can be automatically detected by using a theorem
prover. We also present a manual classification of the errors as a
preliminary feasibility exploration, and discuss our future work
towards automatically correcting the ontology based on the error
classification.

I. INTRODUCTION

Ontology construction has long been a subject of extensive
research. Some of the goals in that line of work are capturing
as much detail as possible within a specific domain, reducing
the cost of ontology construction and minimising the likeli-
hood of inconsistencies. The traditional way of constructing
ontologies is to utilise domain experts for the conceptualisation
of the domain. The work of the Cyc project [1] has emphasised
the importance and applications of a wide-coverage, common-
sense ontology. At the same time, however, the Cyc project
also illustrates the immense resource investment required to
construct such an ontology manually and the limitations of
such an approach.

The need to lower the cost of ontology construction and
create flexible ontologies capable of coping with continuously
changing data has resulted in a growing interest in automating
the ontology construction process as much as possible. Several
methods have been proposed, among them the automatic
construction of ontologies by mining the web. One of the most
successful projects based on that approach is the KnowItAll
Project2, an outcome of the Open Information Extraction
Project, which obtains large-scale knowledge from the web,
structures it and presents in the form of an ontology. However,

1http://ai.cs.washington.edu/projects/open-information-extraction
2http://www.cs.washington.edu/research/knowitall

the biggest drawback of such an approach is that erroneous
data that already exists in the web is transferred in the
ontology.

Ontology consistency checking is one of the most fun-
damental steps towards ontology construction. Common ap-
proaches exploit Description Logic (DL) reasoners, as most
ontology languages, such as OWL [2], are based on description
logics. However, the development of languages based on the
more expressive first-order logic, e.g., [3], [4], dictates the
use of first-order theorem provers for consistency checking.
This technique was only recently introduced and has gathered
significant attention. For example, in [5] different theorem
provers were tested for finding inconsistencies in Cyc; whereas
in [6], the first-order general purpose theorem prover Vampire
was used to find inconsistencies in large ontologies such as
SUMO [7].

Most first-order provers use resolution techniques for their
proofs: given a goal φ and a set of axioms Ψ, prove that
φ follows from Ψ by proving ¬φ ∧ Ψ unsatisfiable, under
the premise that Ψ is satisfiable. If ¬φ ∧ Ψ is unsatisfiable,
then there does not exist a contradiction within the ontology.
Such a technique, to be successful, requires the language of
that axiom set to contain negation. The KnowItAll Ontology
lacks negation, thus, a new approach is needed. This paper
presents our approach to automatically detecting functionality
and type clash inconsistencies within the KnowItAll Ontology
using the E theorem prover [8], and our techniques to handle
the lack of negation. E is a full first-order theorem prover
with equality. Given a set of formulas, E saturates it by
systematically applying a number of inference rules until all
possible rules have been applied, or the empty clause has been
derived.

If the ontology contains inconsistencies, one way to repair
them is to discard from the ontology the minimal set of data
necessary to block the proof of inconsistency. This approach
secures the consistency of the ontology, but also results in
information loss. We propose repairing the inconsistent data
rather than discarding it, to minimise possible information
loss. By classifying the occurring errors we can identify the
links between the correct and the erroneous data, and decide
whether the erroneous data should be repaired or discarded



from the ontology. Using first-order logic allows us to express
and apply the repairs. Note here that alternative logics like
Description Logic are not expressive enough for the repairs
we have identified, as we will show in Section IV-B2.

To summarise, our main contribution is that we present ways
to automatically detect functionality and type clash inconsis-
tencies in a ontology that lacks negation, by using a theorem
prover. Furthermore, we present a manual classification of the
errors that cause the inconsistencies, and we discuss ways to
map the inconsistencies to the appropriate repairs. The rest
of the paper is organised as follows. In Section II we present
our methodology towards the automatic detection of inconsis-
tencies. In Section III we present a preliminary evaluation of
our approach and the results. A manual classification of the
errors and our proposals to repair the inconsistencies using
ontology repair techniques is discussed under Future Work in
Section IV. Finally, we draw conclusions in Section V.

