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Inhibition of Delta-Like Ligand 4 Induces Luteal
Hypervascularization Followed by Functional and
Structural Luteolysis in the Primate Ovary

Hamish M. Fraser, Julie M. Hastings, Deborah Allan, Keith D. Morris,
John S. Rudge, and Stanley J. Wiegand

Medical Research Council Human Reproductive Sciences Unit (H.M.F., J.M.H., D.A., K.D.M.), Edinburgh,
Scotland EH16 4TJ, United Kingdom; and Regeneron Pharmaceuticals. Inc. (J.S.R., S.J.W.), Tarrytown,
New York 10591

Using specific inhibitors established that angiogenesis in the ovarian follicle and corpus luteum is
driven by vascular endothelial growth factor. Recently, it has been demonstrated that the Notch
ligand, delta-like ligand 4 (Dll4) negatively regulates vascular endothelial growth factor-mediated
vessel sprouting and branching. To investigate the role of Dll4 in regulation of the ovarian vas-
culature, we administered a neutralizing antibody to Dll4 to marmosets at the periovulatory
period. The vasculature was examined on luteal d 3 or d 10: angiogenesis was determined by
incorporation of bromodeoxyuridine, staining for CD31 and cell death by staining for activated
caspase-3. Ovulatory progesterone rises were monitored to determine effects of treatment on
luteal function and time to recover normal cycles in a separate group of animals. Additionally,
animals were treated in the follicular or midluteal phase to determine effects of Dll4 inhibition on
follicular development and luteal function. Controls were treated with human IgG (Fc). Corpora
lutea from marmosets treated during the periovulatory period exhibited increased angiogenesis
and increased vascular density on luteal d 3, but plasma progesterone was significantly suppressed.
By luteal d 10, corpora lutea in treated ovaries were significantly reduced in size, with involution
of luteal cells, increased cell death, and suppressed plasma progesterone concentrations. In con-
trast, initiation of anti-Dll4 treatment during the midluteal phase produced only a slight suppres-
sion of progesterone for the remainder of the cycle. Moreover, Dll4 inhibition had no appreciable
effect on follicular development. These results show that Dll4 has a specific and critical role in the
development of the normal luteal vasculature. (Endocrinology 153: 1972–1983, 2012)

Angiogenesis and vascular remodeling are rare in most
healthy adult tissues but are critical for normal cy-

clical ovarian and uterine function (1–6). Dysregulated
vascularization is associated with ovarian disorders such
as polycystic ovary syndrome (7) and ovarian hyperstimu-
lation syndrome (8, 9). Hence, it is important to elucidate
how the microvasculature of the normal female reproduc-
tive system is controlled and identify targets for manipu-
lation in conditions with abnormal vascularization.

In previous studies we have established the importance
of vascular endothelial growth factor in ovarian angio-
genesis by inhibiting its action with a neutralizing anti-

body (10) or vascular endothelial growth factor (VEGF)
Trap (Aflibercept; Regeneron Pharmaceuticals, Tarry-
town, NY), (11–16) at selected specific stages of the ovu-
latory cycle of the marmoset monkey. A critical role for
VEGF and its receptors in ovarian angiogenesis has also
been demonstrated in macaques and in rodents (17–22).
These studies also revealed the importance of VEGF in
maintaining the function of the ovary, i.e. sex steroid se-
cretion into the blood.

Although VEGF is the principal stimulator of endothe-
lial cell proliferation, the formation of a hierarchical net-
work of vessels requires coordinated interplay of various
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angiogenic and angiostatic factors (23, 24). A distinct and
critical role in regulating cell-fate determination and pat-
terning of the vascular system has emerged for the delta-
Notch signaling pathway. Of the many genes involved in
vasculogenesis and angiogenesis, haploid insufficiency re-
sults in embryonic lethality only for VEGF and the specific
Notch ligand, delta-like ligand 4 (Dll4), implicating Dll4
as a vascular-specific Notch ligand critically involved in
development of the vascular system (25). Dll4 is primarily
expressed in endothelial cells and acts specifically by reg-
ulating the differentiation and activity of tip cells present
at the growing front of new vessels (26–28). Dll4 is also
expressed in stalk cells of new vessels, where it plays a role
in regulating endothelial cell proliferation. Dll4 is induced
by VEGF in angiogenic vessels where it functions as part
of a negative feedback loop to limit excessive angiogenic
sprouting in response to VEGF in developing tissues, e.g.
retina (26–28) and in pathological/tumor vessels (29–31).
Inhibition of Dll4 in vivo in mouse tumor models leads to
increased vascularity (29–31). However, tumor growth is
decreased because these vessels are functionally defective
(29–31). Consequently, potent inhibitors of Dll4 have
been developed based on the premise that inhibition of
Dll4 leads to development of nonfunctional blood vessels
(31, 32).

The cyclical angiogenesis that takes place in the ovarian
follicle and corpus luteum (33–36) has provided an excel-
lent model in which to study the role of individual factors
in the angiogenic process (1–6). Notch proteins and li-
gands have been localized by in situ hybridization (37) and
immunohistochemistry in the rodent ovary (38, 39) and
human endometrium (40) and because their sites of ex-
pression include the vasculature, a role for the Notch sig-
naling pathway in ovarian neovascularization has been
proposed (38).

