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Abstract 

Uranium and manganese cations have been combined in a wheel-shaped supramolecular assembly that retains 

its magnetic spin state after the external field is removed, with a high barrier to its relaxation. This cluster 

supports recent predictions of the usefulness of the actinides in single-molecule magnetic devices. 

 

Main text 

The linear uranyl dication, [UO2]
2+

 — the most prevalent of the uranium salts, both in the laboratory and the 

environment — is inert owing to a very strong covalent trans-UO2 bonding and oxo groups that show little 

propensity to behave as Lewis bases. Single electron reduction of this ion, however, forms a monocationic 

uranyl ion [UO2]
+
 that is also linear and strongly bonded but exhibits greater oxo Lewis basicity and thus 

greater reactivity. In recent years, this 5f
1
 [O=U=O]

+
 monocation has featured in a variety of stable oxo-

functionalised uranyl complexes
[1],[2]

, prompting the search for extended supramolecular structures based on 

oxo-coordination. Marinella Mazzanti and co-workers have now described in Nature Chemistry the self-

assembly of this uranyl monocation with Mn
II
 species into a {U12Mn6} supramolecular wheel that behaves as 

a single-molecule magnet at low temperatures
[3]

. 
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Molecules that behave as magnets are those that, after being magnetized under an external magnetic field, 

require a significant energy input to reverse their magnetisation. This behaviour is of molecular origin — very 

different from the magnetisation that arises in bulk materials owing to the long-range ordering of the magnetic 

moments of metal centres. Single-molecule magnets attract much attention as they hold the promise to address 

the demands of modern information technology: magnetic systems consisting of one, or only a few, magnetic 

molecules would provide the ultimate miniaturisation.  

The magnetisation and relaxation behaviour of single-molecule magnets of d-block metal compounds is well 

understood. For over two decades, chemists have been making molecules that can retain their magnetisation 

for several years at very low temperatures (below around 5 K). Above these temperatures, however, the 

magnetisation is lost — either by thermally activated spin-relaxation or by quantum tunnelling mechanisms — 

preventing their practical use. Recent results have suggested that f-block metal ions may be able to address 

this issue
[4],[5]

. Polynuclear 3d–5f complexes in particular may combine the best of both worlds: the spin 

characteristics of 3d metals with the anisotropy of f centres, yet with the added benefit that the 5f orbitals 

extend further than their 4f counterparts. 

The strategy of Mazzanti and colleagues relies on the self-assembly of 5f
1
 [U

V
O2]

+
 complexed with a chelating 

ligand (ethylene-bis(salicylimine), ‘salen’) with 3d
5
 Mn

II
(NO3)2. Slow diffusion of the two species led to the 

crystallization of a giant wheel structure that comprises twelve U
V 

and six Mn
II
 cations. The key interaction 

that holds the wheel together is the ‘cation–cation interaction’ (CCI) between the uranyl oxo groups and the 

manganese cations (Figure 1X). This type of interaction was originally described for interactions between 

actinyl ions of uranium’s heavier and more radioactive congeners, neptunium and plutonium. Here CCIs with 

both 5f
1
 and 5f

2
 cations pose problems in a real-world situations, as they induce the formation of unwanted 

clusters in nuclear waste processing solutions.  

In fact, it is a triangular, mixed-valence cluster {Np
VI

O2Cl2}{Np
V
O2Cl(thf)3}2 held together by CCIs that was 

the first example of a polymetallic transuranic complex displaying both slow relaxation of the magnetisation 

and interactions between 5f centres
[6]

. 

Here, the U
V
 uranyl cation both provides the desirable magnetically anisotropic 5f

1
 electron, and forms a 

sufficiently strong CCI to allow the wheel to form. Indeed, particularly strong magnetic coupling between 4f 

and 5f centres
[2]

, as well as between two U
V
 cations, has already been demonstrated through uranyl oxo 

groups. 

The magnetic behaviour reported in the present wheel however is much more interesting in terms of quantum 

computing applications and — for a few reasons — much more difficult to quantify. Perhaps the main reasons 

are that the wheel forms as an insoluble crystal, and from so many components. These prevent magnetic 

dilution experiments to determine if long-range magnetic fields of the ions interfere with the single molecule’s 

own magnetism. Molecular separations of 40–50 Å are usually necessary to rule out the possibility of inter-
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molecular weak ferromagnetic interactions. An alternative to measuring a frozen, dilute solution is to co-

crystallise the species with an isostructural diamagnetic analogue — for example, replace its Mn
II
 centres by 

Zn
II
 ones — but the nature of the self-assembly process precludes the use of mixtures in the synthesis. 

Furthermore, the researchers also note that diamagnetic candidate metals have not yet afforded the same 

clustering geometries as their Mn
II
 counterparts. The fact that suitable intermolecular distances cannot be 

achieved makes the results harder to interpret and model. 

 

 

Figure 1. A range of the possible CCI-type interactions enable the use of uranium(v) as a 

supramolecular building block. a, Increasingly common CCI motifs for uranyl as a result of single electron 

reduction, and the competing interaction with manganese. b, an additional tris(uranyl) coordination node 

focused around Mn
II
. c, The Mn(ii) is sufficiently Lewis acidic to outcompete the inter-uranyl CCIs, while a 

more traditional uranyl dimerization in the equatorial plane, and cis-Mn coordination combine to control the 

geometry of the {U12Mn6} supramolecular wheel. 

 

Another problem arises from the sheer size of the wheel. It is difficult for computational chemists to extract 

meaningful electronic structure data even from dinuclear uranium complexes, due to the large number of 
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electrons and orbitals. Exploring all the possible electronic transitions within this wheel are thus beyond the 

capabilities of modern computational methods.  

Yet, this supramolecular wheel is very enticing. Perhaps most pleasing is the use of the uranyl monocation to 

build magnetic structures aligned through its highest symmetry axis. The ions in lanthanide and lower 

oxidation state uranium magnets
[7]

 described previously have no geometrical preference. Although care should 

be applied in assuming that the primary symmetry and magnetic anisotropy axes are superimposable
[8]

, the 

complementary use of the axial oxo and equatorial ligand binding sites in U
v
 uranyl to mediate coupling could 

be used to construct interesting new molecules.  

A notable challenge that the experimental data highlights here is that a full characterisation of the magnetic 

structure of the complex is currently beyond the technologies available to us. Should we wait for the 

techniques and computers to catch up? Surely the best course to achieve real progress is instead to target the 

most challenging molecules we can, and remain careful in our interpretation as we learn the complexities of 

new systems. And there will no doubt be many more intriguing compounds to come. 
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