II. METHODOLOGY

The KnowItAll Ontology. The KnowItAll system consists
of two subsystems: the Reverb system [9], and the SHER-
LOCK system [10]. The Reverb system extracts binary relation
phrases and the corresponding arguments, from the web. Only
the extractions that match with some predefined syntactic
and lexical constraints are added to the ontology. Then, the
added relations are checked for partial functionality [11]. A
relation Rel is functional, when given an element of the
domain i ∈ Domain(Rel), there exists a unique element
of the range y ∈ Range(R) such that Rel(i, y) is true.
Functionality restricts both the existence and the uniqueness of
y. Whereas partial functionality restricts only the uniqueness
of y: relation Rel is a partial function if given an element
i ∈ Domain(Rel) and if there exists y ∈ Range(Rel)
such that R(i, y) is true, then y is unique. SHERLOCK
classifies the extracted arguments and produces inference rules
for each typed relation, based on the web extractions. The
resulting ontology consists of the extracted relations and the
corresponding instances, the classes of these instances and the
inference rules.
Translation. The ontology has to conform to the TPTP
(Thousands of Problems for Theorem Provers) syntax [12], a
standard first-order format readable by the E prover. TPTP is a
library of problems written in TPTP syntax, and is the basis for
the CADE ATP System Competition [13]. In the following ex-
periments we used the TPTP distinct object notation. In TPTP
distinct object notation, all distinct objects are surrounded by
double quotes and are not considered equal. We decided to
translate subsets of the original ontology to limit the search
space for the initial exploration. The KnowItAll Ontology is
represented as plain lists, thus, we created semantic annota-
tions between the instances and the classes i.e., instance-of ,
and then constructed the sub-ontologies for the relations we
were interested in testing. The sub-ontologies consist of sets of
axioms and conjectures of the form: fof(axiom_name,
axiom, conjecture). The general form of a conjecture
describing a relation Rel into a human-readable first-order

syntax between an instance i of class classi and an instance
y of class classy , is:

∃i, y(instance-of(i, classi)

∧instance-of(y, classy) ∧Rel(i, y))

Finding Inconsistencies. Resolution based first-order theo-
rem provers aim at proving a goal by showing that its negation
leads to contradictions within the axiom set. However, lack of
negation in the axiom set can block that proof. So, instead
of constructing goals to prove the ontology consistent, we
constructed goals to prove the ontology inconsistent. If these
goals are satisfiable, which means that the goals follow from
the axioms, we automatically prove the existence of such in-
consistencies. For example, the following conjecture describes
the partial functionality of a relation Rel:

∀i, x, y(instance-of(i,Domain(Rel))

∧instance-of(x,Range(Rel))

∧instance-of(y,Range(Rel))

∧Rel(i, x) ∧Rel(i, y) ∧ x = y)

The meaning of this conjecture is the following. Given i there
exists a unique x such that Rel(i, x). Instead of constructing
this conjecture, we constructed its negation: given i there exists
a non unique x such that Rel(i, x). The conjecture in first-
order format is:

∃i, x, y(instance-of(i,Domain(Rel))

∧instance-of(x,Range(Rel))

∧instance-of(y,Range(Rel))

∧Rel(i, x) ∧Rel(i, y) ∧ x 6= y)

To prove a goal satisfiable, the E prover applies that goal
on all given axioms. If a proof is found it returns as answers
all the instances that satisfy that proof.

