
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimization of the visibility of graphene on poly-Si film by thin-
film optics engineering

Citation for published version:
Chen, T, Mastropaolo, E, Bunting, A, Stevenson, T & Cheung, R 2012, 'Optimization of the visibility of
graphene on poly-Si film by thin-film optics engineering' Journal of Vacuum Science and Technology B, vol
30, no. 6, 06FJ01. DOI: 10.1116/1.4758760

Digital Object Identifier (DOI):
10.1116/1.4758760

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Vacuum Science and Technology B

Publisher Rights Statement:
Publisher's Version/PDF:	  author can archive publisher's version/PDF

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28970212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1116/1.4758760
http://www.research.ed.ac.uk/portal/en/publications/optimization-of-the-visibility-of-graphene-on-polysi-film-by-thinfilm-optics-engineering(23cbf62b-aa85-4a4b-a2ec-d5698e0ae631).html


Optimization of the visibility of graphene on poly-Si film by thin-film optics
engineering
Tao Chen, Enrico Mastropaolo, Andrew Bunting, Tom Stevenson, and Rebecca Cheung 
 
Citation: J. Vac. Sci. Technol. B 30, 06FJ01 (2012); doi: 10.1116/1.4758760 
View online: http://dx.doi.org/10.1116/1.4758760 
View Table of Contents: http://avspublications.org/resource/1/JVTBD9/v30/i6 
Published by the AVS: Science & Technology of Materials, Interfaces, and Processing 
 
Additional information on J. Vac. Sci. Technol. B
Journal Homepage: http://avspublications.org/jvstb 
Journal Information: http://avspublications.org/jvstb/about/about_the_journal 
Top downloads: http://avspublications.org/jvstb/top_20_most_downloaded 
Information for Authors: http://avspublications.org/jvstb/authors/information_for_contributors 

Downloaded 06 Jun 2013 to 129.215.250.13. Redistribution subject to AVS license or copyright; see http://avspublications.org/jvstb/about/rights_and_permissions

http://avspublications.org/jvstb?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1997505172/x01/AIP/Raith_JVBCovAd_1640x440Banner_06_04_2013/JVST_pdf_article_page_June.jpg/7744715775302b784f4d774142526b39?x
http://avspublications.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=JVTBD9&possible1=Tao Chen&possible1zone=author&alias=&displayid=AVS&ver=pdfcov
http://avspublications.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=JVTBD9&possible1=Enrico Mastropaolo&possible1zone=author&alias=&displayid=AVS&ver=pdfcov
http://avspublications.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=JVTBD9&possible1=Andrew Bunting&possible1zone=author&alias=&displayid=AVS&ver=pdfcov
http://avspublications.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=JVTBD9&possible1=Tom Stevenson&possible1zone=author&alias=&displayid=AVS&ver=pdfcov
http://avspublications.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=JVTBD9&possible1=Rebecca Cheung&possible1zone=author&alias=&displayid=AVS&ver=pdfcov
http://avspublications.org/jvstb?ver=pdfcov
http://link.aip.org/link/doi/10.1116/1.4758760?ver=pdfcov
http://avspublications.org/resource/1/JVTBD9/v30/i6?ver=pdfcov
http://www.avs.org/?ver=pdfcov
http://avspublications.org/jvstb?ver=pdfcov
http://avspublications.org/jvstb/about/about_the_journal?ver=pdfcov
http://avspublications.org/jvstb/top_20_most_downloaded?ver=pdfcov
http://avspublications.org/jvstb/authors/information_for_contributors?ver=pdfcov


Optimization of the visibility of graphene on poly-Si film by thin-film
optics engineering

Tao Chen,a) Enrico Mastropaolo, Andrew Bunting, Tom Stevenson, and Rebecca Cheung
Scottish Microelectronics Centre, The University of Edinburgh, King’s Buildings, West Mains Road,
Edinburgh EH9 3JF, United Kingdom

(Received 29 June 2012; accepted 24 September 2012; published 11 October 2012)

A multilayer optical system containing poly-Si film, SiO2 film, and Si substrate (poly-Si substrate)

has been designed to enhance the visibility of graphene in contact with poly-Si. Film thicknesses of

poly-Si and SiO2 have been optimized by parametric study of the integral contrast of single layer

graphene using transfer matrix theory. The multilayer poly-Si substrate and the most commonly

used 285 nm SiO2/Si substrate (SiO2 substrate) have been fabricated. Graphene grown by chemical

vapor deposition on Ni catalyst has been transferred to the substrates and the visibility of the

graphene on the different substrates has been compared. The samples have been characterized by

optical microscope, illuminated with light from halogen lamp, and/or filtered with a 600 nm narrow

band optical filter. The contrast of graphene on poly-Si substrate has been increased to near 8.7%

under 600 nm narrow band illumination from nearly invisible under ordinary illumination, while

the contrast of graphene on SiO2 remains almost the same. Raman spectroscopy has been used to

verify the presence of the single layer graphene on the poly-Si substrate. VC 2012 American Vacuum
Society. [http://dx.doi.org/10.1116/1.4758760]