The aim of this study was to determine the physiolog-
ical role of Dll4 in the primate ovary by examining the
effects of pharmacological inhibition of Dll4 on formation
of the follicular and luteal vasculature using treatment
schedules employed previously with VEGF inhibitors (10,
11). We used a potent neutralizing monoclonal antibody
(REGN577), which neutralizes Dll4 by blocking its ability
to bind and activate Notch receptors (predominantly
Notch 1 and Notch 4 in the vasculature). Dll4 and Notch
are thought to act primarily in trans (ligand and receptor
on adjacent cells); Dll4 is normally anchored to the cell
membrane, and binding to Notch in the membrane-an-
chored state is required to induce conformational changes
in Notch that allow for enzymatic cleavage of the receptor,
leading to release of the Notch intracellular domain from
the plasma membrane into the cytoplasm, followed by
translocation of the intracellular domain to the nucleus

where it modulates gene expression (41). The antibody
was administered to marmosets at three different stages of
the ovulatory cycle. After treatment, ovaries were dual
stained with bromodeoxyuridine (BrdU) and CD31 to as-
sess the proliferation rate of endothelial cells and with
CD31 alone to evaluate blood vessel morphology and dis-
tribution. In addition, the longer-term effects of treatment
on luteal function and subsequent ovulation were assessed
in nonterminal studies. It was predicted that stringent
pharmacological neutralization of Dll4 would result in
increased angiogenesis, but that potential associated ab-
normalities in microvascular structure and function might
result in the uncoupling of the conventional link between
vascular development and ovarian function.

Materials and Methods

Animals
The study was approved by the local Primate Ethical Com-

mittee and carried out under Project License PPL 60/2472 (UK
Home Office). Adult female marmosets (Callithrix jacchus),
weighing 380–500 g, were housed with vasectomized males.
Ovulation was determined by measuring plasma progesterone
profiles in blood collected three times per week and deemed to
have occurred when progesterone increased to more than 32
nmol/liter followed by a progressive further increase (14). Mar-
mosets exhibiting at least one ovulatory cycle immediately before
being recruited were treated. Marmosets were injected with 1 �g
prostaglandin (PG)F2� analog (cloprostenol; Planate, Coopers
Animal Health Ltd, Crewe, UK), im on d 13–d 15 of the luteal
phase to synchronize ovulation 9–11 d later (14). Treatment
regimens were selected to cover specific stages of follicular or
luteal development, encompassing terminal studies in which
ovaries were collected at the end of the experimental period, and
nonterminal studies in which the effects of treatment on ovarian
function and time to restoration of normal cycles could be
evaluated.

Effect of Dll4 antibody in the periovulatory period
on early luteal angiogenesis

Because the early developing corpus luteum is the site of the
most intense sprouting angiogenesis in the body (1–4, 33–36),
studies were first performed targeting the luteal phase. To de-
termine the acute effects of Dll4 inhibition on luteal function and
angiogenesis, marmosets (n � 4) were treated on the day of
expected ovulation (designated luteal d 0) with a Dll4 antibody
(REGN 577) (5 mg/kg sc), and the treatment was repeated on
luteal d 2. REGN577 is a recombinant, fully humanized anti-
Dll4 monoclonal (IgG1 isotype) produced in Chinese hamster
ovary cells. It binds human, mouse, and monkey Dll4 with sim-
ilar affinities and has been shown to block Notch-1 mediated
biological activity in human and mouse Dll4 dependent cell-
based assays (Rudge, J.S., unpublished data). The antibody was
dissolved in 50 mM Tris, 150 mM NaCl, pH 7.5, and injected at
a volume of approximately 0.5 ml. Control marmosets were
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recruited randomly and injected with recombinant human Fc
(Fc) (5 mg/kg sc) (n � 4) on an identical schedule.

Blood sample collection was increased to once daily starting
on the day before start of the treatment. On d 3 after the start of
treatment, animals were injected iv with 20 mg BrdU in saline 1 h
before sedation with 200 �l ketamine hydrochloride (Parke-Da-
vis Veterinary; Pontypool, Gwent, UK) and 200 �l Saffan (Al-
faxan; Jurox, London, UK). After perfusion with 4% neutral
buffered formalin (NBF), the ovaries were removed immediately,
weighed, and placed in NBF for 24 h before transfer into 70%
ethanol, dehydrated, and embedded in paraffin.

Effect of Dll4 antibody treatment in the
periovulatory period on midluteal
microvasculature

Marmosets were treated identically as for experiment 1 (Fc,
n � 4; Dll4 antibody, n � 5), but collection of blood samples was
continued until luteal d 10, at which time the animals were
treated with BrdU and ovaries collected as described above.

Effect of Dll4 antibody in the periovulatory period
on luteal function and recovery of normal cyclicity

The effect of Dll4 inhibition on luteal function and recovery
of normal cyclicity was investigated by treating marmosets with
Fc (n � 4) or Dll4 antibody (n � 4) as in experiment 1. Blood
samples were collected until one posttreatment luteal phase rise
was observed.

Effect of Dll4 antibody at the midluteal phase on
luteal function

This experiment examined the effects of Dll4 antibody on the
functioning corpus luteum to determine the impact on the es-
tablished luteal vasculature. Marmosets were treated with Dll4
antibody or Fc on luteal d 8 and d 10 (n � 4 per group). Blood
samples were collected daily for 5 d and subsequently three times
per week until a normal posttreatment luteal phase rise in plasma
progesterone was observed.