III. EXPERIMENTS AND RESULTS

The experiments we conducted are concerned with par-
tial functionality violation and type clash. First, we tested
the be-capital-of and be-the-capital-of relations for partial
functionality violations. Each sub-ontology consists of ax-
ioms that describe these relations, the corresponding instances
and their classes. In total we tested 1, 177 axioms for the
be-the-capital-of sub-ontology, and 1, 053 axioms for the
be-capital-of sub-ontology. KnowItAll does not consider these
relations as synonyms because they do not match syntactically.
So, these two sub-ontologies overlap but are not exactly the
same. For the type clashes experiment, we are only concerned
with the instance-of axioms. We tested a randomly generated
set of city, leader, member, club, tree, product, nutrition,
medication, man and fruit instances, for a total of 5, 788
axioms.



TABLE I
FUNCTIONALITY VIOLATION FOR THE be-the-capital-of RELATION:

SAMPLE INSTANCES THAT CAUSE FUNCTIONALITY INCONSISTENCIES.

Cityx Cityy Countryi

bonn berlin germany
tokyo paris japan
hong-kong bejiing china
berne bern switzerland
prague rome europe

A. Functionality Violation Results

Relation be-the-capital-of(City, Country) is considered
as partially functional in both arguments: a country can have
only one capital city; a city can be capital for only one country.
Our goal is to prove that there exists in the ontology a country
with more than one capital city, and vice versa.3 To prove these
inconsistencies we constructed the goals 1 and 2 (described in
first-order syntax).

∃Cityx, Cityy, Countryi
(instance-of(Cityx, city)

∧instance-of(Cityy, city)

∧instance(Countryi, country)

∧be-the-capital-of(Cityx, Countryi)

∧be-the-capital-of(Cityy, Countryi)

∧Cityx 6= Cityy) (1)

∃Countryx, Countryy, Cityi
(instance-of(Countryx, country)

∧instance-of(Countryy, country)

∧instance-of(Cityi, city)

∧be-the-capital-of(Cityi, Countryx)

∧be-the-capital-of(Cityi, Countryy)

∧Countryx 6= Countryy) (2)

The meaning of goal 1 is the following. There exists a
country Countryi and two different cities Cityx and Cityy
such that both cities are related to that country with the
be-the-capital-of relation.

E found goal 1 provable and returned 134 unique answers.
Some of the answers are shown in Table I. Goal 2 was
formulated to prove that there exists a city Cityi which is
capital for two different countries: Countryx and Countryy .

E found goal 2 provable and returned 25 unique answers.
A sample of these answers is presented in Table II.

We conducted the same experiments for the be-capital-of
relation. We found inconsistencies regarding only the unique-
ness of the city instances. The instances that cause these
violations are presented in Table III.

3Although in reality there exist countries with multiple capital cities, e.g.,
South Africa, we are only concerned with the definition of functionality within
the ontology.

TABLE II
FUNCTIONALITY VIOLATION FOR THE be-the-capital-of RELATION:

SAMPLE INSTANCES THAT CAUSE FUNCTIONALITY INCONSISTENCIES.

Countryx Countryy Cityi

siam thailand bangkok
prc china bejiing
assyria babylonia nineveh
jamaica canada kingston
sindh pakistan karachi

TABLE III
FUNCTIONALITY VIOLATION FOR be-capital-of relation: INSTANCES THAT

CAUSE FUNCTIONALITY INCONSISTENCIES.

Cityx Cityy Countryi

canberra melbourne australia
alquds jerusalem palestine
tokyo nara japan
brindisi rome italy
sindh pakistan karachi

B. Type Clashes Results

Type clashes refer to multiple typed instances. We are
concerned with type clashes because in common ontologies
with class hierarchies, an instance inherits multiple types from
its taxonomical parents. So, it is unnecessary to define multiple
times the types that an instance inherits. Also, type clashes
can indicate cases that disjoint instances share the same types
because of a similar representation. To test the existence of
type clashes we constructed the following goal:

∃i, x, y(instance-of(y, i) ∧ instance-of(y, x) ∧ i 6= x)

The goal describes that there exists an instance that belongs to
two different classes. E found the goal satisfiable and returned
the instances and the classes that satisfy that goal. Some of
those instances are presented in Table IV.