I. INTRODUCTION

Since single layer graphene (SLG) has been found on

300 nm SiO2/Si substrate for the first time,1 it has drawn

wide range of interests. Diversified devices based on gra-

phene have been prototyped, including chemical sensors,2

resonators,3 and MOSFETs.4 Graphene features high robust-

ness, chemical inertness, and unrivaled electron and hole

mobility.1 The most promising applications of graphene

include transparent electrodes, super capacitors, and RF tran-

sistors. However, some shortcomings have hindered the

application of graphene.

The conduction band of graphene touches its valence

band at Dirac point, thus no band-gap exists. Graphene chan-

nel cannot be shut down completely by field effect even

when Fermi level coincides with Dirac point, which is the

neutral point. However, the electron transport can be blocked

in the channel by some novel mechanisms such as electron

deflection by potential barrier.5 To induce a potential barrier,

doping methods including electrostatic and chemical doping

have been proposed. Organic substances have been reported

to be able to dope graphene and the doping level is sensitive

to some physical factors such as light illumination depending

on the properties of the organics,6 which can be applied in

sensors. Modulation doping is another possible way to dope

graphene,7 which resembles chemical doping in principle.

However, not many experimental results have been reported

to verify the viability of modulation doping.

One of the possible ways to dope graphene by modulation

doping is to put graphene on Si substrate, however, SLG will

not be visible on a bare Si wafer, which will complicate the

fabrication process. Therefore, we have designed a poly-Si/

SiO2/Si multilayer substrate and optimized the film thick-

nesses to enhance the visibility of graphene on top of poly-Si

surface, similar to the recent visibility study of SLG on

GaAs substrate using a periodic structure.8 The development

of such a substrate will facilitate the research of modulation

doping of graphene by poly-Si. In addition, poly-Si is a

widely used sacrificial material in micromachining. Visual-

ization of the graphene on poly-Si will enable new fabrica-

tion process for graphene nanoelectromechical systems

(NEMS).

II. THEORY

A. Origin of high contrast

The single layer graphene is highly transparent, with its

absorption rate being around 2.3%.9 Suppose a single layer

graphene is placed on top of a monocrystalline silicon sub-

strate, the contrast between the substrate and the graphene

sheet will be too small to be distinguishable. As reported in

the literature,10,11 a distinctive contrast under optical micro-

scope comes from the difference between the reflectivity of

the area with graphene on top and the rest of the substrate

without graphene. To change the reflection significantly by

just one layer of graphene, a thin dielectric film can be

coated on the substrate to meet destructive interference con-

dition [Fig. 1(a)], which is easily destroyed by the graphene

layer [Fig. 1(b)].

However, the antireflection cannot be realized for poly-Si

layer on Silicon substrate, since the refractive index of poly-Si

is almost the same as crystalline Silicon. If the poly-Si is de-

posited on Si, their interface will not reflect light as depicted

by Fresnel’s Law. To achieve destructive interference condi-

tion for poly-Si film, it is necessary to insert a thin film with

different refractive index between poly-Si and Si substrate. In

consideration of process convenience, a SiO2 layer has been

chosen to enable the reflected light from the three interfaces

shown in Fig. 1(c) to cancel each other as much as possible.

Under this crucial condition, when a graphene is placed ona)Electronic mail: t.chen@ed.ac.uk
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top [Fig. 1(d)], the light cancellation effect will be influenced

greatly.