Effects of Dll4 antibody on follicular angiogenesis
and development

Finally, the effects of immunoneutralization of Dll4 on fol-
licular development was evaluated by treatment with anti-Dll4
for the duration of the follicular phase. To synchronize follicular
recruitment, selection and ovulation during treatment cycles,
marmosets were injected with PGF2� analog on d 13–d 15 of the
luteal phase to induce luteolysis. This is followed by follicle se-
lection on cycle d 5 and ovulation between d 9 and d 11 (15). The
day of PG injection was also the time of initiation of treatment,
designated follicular d 0. Marmosets (n � 5) were treated with
Dll4 antibody on d 0, and on follicular d 3 and d 7. Control
marmosets were injected with Fc (n � 5) on this schedule. On d
10 (the time of anticipated ovulation) animals were injected iv
with BrdU, perfused, and ovaries were collected as above.

Hematoxylin and eosin (H&E) and
immunohistochemical staining

Ovaries were serially sectioned (5 �m), and representative
sections were stained with H&E to identify the major structures.

Sections containing these structures were selected for immuno-
histochemical studies.

Methods for immunohistochemical detection of proliferating
cells by BrdU (using mouse anti-BrdU, diluted 1:20; Roche Mo-
lecular Biochemicals, Indianapolis, IN) and endothelial cells by
CD31 (using mouse antihuman CD31, diluted 1:30; DAKO,
Cambridgeshire, UK) were as described previously (11, 14). Sec-
tions stained for BrdU or CD31 were visualized using nitroblue
tetrazolium (NBT). BrdU sections were lightly counterstained
with hematoxylin.

For detection of proliferating endothelial cells, dual staining
was obtained by immunohistochemistry for BrdU and CD31.
CD31 was detected as above and visualized with fast red (Sigma,
Poole, UK). Sections were then washed with Tris-buffered saline
before incubation with a sheep antibody against BrdU at 1:5000
(Fitzgerald, Concord, MA) overnight at 4 C. After postincuba-
tion washes with Tris-buffered saline, a biotinylated rabbit an-
tisheep secondary antibody (Vector, Peterborough, UK) was
added, followed by ABC-AP (DAKO). After incubation with the
ABC-AP complex, slides were transferred to NBT buffer for 15
min before visualization with NBT. Reactions were stopped in
water, and the slides cleared in xylene and mounted in pertex. No
counterstain was used in BrdU/CD31 and CD31 sections.

To determine the localization and number of dying cells, an
antibody to activated caspase-3 (Asp175; New England Biola-
boratories, Hitchen, UK) was used as described previously (14).
Visualization was achieved by 3–3�-diaminobenzidine, and sec-
tions were counterstained with hematoxylin.

Quantitative image analysis
Quantitative image analyses of luteal area, vascular density

measurements, and cell proliferation were performed using an
Olympus BH2 microscope, Spot Insight QE camera, and Image-
Pro Plus version 4.5 for Windows (Media Cybernetics, Silver
Spring, MD) (14). Captured images were thresholded, and the
total area of each corpus luteum was outlined. Central cavities in
the corpora lutea were not included in area measurements. All
corpora lutea were analyzed under � 40 magnification for all
stains and parameters. Where animals had ovulated two or more
corpora lutea, single values were calculated by taking the mean
of the measurements obtained on all the corpora lutea in that
animal.

Relative endothelial cell area was determined by thresholding
the CD31-stained area and calculating this area as a percentage
of total luteal area.

Cellular proliferation was assessed by measuring the staining
of BrdU-positive nuclei in the total luteal area and expressed as
a percentage of the area of each corpus luteum. More than 84%
of proliferating cells in the corpus luteum are endothelial (35).
The number of caspase-3 positive cells in each corpus luteum was
counted.

Assays
Plasma concentrations of progesterone were measured as de-

scribed previously (11). Plasma levels of Dll4 antibody were de-
termined in three marmosets from the nonterminal midluteal
phase study and in two animals in the follicular phase group
using a two-site ELISA. The capture protein was recombinant
macaca fascicularis-mfDll4mychis (REGN545). The antibody
used for the standard curve was the same as that present in the
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sample, antihuman Dll4 (REGN577). The reporter antibody
was antihuman Fc linked to horseradish peroxidase. Concen-
trations of REGN577 were calculated in �g/ml.

Statistical analyses
The significance of differences in plasma progesterone between

groups was determined by ANOVA followed by Bonferroni’s
posttest with P � 0.05 being considered significant. Other pa-
rameters were compared using a two-tailed unpaired nonpara-
metric t test with P � 0.05 being taken as the level of significance.

Results

Effect of Dll4 antibody in the periovulatory period
on early luteal angiogenesis

Ovaries were collected on luteal d 3. Paired ovarian
weights were 309 � 71 mg in controls and 230 � 23 mg
in Dll4 antibody-treated marmosets, a decrease that was
not statistically significant. H&E staining showed that re-
cently formed corpora lutea were present in the ovaries of
both treated and control marmosets (e.g. Fig. 1, panels A
and B, respectively); numbers of new corpora lutea per
animal being two, three, three, and three for the four con-
trol animals and one, two, two, and three for the treated
group. Luteal area on d 3 was not significantly different
between groups (Fig. 1C). The expected quota of antral
follicles was also present. Ovaries from three animals in
both control and treated groups exhibited some hemor-
rhagic follicles or corpora lutea.