TABLE IV
TYPE CLASHES INCONSISTENCY: RESULTS.

Classi Classx Instancey

city fruit minneola
product medication meprobamate
leader man barack-obama
man city obama

IV. FUTURE WORK: AUTOMATION OF ANALYSIS AND
REPAIR

Another aspect of our work is to address the feasibility
of automatically repairing the ontology, through identifying
errors and appropriate repairs. To automate the repair process,
we need appropriate feedback on the nature of an error. Such
feedback can be provided through error classification. We
present a manual analysis of the errors we identified as an
initial feasibility study into further work. We believe that, in
the scope of this work, it is possible to apply existing repair
techniques. We describe how the ontology repair techniques



presented in [14], [15] could be applied. Also, we present
a methodology for identifying the semantically correct data,
and we suggest a strategy towards automatically repairing the
KnowItAll Ontology. This section corresponds to the identi-
fication of the appropriate methodology towards repairing the
KnowItAll Ontology; the presented techniques have not yet
been implemented.

A. Error Classification

We manually analysed and classified the errors to under-
stand their nature. The results of this analysis can provide
information on whether this procedure can be automated or
not. For instance, we investigate whether the errors are general
enough so we could apply e.g., natural language techniques
to automate the analysis, or are they very specific so that
more sophisticated feedback is needed e.g., user feedback.
Another alternative would be to use standard feature-based
classification techniques, e.g., from machine learning.

1) Functionality Violation Results Analysis: We classify the
causes of these inconsistencies into three major categories:
(a) multiple representation of the same instance, (b) different
instances share common characteristics, and (c) semantically
wrong extractions.
Multiple Representations of the Same Instance. Among the
different representations either only one of the representations
is correct, or more than one representation is correct. When
more than one representation is correct, we identify the fol-
lowing categories: (i) Old name and New name: a place which
has been renamed with the passing of time, e.g., Thailand’s
former name is Siam. (ii) Official and Common name: a place
whose official name is different from its common name, e.g.,
People’s Republic of China and China. (iii) Official name and
Abbreviation: a place which is known both with an official
name and with the corresponding abbreviation, e.g., People’s
Republic of China and PRC. (iv) More than one official name:
a place with more than one official name, e.g., Myanmar
and Burma. (v) English and Non English name: a name
represented both in English and in another language, e.g.,
Moldavia and Moldova. (vi) Official and Colloquial name: a
place whose official name differs from the name people use,
e.g., Thessaloniki, and Thessalonika.

We believe that any representation that falls into one of
the above categories should be kept in the ontology. To avoid
current and future inconsistencies, one of the representations
must be thought of as the main one and the rest should be
repaired according to their relation with that representation.
Different Instances that Share Common Characteristics.
This category contains instances that are misinterpreted as
the same because of a relation between them; e.g., a part-
of relation: Sindh is a province of Pakistan, however, they are
treated as the same instance. Below we provide a classification
of the causes of this misinterpretation.
Different Time Period. The KnowItAll system normalises the

extracted data from the web, and then adds it to the on-
tology i.e., extractions of the form was the capital of are
converted to be the capital of. The normalisation process

can cause functionality violations. Such violations are
caused when: (i) A country has changed its capital city
over the years, e.g., Nara and Tokyo. (ii) An empire or a
country that does not currently exist, has the same capital
as a current country, e.g., Roman Empire and Italy.

Part of a Country. Places that are parts of a country, for
instance provinces, are specified as countries, e.g., Sindh
and Pakistan.

Same Relation With Different Meanings. The relations
be-the-capital-of and be-capital-of can have a
metaphorical meaning, in addition to the literal meaning
e.g., cultural capital, financial capital etc. However,
both meanings are represented by the same relations,
resulting in inconsistencies. For example, Islamabad is
the capital of Pakistan, while Lahore is the country’s
cultural capital.