B. Reflectivity of multilayer system

For multilayer optical system, it is much more convenient

to use the transfer matrix formulas to calculate the reflectiv-

ity.12 Assuming a m-layer system such as the one shown in

Fig. 1(c), the electric field and magnetic field magnitude in

the jth layer can be expressed as

Ej

Hj

� �
¼ M1 � � �Mjþ1 � � �Mm

Em

Hm

� �
¼ B

C

� �
; (1)

where Ej and Hj are the electric and magnetic field, respec-

tively, of the jth layer. 0th layer denotes the air, and the mth

layer is the substrate. B and C are just the two entries of the

result matrix. The product of the M matrices is

M ¼
Ym

j¼1

Mj ¼
Ym

j¼1

cos dj
i

gj

sin dj

igj sin dj cos dj

2
4

3
5; (2)

dj ¼
2p
k

Njdj cos hj; (3)

where dj is the phase shift or optical path induced by the jth
layer. Nj is the refractive index of the jth layer, while dj is

the thickness. The equivalent impedance Y of the 0th layer is

then

Y ¼ E0

H0

¼ B

C
: (4)

And the reflective coefficient s is

s ¼ Y0 � Y

Y0 þ Y
: (5)

The reflective rate R is then

R ¼ N0 � Y

N0 þ Y

����
����
2

: (6)

There are different ways of defining contrast. We follow

Blake et al.10 to define the contrast as

c ¼ R2 � R1

R1

����
����; (7)

where c is the contrast, R0 is the reflection of substrate, and

R is the reflection of the area with graphene.

III. RESULTS AND DISCUSSION

A. Simulation

Reflectivity as well as the contrast has been calculated

using the method elaborated above. Since the refractive indi-

ces involved are all dispersive over the optical range, the re-

fractive index at an arbitrary point is interpolated from

discrete tables.13 Graphene has a similar refractive index of

bulk graphite 2.6-1.3i, and the thickness of SLG is estimated

to be 0.34 nm. Previous reports have verified that these pa-

rameters fit the experimental results very well.10

To achieve the highest visibility of graphene on poly-Si

substrate, the thicknesses of both poly-Si and SiO2 should be

optimized. Since the contrast is wavelength dependent, the

integral contrast over 400–740 nm has been set as the objec-

tive function, with the two thicknesses being parameters.

Figure 2 is contour plot of the integral contrast against the

thicknesses of both poly-Si and SiO2. The thicknesses of

poly-Si and SiO2 increase from 20 to 150 nm and from 20 to

350 nm, respectively, in 2 nm a step. When the thickness of

the poly-Si is fixed at 75 nm, the integral contrast is increas-

ing and decreasing alternatively with increasing SiO2 thick-

ness; however, the intensity of the peaks with thicker SiO2

are weakened due to the dispersion of the reflection with

wavelength. A thicker film thickness will make reflective

FIG. 1. (Color online) (a) Single layer antireflective film. (b) Graphene

which destroys the interference condition of single layer antireflective film.

(c) Multilayer antireflective film. (d) Graphene which destroys the interfer-

ence condition of multilayer antireflective film.

06FJ01-2 Chen et al.: Optimization of the visibility of graphene on poly-Si film 06FJ01-2
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curve more dispersive, therefore, the integral contrast will

decrease. Similarly, when the thickness of SiO2 is fixed, the

contrast also falls with thicker poly-Si even more rapidly.

Besides the dispersion of reflectivity, the absorption of poly-

Si also contributes to the decrease of peak intensities. The

thicker the poly-Si film is, the more the light will be

attenuated.

It has been found in Fig. 2 that the combination of 75 nm

thick poly-Si and 100 SiO2 layer will give a maximum inte-

gral contrast. The reflectivity [Fig. 3(a)] and contrast

[Fig. 3(b)] as a function of wavelength have been calculated

at this point. The maximum contrast is found to be near the

wavelength of 600 nm. There is a relatively large range span-

ning from 580–620 nm where contrast larger than 10% is

observed. The inset of Fig. 3(a) shows the detail of the

reflection curve around 600 nm. The reflectivity of substrate

is smaller than the area covered by SLG, which may be due

to the larger refractive index difference at the air/poly-Si

interface. Since the refractive index difference at the inter-

face of air/poly-Si is bigger than that at the air/graphene

interface, the reflectivity of 600 nm light will be higher at the

air/poly-Si interface compared to the air/graphene interface,

as indicated in the inset of Fig. 3(b). Therefore, the presence

of graphene on the poly-Si will cause higher destructive in-

terference, thus decreasing the reflectivity.

It is worth mentioning that it is the integral contrast that

has been used as an objective function rather than contrast at

one wavelength point. If the single point contrast is used as

an objective function, the contrast will be too sensitive to the

wavelength as well as the thicknesses of the films. It will not

leave enough margins for process errors. Moreover, the pos-

sibility of finding an existing narrow band optical at exactly

the maximum contrast wavelength will be very low.

B. Experiment

In order to compare the contrast of graphene on widely

used 285 nm SiO2 substrate and the optimized 75 nm poly-

Si/100 nm SiO2/Si multilayer substrate, both of these two

types of substrates have been fabricated. First, 100 nm SiO2

is grown on top of a 4 in. silicon wafer by wet oxidation.