Dual staining of BrdU and CD31 localized proliferating
endothelial cells in the corpora lutea of both control and
treated marmosets (Fig. 1, panels D and E, respectively).
However, dual staining was strikingly more prominent in
the treated group (Fig. 1E). Quantitative analysis demon-
strated a statistically significant increase (P � 0.05) in
angiogenesis was associated with Dll4 inhibition (Fig. 1F).

CD31 staining alone revealed the extent of the microvas-
cular tree in the corpora lutea (see low-power magnification
in Fig. 1, G and H). Quantification of the area of CD31
staining within each corpus luteum confirmed a significant
increase (P � 0.05) on d 3 after anti-Dll4 treatment (Fig. 1I).
In the corpora lutea of the Dll4 antibody-treated marmosets,
blood vessels appear to have invaded almost every possible
space between the hormone-producing cells and appeared
more elongate than in controls (Fig. 1, J and K).

Control marmosets exhibited a gradual rise in plasma
progesterone concentration typical of the early luteal
phase (Fig. 1L). In Dll4 antibody-treated marmosets,
plasma progesterone concentrations rose normally on d 1,
but began to diverge from controls on d 2 and were sig-
nificantly lower (P � 0.001) than controls by 3 d after start
of treatment (Fig. 1L).

Effect of Dll4 antibody treatment in the
periovulatory period on midluteal
microvasculature

Ovaries were collected on luteal d 10. Ovarian weight
was significantly reduced (P � 0.05) by Dll4 antibody
treatment from 306 � 35 mg in controls to 182 � 20 mg.
Prominent corpora lutea were observed macroscopically
on the ovaries of all Fc control marmosets, and this was
confirmed by examination of H&E-stained sections (Fig.
2A). Numbers of corpora lutea per animal were three,
four, three, and three for the four control animals. In the
treated group, one of the marmosets had ovaries with three
apparently healthy corpora lutea. However, in the remain-
ing four treated animals no normal appearing, mature cor-
pora lutea were present (Fig. 2B). Rather, two types of
luteal tissues were identified, the first characterized by
very small, regressed corpora lutea that contained invo-
luted luteal cells with little apoptosis. These were consid-
ered to have originated from the previous cycle in which
luteolysis was achieved and were not studied further. In
addition, larger luteal areas (two, two, two, and three per
animal) were observed which were deemed to be the cor-
pora lutea of the treatment cycle that had been responsible
for progesterone secretion at the start of the treatment
phase. These were significantly smaller (P � 0.05) than the
healthy corpora lutea seen in control ovaries (Fig. 2, B and
C). H&E staining revealed a degree of involution of the
hormone-producing cells and increased incidence of apo-
ptotic fragments (data not shown). This involution could
be demonstrated on sections stained with BrdU and coun-
terstained with hematoxylin (Fig. 2, D and E). These sec-
tions also show that whereas BrdU staining was present in
control corpora lutea predominantly in clearly defined
blood vessels (Fig. 2D), in corpora lutea from treated an-
imals BrdU staining was rarely associated with structures
that could be defined as normal blood vessels (Fig. 2E).
Numbers of proliferating cells were highly variable in
corporal lutea of treated marmosets and not signifi-
cantly different from controls (Fig. 2, E and F). Apo-
ptosis, as confirmed by staining for activated caspase-3,
was rare in control corpora lutea (Fig. 2G) and in-
creased significantly (P � 0.0001) in corpora lutea from
the treated group (Fig. 2, H and I). CD31 staining re-
vealed that as expected corpora lutea of controls devel-
oped an extensive micovascular tree (Fig. 2, J and L)
whereas in treated marmosets, CD31 staining was more
dense, but diffuse (Fig. 2, K and M) and unsuitable for
quantification.

Control marmosets exhibited a sustained rise in
plasma progesterone concentrations typical of the early
luteal to midluteal phase (Fig. 2N). In Dll4-antibody-
treated marmosets, progesterone concentrations rose as
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normal on d 1, confirming the occurrence of ovulation,
but began to diverge from controls on d 2 and were
significantly lower (P � 0.001) than controls by 3 d
after treatment (Fig. 2N). Progesterone remained sup-
pressed for the remainder of the treatment period, being at
follicular phase levels after d 7.

Interestingly, on luteal d 10, relatively large antral
follicles were present in the ovaries of marmosets
treated with anti-Dll4 (see Fig. 5A) but not in control
ovaries (Fig. 2A).

Effect of Dll4 antibody in the periovulatory period
on luteal function and recovery of normal cycles

Control marmosets treated with Fc at the periovulatory
period exhibited the expected postovulatory profile in
plasma progesterone secretion, with progesterone being
elevated for some 21 d (Fig. 3A). In contrast, marmosets
treated with Dll4 antibody at the time of ovulation exhib-
ited a transient rise in plasma progesterone after ovulation
with levels being suppressed for the remainder of the luteal
phase (Fig. 3A), confirming the results obtained in the two