Different instances with similar names. A common mistake
is to use the same representation for geographical places
that are not the same. Such cases are: (i) Refer to a region
of a country by using the name of that country, e.g.,
calling the European part of Russia, Russia. (ii) Refer to
two different countries using the same name, e.g., calling
Northern Ireland, Ireland.

Multiple Instances Specified as a Single. In the KnowItAll
Ontology connective words, e.g., ‘and’, have not
been taken into account. The result is multiple
definitions of countries, both individually and as
pairs. For example, within the ontology co-exist
the relations: instance-of(scotland, country),
instance-of(sweden, country),
instance-of(scotland-and- sweden, country).

Semantically Wrong Extractions. The KnowItAll Ontol-
ogy contains extractions that represent semantically wrong
relations. We categorise such extractions into:(i) Com-
pletely wrong relations, e.g., be-the-capital-of(miami, cuba),
be-the-capital-of(paris, japan).4 (ii) A continent defined
as a country e.g., be-the-capital-of(brussels, europe),
be-the-capital-of(prague, europe). (iii) A block of neigh-
bouring countries defined as a single country e.g., Scandinavia
is defined as a country. (iv) Extractions that result from
bad human inference. For example, Glasgow is defined as
the capital of Scotland which might have resulted from a
misleading inference that the city with the highest population,
or perhaps the most famous city, is also the capital city.

2) Type Clashes Results Analysis: Most type clashes result
from the lack of class hierarchies. For example, barack-obama
instance is multiply defined: as a leader and as a man.
This entails lack of type inheritance. Type clashes also occur
because of synonymy between disjoint instances. As a result
the same instance belongs to two or more disjoint classes. For
example, consider the relations instance-of(obama, city)5,
instance-of(obama,man); two obama instances with dis-

4Such relations usually come from unreliable sources e.g., Paris is defined
as the capital of Japan, as an example of false assertions in a website that
describes Logic.

5Obama is a city located in Fukui Prefecture, Japan.



joint meanings.
3) Error Classification: Further Experiments:

We conducted further experiments regarding the
functionality violation of other relations that are considered
partially functional in the KnowItAll Ontology. These
relations are: have-a-campus-in(University, City),
be-a-freelance-writer-in(Writer, City), be-the-birthstone-

for(Stone,Month). In case of inconsistencies, we analysed
the errors that caused them, and checked whether they fall
into the classification we previously presented.

We found 102 functionality violations of the
be-a-freelance-writer-in/2, 74 functionality violations of the
have-a-campus-in/2, and 10 of the be-the-birthst-one-for/2
relations.6 All the errors that cause the inconsistencies, fall
into the classification we previously presented. These results
are encouraging towards the generality of our classification.
However, further experiments need to be conducted and
more categories need to be added, for a more concrete
classification.

B. Suggested Repairs

1) Class Hierarchies: The first step towards
repairing the KnowItAll Ontology is to construct
class hierarchies. The KnowItAll Ontology currently
lacks specification of taxonomic parents, resulting in
ambiguity, repetition and inconsistencies. Consider the
relations instance-of(meprobamate,medication) and
instance-of(meprobamate, product), found within
the KnowItAll Ontology. By creating a class hierarchy
medication ⊂ product,we can infer that meprobamate is
an instance of product by defining it as a medication. The
next step is to fix semantically wrong types of instances,
for example, to change the type of europe from country to
continent.

2) Abstraction and Refinement Techniques: The importance
of ontology repair and a set of possible repairs were firstly
introduced in [14], [15] and implemented in various systems
e.g., [15], [16]. The ontology repair techniques that the authors
suggest fall under one of two major categories: abstraction
repairs and refinement repairs. Abstraction repairs reduce the
detail of the ontology, leading to a more general form e.g.,
european-country 7→ country. Refinement repairs add detail
to the ontology leading to more specific representations, e.g.,
european-country 7→ west-european-country. Most of the
inconsistencies in the KnowItAll Ontology result from un-
derspecification and generality of the defined concepts. Thus,
we consider refinement repairs as the most appropriate, from
which we identify splitting arguments, splitting predicates and
adding extra arguments to the relations (note that the language
of the KnowItAll Ontology is restricted to triples, so this is
not possible unless the language is extended), to fit best with
the problem we face. Different repairs are required depending