Then 75 nm poly-Si layer has been deposited on top of SiO2

by low pressure chemical vapor deposition (LPCVD). The

285 nm SiO2 is grown on Si wafer with the same method as

for the 100 nm SiO2.

Graphene grown on Ni catalyst has been transferred to

the substrates by the process shown in Fig. 4. First, a piece

of thermal release tape (TRT) has been stuck on the gra-

phene [(a) and (b)]. 1 M aqueous FeCl3 is then used to etch

all the nickel away and the tape and graphene will come off

together (c). After being rinsed with deionized water and

dried with nitrogen gun, the graphene side of graphene/TRT

is placed gently on the substrates using tweezer tip to

squeeze out the air gradually between substrate and graphene

(d). The whole structure is then placed on a hotplate of

100 �C to release the tape (e). To remove the tape residue,

the samples have been rinsed in isopropanol, acetone, and

deionized water in sequence.

C. Characterization

Figure 5(a) shows the image of graphene sheet on top of

the optimized poly-Si/SiO2/Si substrate under optical micro-

scope with ordinary halogen lamp light, while Fig. 5(b) is

image of the same place as (a) but with illumination filtered

by narrow band filter (Band pass Filter, 600 6 2 nm center,

10 6 2 nm FWHM, Newport Spectra-physics Ltd.). Simi-

larly, Figs. 5(c) and 5(d) are graphene on 285 nm SiO2 under

ordinary and 600 nm illumination, respectively.

In order to verify that the formulae used in the simulation

are valid, the simulated reflection spectrum [Fig. 5(a)] has

been converted into color vector expressed in red (R), green

(G), and blue (B) components by Commission Internationale

de l’�Eclairage (CIE) color matching function,14 then com-

pared to the RGB value extracted from ordinary optical

image of fabricated substrate as shown in Fig. 5(a). Ideal

white light illumination has been assumed for the color

FIG. 2. (Color online) Contour plot over integral contrast in optical range

against thicknesses of both poly-Si and SiO2.

FIG. 3. (Color online) (a) Reflective spectra of 76 nm poly-Si/102 nm SiO2/Si

with (blue dashed) and without (red solid) single layer graphene. (b) Contrast

of graphene on the 75 nm poly-Si/102 nm SiO2/Si substrate.

06FJ01-3 Chen et al.: Optimization of the visibility of graphene on poly-Si film 06FJ01-3
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matching. As the illumination intensity affects the absolute

RGB values, it is the ratio among the RGB components that

is compared. The simulated R : G : B ratio is 0:35 : 0:86 : 1,

while the RGB ratio extracted from Fig. 5(a) is

41 : 124 : 154 ¼ 0:27 : 0:81 : 1. The extracted and the simu-

lated R : G : B ratios agree quite well. The small difference

between the ratios may come from the difference between

spectrum of halogen lamp and the ideal white light spectrum,

FIG. 4. (Color online) Transferring of graphene onto substrates. (a) CVD grown graphene on Ni catalyst. (b) TRT stuck down to graphene. (C) Etching of Ni in

1 M aqueous FeCl3 solution. (d) Graphene placed on substrates. (e) Heating up to release TRT. (f) Optical image of CVD grown graphene on poly-Si substrate

illuminated with 600 nm wavelength light.

FIG. 5. (Color online) Optical images of graphene on poly-Si substrate (a) and (b) and graphene on SiO2 substrate (c) and (d). Comparison of (a) and (b) shows

that the visibility of graphene has been enhanced at the 600 nm wavelength with the optimized poly-Si/SiO2/Si substrate. The label SLG in (b) points to a piece

of single layer graphene verified by Raman spectroscopy. The poly-Si looks dark as it has been designed to be antireflective. The rectangular area covers both

graphene and exposed poly-Si surface to be examined by AFM. The scale is 10 lm.

06FJ01-4 Chen et al.: Optimization of the visibility of graphene on poly-Si film 06FJ01-4
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as well as the diffraction of microscope and light from envi-

ronment. The comparison of calculated and measured color

proves that the simulation has been reliable.