FIG. 1. Marmoset ovaries stained with H&E after control Fc treatment (panel A) or inhibition of Dll4 during the early luteal phase (panel B). Each
ovary exhibits a recently formed corpus luteum and measurement of luteal area (C) showed no significant effect of treatment. Dual staining for
BrdU and CD31 (black nuclei, red cytoplasm, respectively) in corpora lutea from, control (panel D) and Dll4 antibody-treated animal (panel E)
shows the high proportion of proliferating cells that are endothelial (green arrows) in both groups. Note the increased incidence of these cells in
the corpora lutea from the treated marmoset. Histogram (F) shows a significant increase (P � 0.05) in area of BrdU staining after Dll4 treatment.
Immunostaining for CD31 in control ovary (panel G), and Dll4 antibody-treated animal (panel H). Both show a well-developed microvasculature,
but that in the corpora lutea of the treated marmoset is exceptionally dense, a feature that is depicted in a higher power magnification (J and K). I,
The quantification of CD31 immunocytochemistry expressed as percentage area of corpus luteum stained in control (open bar) and treated (closed
bar). Dll4 treatment caused a significant (P � 0.05) increase in area of CD31 staining. L, Plasma progesterone concentrations in Fc control (E) and
Dll4 antibody-treated marmosets (F). Treatment started on the day of expected ovulation (d 0) and was repeated on d 2. Dll4 antibody treatment
was associated with a significant suppression of progesterone by d 3 (n � 4 per group). Scale bar, 500 �m (A, B, G, and H) and 50 �m (D, E, J,
and K). CL, Corpus luteum.
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FIG. 2. Marmoset ovaries on d 10 of the luteal phase stained with H&E after control Fc treatment (panel A) or inhibition of Dll4 during the early
luteal phase (panel B). A normal corpus luteum is central to the control ovary whereas in the ovary of the treated animal small corpora lutea are
shown (*). C, Quantification of total corpus luteum area was significantly lower in the treated group. Immunohistochemistry for BrdU in corpora
lutea from control (panel D) and Dll4 antibody-treated animal (panel E). Note the moderate incidence of proliferating cells (black nuclei) that are
endothelial in the control and the healthy appearance of the hormone-producing cells whereas the corpus luteum from the treated marmoset
shows increased cell density as a result of involution of hormone-producing cell nuclei and cytoplasm. BrdU stained cells are evident. F, Areas of
BrdU staining in both groups were not significantly different. Immunostaining for activated caspase-3 (brown) is demonstrated in control corpus
luteum (panel G) and Dll4 antibody-treated animal (panel H). The control shows an isolated positive cell surrounded by healthy cells. In contrast the
corpus luteum of the treated marmoset shows numerous positive cells that when quantified (panel I) show a significant increase compared with
controls. CD31 staining of whole ovaries is illustrated in ovaries from control (panel J) and after inhibition of Dll4 (panel K). Note the extensive
mocrovascular tree in the two corpora lutea in the control ovary whereas staining for CD31 is dense in the treated ovary but the corpora lutea (*)
are regressed. N, Plasma progesterone concentrations in Fc control (E) and Dll4 antibody-treated marmosets (F). Treatment started on the day of
expected ovulation (d 0) and was repeated on d 2. Dll4 antibody treatment was associated with a significant suppression of progesterone by d 3
that continued until d 10 when ovaries were collected (n � 4 and 5) for Fc and Dll4 treated, respectively. Scale bar, 500 �m (A, B, J, and K) and 50
�m (D, E, G, H, L, and M). CL, Corpus luteum; bv, blood vessel.
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previous experiments. Overall, progesterone concentra-
tions were significantly (P � 0.01) suppressed by the treat-
ment. However, on about d 15, toward the end of the
luteal phase, plasma progesterone levels began to rise
again in the Dll4 antibody-treated marmosets. In view of
the presence of large antral follicles by luteal d 10 in an-
imals treated in the periovulatory phase (Fig. 5A), it is
likely that this progesterone rise was due to ovulation as-
sociated with the early resumption of follicular develop-
ment. Interestingly, in three of the four treated marmosets,
this second progesterone rise was found to be transitory
(e.g. Fig. 3B), suggesting that luteal function after the first
posttreatment ovulation remained impaired. In every case,
these transitory progesterone increases were followed by
a follicular phase of normal length and a postovulatory
rise in progesterone of normal magnitude and duration
(e.g. Fig. 3B).

Effect of Dll4 antibody in the midluteal phase Dll4
antibody on luteal function

Control marmosets treated with Fc at the midluteal
period continued to have the expected luteal profile in
plasma progesterone secretion, being elevated for the du-

ration of the luteal phase (Fig. 4A). Dll4
antibody treatment was without signif-
icant effect on the progesterone profile
overall. However, closer examination
of the data revealed that after initiation
of treatment, progesterone levels ap-
peared to decline at a faster rate in mar-
mosets treated with Dll4 antibody,
such that values on d 4 and d 5 after
treatment were significantly lower (P �
0.05) than in controls. In three of four
treated marmosets, a progesterone rise
indicative of ovulation occurred, some
10 d after progesterone had reached fol-
licular phase levels (i.e. indicative of a
follicular phase of normal duration)

(Fig. 4B). In the remaining animals, the progesterone rise
was short lived, but was followed by a normal progester-
one profile after a further 10-d period.

Plasma from this group confirmed high concentrations
of antibody to Dll4. When antibody was administered by
two injections 2 d apart, plasma concentrations were con-
sistently more than 10 �g/ml on d 1, d 2, d 3, and d 7 and
between 3–11 �g/ml on d 14 before falling to less than 1
�g/ml by d 20.