6These functionality violations raise the issue of not considering these
relations as functional. For example, it is not unusual for a University to
have more than one campus e.g., Heriot-Watt University has 4 campuses:
three in the UK and one in Dubai.

on the nature of the inconsistency. Thus, with the appropriate
reasoning the most suitable repair should be selected. Also,
we consider abstraction techniques, such as merging relations,
to deal with synonymy.
Splitting Arguments. We split an argument into two
or more arguments of the same type. The resulting ar-
guments aim to provide precision to the relation, by
capturing more detail than the original one e.g., the
time period of this argument. For example, consider the
following inconsistency: be-the-capital-of(nara, japan),
be-the-capital-of(tokyo, japan). The first relation refers to
ancient Japan while the second relation refers to current Japan.
One appropriate repair is to split japan into current japan
and past japan. By replacing the above relations with these
two instances, the inconsistency is fixed, while the relation
is more specific regarding the time period it refers to. Then,
we need to apply the same technique for all such occurrences
within the ontology. However, if the repair is based on domain-
specific information extracted from some particular relation,
then applying it on all occurrences within the ontology might
result in semantic inconsistencies. For instance, consider a
countryi that has both a cultural and a financial capital.
Then, we could split this countryi into cultural countryi
and financial countryi. But splitting all occurrences of
countryi in that way is semantically inconsistent. Thus, this
technique should be applied for general errors, or instead of
repairing all such occurrences within the ontology, provide the
appropriate mappings.
Splitting Relations. This technique is similar to splitting
arguments: we split a relation into two or more specific
relations. The resulting relations capture in more detail
the relationship between the arguments. For example, split
be-the-capital-of into be-the-current-capital-of and into
be-the-past-capital-of . In this way we consider functional
only the relation that refers to current situations i.e.,
be-the-current-capital-of . This approach is suitable for
most of the errors we previously presented, for example,
split be-the-capital-of into be-the-cultural-capital-of ,
be-the-economical-capital-of etc. This repair does not affect
the whole Ontology as we only repair a specific relation.
Adding extra arguments. We convert an inconsistent binary
relation to a ternary by introducing a new argument. That
argument specifies the exact semantics of the relation and
results from the error classification. Also, it is that third
argument that will specify whether a relation is functional
or not. For that reason, appropriate rules that specify the
conditions under which a relation is functional should also
be constructed. In this way, we maintain the ontology’s
consistency while we do not change any of the original
information. For example, we can add an argument that
indicates time period:
be-the-capital-of(tokyo, japan, current),
be-the-capital-of(otsu, japan, past),
be-the-capital-of(kamakura, japan, past),
be-the-capital-of(saitama, japan, past),
be-the-capital-of(kyoto, japan, past).



This repair is suitable for all kind of errors we previously
presented; add an argument that indicates time, geographical
location, culture etc. The degree by detail we add, depends
on the available information. For example, if we knew the
exact chronological period for each Japan’s capital city, then
instead of adding past in the relation, we could add the exact
time period e.g., 710-784 AC.
Merging relations. We merge two or more relations into one,
when these relations are considered as synonyms. For example,
consider the be-the-capital-of/2 and be-capital-of/2
relations. They share the same semantics but they do not
connect the same sets of instances: not all the instances that
connect by the first relation, also connect by the second
relation (and vice versa). In this way we have hidden
inconsistencies, for instance, a country with two capital cities;
each capital city is indicated with a different relation. This
problem can be solved by merging these relations into one.
Then, if new inconsistencies occur, we can resolve them by
applying one of the above repairs.