In Fig. 5(a), the graphene is barely seen, but in Fig. 5(b),

the SLG (verified by Raman spectroscopy, discussed below),

and randomly located multilayer graphene (MLG) are clearly

seen. The morphology is consistent with reported graphene

grown on nickel.15 The contrast between the SLG area and

the multilayer substrate is 8.7%, large enough to be seen

under optical microscope, indicating that the substrate does

enhance the visibility of SLG with illumination wavelength of

600 nm. Figure 5(c) is the image of CVD grown graphene on

285 nm SiO2 illuminated under normal light. The contrast of

graphene and the substrate is 6%, slightly increasing to 6.5%

when illuminated with filtered light [Fig. 5(d)]. The enhance-

ment of contrast on SiO2 substrate is very small, complying

with the reported contrast against wavelengh.14

It is important to point out that, assuming all surfaces are

smooth, the reflection of graphene covered area will be

weaker than the substrate according to the simulation, as the

refractive index of graphene is closer to air than poly-Si, thus

less reflective, while the observed result in Fig. 5(b) is to the

contrary. The uncovered poly-Si area is observed to be less re-

flective. One of the possible causes could be due to the rough-

ness of the surface of CVD grown poly-Si, which scatters

away the light; therefore, less light is collected by the objec-

tive of the microscope. Figure 6(a) shows atomic force micro-

scope (AFM) image of poly-Si substrate. The root mean-

square-average surface roughness Rq of the poly-Si surface is

about 2.19 nm, more than double the typical value Rq of crys-

talline Si wafer, which is less than 1 nm. Figure 6(b) is the

AFM image corresponding to the area enclosed in the dotted

rectangular in Fig. 5(b), while Fig. 6(c) is the height profile

along the line in Fig. 5(b) from right to left, that is to say,

from substrate to graphene. Although the height profile is

quite rough, a step of about 1.752 nm between graphene and

the substrate is clearly identifiable. The roughness of poly-Si

surface may also lead to gaps between graphene and poly-Si,

which makes the transfer matrix theory not applicable in this

area any more. In summary, although probably the vertical

reflection is decreased from the predicted intensity due to sur-

face roughness, and the graphene/poly-Si interface may not

fulfill the conditions of transfer matrix theory because of the

presumably existing gaps, the requirements of antireflection

of the substrate have been fulfilled to allow a significant

change of reflection by SLG, hence, the visibility is increased.

A Raman spectrum has been taken at point labeled as

SLG in the optical image in Fig. 5(b). To reduce the possible

sample heating effect, the laser power has been kept lowest.

The wavelength of the laser is 514 nm. Due to the thinness

of graphene, the signal to noise ratio (SNR) is very low.

Multiple accumulations have been used to increase the SNR.

The G band and 2D band are very strong [Fig. 7(a)], which

are located at 1580 and 2700 cm�1, respectively. These two

bands are the signatures of graphite.16 The D band, which is

attributed to defects, is not obvious in the spectrum. This is

consistent with previous reports.16,17

Typically, 2D band originates from double resonance

effect,18 consisting of four peaks for more than two layers

graphene, which is due to energy band splitting of both the

conduction band and the valence band. The intensity of the

four peaks and the shape of 2D band are dependent on

the number of layers. In the case of SLG, only one peak in

the 2D band can be resolved. Therefore, it is possible to dis-

tinguish between SLG and MLG. In our experiment, a closer

examination of 2D band [Fig. 7(b)] shows that the band is

symmetrical and can be fitted very well with just one Lor-

entz peak, which confirms that the labeled area is SLG

indeed.

FIG. 6. (Color online) (a) AFM image of poly-Si substrate. The roughness

Rq is about 2.19 nm. (b) AFM image of the enclosed rectangular area in Fig.

5(b). (c) Height profile along the line in (b), from right to left.

FIG. 7. (Color online) Raman spectrum of the point denoted as SLG in Fig.

5(b). The G peak and 2D peak are located at 1580 and 2700 cm�1, respec-

tively, implying graphene exists at the point, and the symmetrical single

peak 2D band proves the graphene is single layer.
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IV. CONCLUSIONS

A method of optimizing the visibility of graphene on

poly-Si has been developed based on the transfer matrix

theory of thin film optics. Contour plot of integral contrast

against both thicknesses of poly-Si and SiO2 has been

obtained by parametric study. The optimized thicknesses of

both SiO2 and poly-Si have been found to be 75 and 100 nm,

respectively.

The poly-Si/SiO2/Si structure and ordinary 285 nm SiO2

substrate have been fabricated. CVD grown graphene has

been transferred to the substrates with the aid of thermal

release tape. The samples have been examined under illumi-

nation of normal halogen lamp and the light filtered by

600 6 2 nm narrow band optical filter. The contrast of SLG

on poly-Si has been enhanced on the 75 nm poly-Si/100 nm

SiO2/Si substrate. Raman spectra have confirmed the number

of layers of graphene sheet.
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