Effects of Dll4 antibody on follicular angiogenesis
and development

In contrast to the clear evidence for induction of early
luteal regression in animals treated with anti-Dll4 during
the early periovulatory period, H&E-stained sections of
ovaries collected during the midluteal phase revealed an
additional striking difference to ovaries of control mar-
mosets. Whereas control ovaries contained only small an-
tral follicles (e.g. Fig. 2A), the ovaries of the four marmo-
sets with regressed corpora lutea contained two or three
healthy large antral follicles (e.g. Fig. 5A). Moreover, in the
treated marmoset having corpora lutea that had yet to fully

regress, one ovary contained two ovulat-
ing follicles, whereas the other had one
ovulating follicle. The vasculature of these
antralandovulatingfolliclesappearednor-
mal. This observation suggested that, in
contrast to the corpus luteum, follicular
vascular development was not affected by
pharmacological inhibitionofDll4.Totest
thishypothesis,afinalexperimentwascon-
ducted to investigate the effects of Dll4 an-
tibody treatment over the duration of the
follicular phase.

When evaluated on follicular d 10,
weights of ovaries were not signifi-

FIG. 4. A. Effect of treatment with Fc control (E) or Dll4 antibody (F) on d 8 and d 10 of the
luteal phase on plasma progesterone concentrations. Dll4 antibody treatment was associated
with a significant suppression of progesterone on d 4 and d 5 after treatment. B, A
representative progesterone profile from a marmoset treated with Dll4 antibody to show
luteal regression was followed by a follicular phase of normal duration and progesterone
secretion associated with normal ovulation (n � 4 per group). Numbers are means � SEM.

FIG. 3. A, Effect of treatment with Fc control (E) or Dll4 antibody (F) on the day of expected
ovulation (d 0) and d 2 on plasma progesterone concentrations. Dll4 antibody treatment was
associated with a significant suppression of progesterone by d 3 after which time
progesterone secretion declined to follicular phase concentrations before a rise around d 16.
B, A representative progesterone profile from a marmoset treated with Dll4 antibody,
illustrating failure of normal luteal progesterone rise followed by an apparent ovulation
around d 15, which resulted in a short period of progesterone secretion. This was followed by
a normal posttreatment luteal phase beginning on d 28. Fc controls (n � 4) and treated with
Dll4 antibody (n � 3). Numbers are means � SEM.
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cantly different between control (290 � 61 mg) and
treated animals (226 � 17 mg). In controls, the predom-
inant structures on follicular d 10 were preovulatory fol-
licles (n � 10) or recently ovulated follicles (n � 8) (e.g.
Fig. 5B). Treatment with anti-Dll4 for the duration of the
follicular phase had no major effect on follicular develop-
ment. Three marmosets had ovaries containing large an-
tral, preovulatory follicles (n � 3, 2, and 2) with prolif-
erating cells in the granulosa cell layer (e.g. Fig. 5, C and
D), whereas one had five recently ovulated follicles. In the

remaining treated animal the ovaries were
more typical of the midfollicular phase,
containing numerous medium-sized antral
follicles. Examination of sections dual
stained with BrdU and CD31 revealed that
in the thecal layer of large antral follicles
from the group treated with Dll4 antibody
the pattern of CD31 staining and BrdU in-
corporation appeared similar to that in con-
trols (Fig. 5, D–F).

By d 10, progesterone levels had risen
above follicular phase levels in four of the
controls (61 � 25 nmol/liter) and in one of
the treated animals (14 � 4 nmol/liter), a
difference that was statistically significant
(P � 0.02).

When plasma concentrations of anti-
body to Dll4 were examined on d 3, d 5, d
7, and d 10 after treatment on d 0, d 3, and
d 7, they were found to be consistently more
than 20 �g/ml.

Discussion

VEGF has been shown to play a critical role
in normal ovarian angiogenesis and func-
tion (1–6), but the requirement for other
factors with the potential to regulate the
morphogenesis of the vasculature in this tis-
sue remains to be fully elucidated (4, 23,
42). To date, pharmacological manipula-
tion of these other factors has not produced
the marked impact on ovarian angiogenesis
seen for VEGF antagonists, at least not in
primates. We now show that Dll4 also plays
an indispensable physiological role in ovar-
ian angiogenesis and function. However, in
contrast to VEGF, Dll4 appears to play a
crucial role in normal luteal, but not follic-
ular, angiogenesis.

Treatment with the Dll4-neutralizing an-
tibody in the periovulatory period resulted

in the failure of the ovary to secrete its normal quota of
progesterone. In the luteal microvasculature, the number
of proliferating endothelial cells was increased by treat-
ment and, as a result, the area occupied by the endothelium
in the corpora lutea was significantly increased by d 3 after
treatment. Given that the early corpus luteum is already
the most active site of physiological angiogenesis in the
adult (1), the resultant increase in endothelial prolifera-
tion after neutralization of Dll4 is remarkable. Increasing