C. Identifying the Correct Information

Repairing the ontology requires that we have enough in-
formation to locate the inconsistencies within the ontology,
identify the cause of the inconsistency, distinguish the correct
occurrence from the incorrect ones and find the corresponding
repair. The degree of which we can repair the ontology
depends on the available information.

The KnowItAll Ontology comes with the original extrac-
tions (the extractions before the normalisation process) and
the number of independent sentences each extraction comes
from. The number of independent sentences depends on how
many times a relation has been extracted. If a relation with
the same arguments appears more than once within a text, it is
only extracted once. The same applies if a relation appears into
related texts, for example aggregator pages. We believe that the
number of the independent sentences each extraction comes
from can indicate, in most cases, how correct that instance is
likely to be: as the sources vary, it is rare to extract the same
error from multiple sources.

To evaluate this idea, for each functionality violation of
be-the-capital-of and be-capital-of we previously detected,
we kept only the occurrence of the relation that came from
the highest number of independent sentences, within a set S.
After that, we manually checked whether S is semantically
correct and found that 95% of the be-the-capital-of and 92%
of the be-capital-of instances were semantically correct. This
technique succeeds in identifying the correct data only when
it comes from multiple independent sentences.

The un-normalised extraction of each relation can indicate
the semantic meaning of the relation and can also indi-
cate the appropriate repair. We have observed that, in many
cases, the meaning of an extraction changes entirely after
the normalisation process, leading to loss of information and
ambiguity. For example, was-the-capital-of(nara, japan),
and is-the-capital-of(tokyo, japan), which represent dif-
ferent semantics, after the normalisation process be-

come the same relation: be-the-capital-of(nara, japan),
be-the-capital-of(tokyo, japan). In 100% of the sub-
ontologies we investigated, the un-normalised extractions of
the be-the-capital-of and be-capital-of relations, indicate the
time period (past - current) the relations refer to. These
extractions can provide a metric on whether a relation within
the ontology represents the correct semantic meaning. For
instance, within the be-capital-of inconsistent set, this metric
distinguished 75% of the correct relations: the correct ones,
in the un-normalised form were presented as is-capital-of ,
while the rest were presented by the relation was-capital-of .
Using these metric, we were unable to identify 25% of the
correct relations relations because they were all presented
in the present tense, e.g., is-capital-of(kingston, jamaica),
is-capital-of(kingston, canada).

D. Repair Strategy

In this Section we present a potential strategy for repairing
the ontology. The first step we identify is creating a consistent
subset M− from the original ontology M, M− ⊂M. Then
we continuously enrich it by repairing the inconsistencies
occurring in M and adding them to M−.

Using a combination of the techniques presented in
Section IV-C as heuristics for distinguishing the correct
extractions, we can identify M−. Considering as the correct
relation the one that comes from the highest number of
independent sentences, can be such a heuristic. We posit
that we can approximate the quality of an extraction by
its number of independent sentences: an extraction of high
quality will be supported by a high number of independent
sentences. Also, we can set a threshold difference k between
the number of independent sentences of the semantically
correct extractions, and the inconsistent ones. This can guide
us in identifying extractions that we are not interested in
repairing i.e., completely semantically wrong extractions.
This is better explained through an example illustrated in
Table V. Consider the be-the-capital-of sub-ontology M,
and an empty set S. For each inconsistency, we consider as
correct the one that comes from the maximum independent
sentences. We set the threshold difference k to be equal
to a support of 60% of independent sentences for the
correct occurrence. If a relation meets the threshold we
add it to S; else we will discard it. According to Table V,
be-the-capital-of(tokyo, japan) has the maximum number
of independent sentences, equal to 12; we consider it as the
correct one and we keep it to M. Also, k = 60

10012 ' 7.
So, we discard be-the-capital-of(paris, japan) because
it comes from less than 7 independent sentences,
and we add be-the-capital(kyoto, japan) to S. The
output of this procedure is an ontology M− = M −
{be-the-capital-of(paris, japan), be-the-capital-of(kyoto,
japan)}, and S = {be-the-capital(kyoto, japan)}. We
then select be-the-capital(kyoto, japan) from S, check the
un-normalised extractions, which indicate past time period,
and repair it according to the repair techniques we identified
in Section IV-B2. We repeat this procedure until S = {∅}.



TABLE V
JAPAN CAPITAL CITIES AND THE CORRESPONDING INDEPENDENT

SENTENCES.

relation city country independent sentences
be-the-capital-of tokyo japan 12
be-the-capital-of kyoto japan 7
be-the-capital-of paris japan 1

V. DISCUSSION

In this report we have presented our strategy and our
results on automatically detecting inconsistencies in large scale
ontologies. We demonstrated our techniques on using a first-
order theorem prover to identify inconsistencies within an
ontology that lacks negation. Our strategy is to firstly identify
small sub-ontologies and then translate them into a theorem-
prover appropriate input language. Then, construct goals for
the prover, that describe the inconsistencies; if the goals are
provable, then the inconsistencies exist within the ontology.

Using query languages e.g., SQL, SPARQL to retrieve the
inconsistent data is another possible approach. SQL would
require to transform the ontology into a relational repre-
sentation. This implies either to use a relational table per
predicate, which would result either in a vast number of
small tables, or a denormalised representation that would use
relational attribute values to denote predicate types. Both are
cumbersome solutions and result in complicated queries to
test the required goals either in terms of the number of tables
in an SQL from-clause, or in terms of the number of extra
predicates inlined in the SQL where-clause. A theorem prover
is a more elegant solution in that respect. SPARQL could also
be appropriate for the problem we dealt with. This technique
could provide an insight into the inconsistencies, however, it is
restricted to binary relations where first-order logic can handle
relations of arbitrary arity. In the work we presented we tested
only binary relations, however richly axiomatised foundational
ontologies such as SUMO7 express the requirement of being
able to handle relations with arity greater than 2. We therefore
chose to use a more flexible approach with extendibility
in mind. Another approach would be to use a Description
Logic (DL) reasoner, after translating the ontology into the
appropriate format. However, DL does not use the Unique
Name Assumption (UNA)—that is, treating different symbols
as different objects. The problem that we are dealing with
requires reasoning with equality, so, UNA is needed. For
example, consider a binary relation R which is considered
functional, and the following facts in the ontology: R(a, b),
R(a, c). Without UNA these relations satisfy the functionality
requirement with b = c. Finally, we chose to translate the
KnowItAll ontology into first-order logic as it is the most
expressive format for our repairs. For example, it would not
be possible to express the adding arguments repair into DL,
as all predicates have a fixed arity of two. Another problem
is that DL does not allow mappings between instances. One

7http://suo.ieee.org/

of our future directions is to deal with synonymy, and First-
Order logic allows us to define equalities between instances.
For instance, in first-order logic we can define China and PRC
to be equal and thus, resolve the inconsistencies by recognising
that the two different names refer to the same object

We have reported the results of this strategy, and we have
analysed the errors that cause these inconsistencies. We believe
that the nature of these errors can indicate the appropriate
repairs. Also, we identified and presented the repairs that
fix and enrich the original ontology. Finally, we presented
the repair strategy that can lead to successfully automatically
repairing the ontology. Such strategy is not only suitable for
resolving inconsistencies at once, but for dealing with ontology
evolution in general. As ontologies change to adapt to the
world, new inconsistencies may be introduced. This strategy
can deal with this problem during the life cycle of an ontology.

The aim is for our repair techniques to be automated. Only a
small part of the error classification we presented is currently
done automatically; that part deals with temporal classification
i.e., past-present-future. The detailed categorisation is the
outcome of manual work. However, the repairs we present
are general enough to be adapted to different domains. It
is therefore conceivable that, in a fully automated system
that uses our techniques, the repairs would be expressed at
a general level. Thus, one of our future directions is to fully
automate error classification so that repairs can then add or
remove the desired degree of detail.
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