FIG. 5. A–C, H&E-stained marmoset ovaries showing that large antral follicles (LAF) can
develop despite inhibition of Dll4. A, Ovary from a marmoset on d 10 of the luteal phase
after treatment with an antibody to Dll4 on luteal d 0 and d 2. Note the presence of two
large antral follicles (LAF), in marked contrast to the restricted follicular growth expected
at this stage of the cycle (compare with Fig. 2A). B, Ovary from a control marmoset
treated with Fc for the duration of the follicular phase. Note the emergence of three
large antral follicles and a recently ovulated follicle (CL). C, Ovary after treatment with
Dll4 antibody throughout the follicular phase showing emergence of large antral
follicles. D–-F, High-power magnifications of the wall of a large antral follicle in
respective ovaries shown in panels A–C dual stained with BrdU (black nuclei) and CD31
(red cytoplasm). Note that the development of the vasculature within the thecal wall,
shown by CD31 and the proliferating endothelial cells (shown by green arrows) appears
to be similar to the control despite treatment with Dll4 antibody. Proliferating cells (black
nuclei) in the granulosa cell layer (g) are also evident in each LAF. Scale bar, 500 �m (A–
C) and 50 �m (D–F). CL, Corpus luteum.
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vasculature in the corpus luteum is normally associated
with efficient secretion of progesterone (1–3), and these
findings are the first to dissociate this relationship. From
studies on the effects of Dll4 inhibition in tumor models,
it may be assumed that the paradoxical decline in proges-
terone secretion is the result of the newly formed vessels
being nonfunctional (29–31). Surprisingly, in the marmo-
sets studied further, for 10 d into the luteal phase, the
treatment was found to have a marked deleterious effect
on the structure of both vascular and nonvascular ele-
ments in the corpus luteum. In keeping with the previous
observation, the functional capacity of the tissue to secrete
progesterone remained markedly impaired; by 7 d into the
luteal phase, plasma progesterone had fallen to follicular
phase levels in all treated marmosets, a potential indicator
of premature luteolysis.

In confirmation, morphological analysis of the corpora
lutea revealed premature structural luteolysis in four of the
five treated marmosets. The corpora lutea were small in
size with hormone-producing cells exhibiting shrinkage of
the nucleus and cytoplasm. These changes were also as-
sociated with increased cell death. The incidence of
caspase-3 staining was variable, but because apoptosis is
a rapid phenomenon, in contrast to other features of luteal
involution that take place over a longer period in primates
(43–46), it is possible that the variation in caspase-3 re-
flects asynchronous structural luteolysis. However, in re-
spect to the fall in progesterone, all treated marmosets
exhibited a similar profile.

The observation of large antral follicles on luteal d 10
in marmosets treated with anti-Dll4 during the periovu-
latory period was a particularly unanticipated finding. In
control marmosets, the presence of very small antral fol-
licles is a feature during the midluteal phase. However,
evidence of follicular development to the preovulatory
stage was evident in four marmosets treated with Dll4
antibody, whereas the remaining animal had three re-
cently ovulated follicles. This suggests that 1) the removal
of the normal negative feedback effect of luteal progester-
one is theprincipal trigger for folliculardevelopment in the
Dll4 antibody treated animals, as it is in the normal cycle;
and 2) in contrast to luteal angiogenesis, Dll4 inhibition
did not appreciably impair angiogenesis requisite for the
development of large antral follicles (5, 16, 19, 20).

Two further experiments supported the observation
that follicular development could proceed to ovulation
despite pharmacological neutralization of endogenous
Dll4. First, treatment throughout the follicular phase did
not prevent the development of preovulatory or recently
ovulated follicles. Second, when marmosets were given
Dll4 antibody in the periovulatory period in a nonterminal
study, aprogesterone riseoccurredaround16dafter treat-

ment in three of four marmosets. Given the fact that this
treatment regimen causes rapid functional and structural
luteolysis, it is likely that this rise was indicative of ovu-
lation that occurred as a consequence of development of
ovulatory follicles during the treatment period. The fact
that this rise was only transitory in this first, aborted re-
covery cycle suggests that the low levels of Dll4 antibody
present in the circulation at this time were sufficient to
again induce abnormal sprouting angiogenesis and sub-
sequent luteolysis. The resumption of normal ovulatory
cycles, as judged by the restitution of luteal phases char-
acterized by sustained elevations in plasma progesterone
of normal magnitude and duration, was observed in
treated animals shortly after circulating concentrations of
anti-Dll4 fell to nondetectable levels.

By around d 8 after ovulation, the intense angiogenesis
of the early luteal phase has subsided and the luteal mi-
crovascular tree is established (14, 35). It had been antic-
ipated that administering Dll4 antibody during this post-
angiogenic phase would not affect luteal function. Indeed,
plasma progesterone concentrations were unaffected for
the first 3 d after treatment was initiated, but after d 4 there
was a trend to more rapid decrease in progesterone levels.
Taken together with the observations of structural lute-
olysis on d 10 after treatment in the early luteal phase this
indicates that inhibition of Dll4 also exerts a deleterious
effect on luteal function, and possibly structure, at later
stages of luteal development, albeit to a much lesser extent.

Having previously described the effects of inhibition of
VEGF on both follicular and luteal angiogenesis using the
same treatment regimens (10, 11, 14–16) these results can
be compared with the inhibition of Dll4. Whereas inhibi-
tion of either VEGF or Dll4 leads to disruption of the
normal ovarian cycle, there are major differences in out-
come with respect to effects on follicular and luteal an-
giogenesis, development, morphology, and cell viability.
With respect to effects on follicular development, Afliber-
cept (VEGF Trap) treatment markedly inhibited endothe-
lial cell proliferation in the thecal vessels and prevented
development of follicles beyond the early antral stage (11,
16). In contrast, Dll4 antibody treatment appeared to have
no major effect on follicular angiogenesis, and preovula-
tory follicles emerged despite the continuous presence of
high levels of anti-Dll4 antibody in the blood for the du-
ration of the follicular phase. VEGF is known to induce
endothelial proliferation and migration, most typically in
the context of angiogenic sprouting from existing vessels
(29–31). However, VEGF also plays a key role in pro-
moting other forms of angiogenesis, such as increase in the
caliber of existing or undifferentiated vessels, followed by
the formation of daughter vessels by intussusception (47,
48). In sprouting angiogenesis, Dll4 activity is known to be
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up-regulated by VEGF and to act downstream of the initial
angiogenic drive to control vessel proliferation and
branching (26), by negatively regulating tip cell formation
as well as the proliferation of the more proximal stalk
endothelial cells (27, 28). Timely development of the luteal
vasculature is highly dependent upon initiation of a ro-
bust, well-organized sprouting angiogenic response to
rapidly invest the avascular, newly formed luteal body
with a blood supply. However, in addition to sprouting
angiogenesis, follicular vascular expansion involves other
forms of angiogenesis, such as vessel expansion and in-
tussusception (49). The results of the present study suggest
that, in contrast to VEGF, Dll4 does not play a significant
role in these other forms of angiogenesis.

Although VEGF or Dll4 inhibition both disrupted nor-
mal luteal development and function, their specific effects
on luteal angiogenesis were strikingly different. Inhibition
of VEGF during the early luteal phase reduces endothelial
cell proliferation by 90%, leading to a decrease in endo-
thelial cell area and associated decline in plasma proges-
terone secretion (10, 11). In marked contrast, inhibition of
Dll4 over the same period led to an increase in endothelial
cell proliferation, sprouting angiogenesis, and endothelial
cell area. However, this treatment too had a suppressive
effect on plasma progesterone levels. In marmosets, ad-
ministration of VEGF antibody during the luteal phase
was associated with predominately healthy hormone-pro-
ducing cells (10). This contrasts markedly with Dll4 inhi-
bition, which resulted in hormone-producing cells in var-
ious states of regression. Thus, whereas inhibition of
VEGF appeared to leave the corpus luteum in a resting
state, inhibition of Dll4 led to cell death. The explanation
for these events is likely to be similar to that proposed to
explain the effects of Dll4 blockade in experimental mod-
els of solid tumor growth. Here too, the vascular sprout-
ing, endothelial cell proliferation, and vessel density
within the tumors are all increased, but the tumors para-
doxically decrease in size, effects attributable to the over-
elaboration of poorly formed vessels that show reduced
perfusion (29–31). The results of the present study suggest
that a similar scenario obtains in the developing luteal
vasculature.

Our conclusion, that inhibition of Dll4 has major ef-
fects on early luteal angiogenesis and subsequent luteal
function, is supported by emerging studies of the Notch-
signaling pathway in rodents. Intrabursal administration
of a �-secretase inhibitor, which nonselectively inhibits the
Notch-signaling pathway, decreased progesterone secre-
tion and increased caspase-3 in the corpora lutea of preg-
nant rats (39). Furthermore, theobservation that follicular
angiogenesis is spared after Dll4 inhibition, compared

with effects on the corpus luteum, is supported by studies
in mice recently reported in abstract form (50, 51).

Further studies will be required to more fully elucidate the
role of Dll4 in the function of the hypothalamic-pituitary-
ovarian axis in primates; these studies will likely require the
use of an alternate primate species because accurate mea-
surement of estrogens and pituitary gonadotropins is prob-
lematic in the marmoset. Observations on effects of treat-
ment on plasma estradiol would be of particular importance
in determining whether the appearance of normal follicular
development and angiogenesis, as observed in the present
study, are associated with normal follicular steroidogenic
capacity. However, it should be noted that we found no ap-
preciable effect of Dll4 inhibition on uterine weight or an-
giogenesis in themarmosetuterus,whenevaluated in the late
proliferative and early luteal phase groups (data not shown),
suggesting that the effects of acute Dll4 inhibition on follic-
ular steroidogenesis, if any, are likely to be subtle. Here it is
also important to note that, at present, there is little evidence
to indicate that acute inhibition of Dll4/Notch function, as
employed in the present study, would produce an apprecia-
ble affect on the morphology of the mature, quiescent vas-
culature of most organs. In contrast, stringent, chronic inhi-
bition of Dll4/Notch signaling with high-affinity antibodies
(52) or gene deletions can lead to vascular abnormalities in
some tissues (53, 54). Thus longer-term treatment may also
be required to fully elucidate the role of the Dll4/Notch path-
way in other components of the reproductive axis.

That in vivo inhibition of Dll4 in mouse tumor models
leads to decreased tumor growth even though tumor vas-
cularity is increased, has been a major discovery in oncol-
ogy (30–32). The present findings on the effects of Dll4
blockade on the corpus luteum replicates this paradoxical
phenomenon in a normal adult tissue, whereby increased
angiogenesis is associated with structural regression.
However, the effects of Dll4 inhibition on angiogenesis are
clearly heterogeneous, at least in normal tissues, as evi-
denced by the lack of appreciable effect of Dll4 blockade
on follicular development. Here, we propose that the
marked difference in the susceptibility of luteal and fol-
licular angiogenesis to Dll4 inhibition may reflect the
predominance of sprouting angiogenesis in the devel-
oping corpus luteum and nonsprouting forms of VEGF-
mediated angiogenesis in the maturing follicle. Such ob-
servations emphasize the need to rigorously study the
effects of novel modulators of angiogenesis on normal
tissues, to more fully elucidate the physiological roles of
their targets.
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