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Abstract 

The iron-catalyzed hydrocarboxylation of aryl alkenes has been developed using a highly active 

bench-stable iron(II) precatalyst to give α-aryl carboxylic acids in excellent yields and with near-

perfect regioselectivity. Using just 1 mol % FeCl2, bis(imino)pyridine 6 (1 mol %), CO2 (atmospheric 

pressure), and a hydride source (EtMgBr, 1.2 equiv), a range of sterically and electronically 

differentiated aryl alkenes were transformed to the corresponding α-aryl carboxylic acids (up to 96% 

isolated yield). The catalyst was found to be equally active with a loading of 0.1 mol %. Preliminary 

mechanistic investigations show that an iron-catalyzed hydrometalation is followed by 

transmetalation and reaction with the electrophile (CO2). 

 

Main text 

Iron-catalyzed processes have become increasingly important in the construction of complex 

molecular frameworks due to the environmental, health and cost benefits of using iron in place of 

traditionally used transition metals.
1
 Carbon dioxide is an attractive carbon source for organic 

synthesis due to its low cost, low toxicity and ease of handling. Despite the extensive use of carbon 

monoxide in homo- and heterogeneous catalysis as a C1 feedstock, e.g. hydroformylation, 

methodology to utilize carbon dioxide under mild conditions remains underdeveloped.
2
 Iron-catalyzed 

processes offer an economical and environmentally benign alternative to the transition metals 

traditionally used in homogeneous catalysis.
3-7

 Herein we report the highly regioselective iron-

catalyzed synthesis of carboxylic acids from alkenes and carbon dioxide; overall, an iron-catalysed 

hydrocarboxylation (Figure1).  

Hoberg reported the reaction of carbon dioxide with stoichiometric low-valent nickel- and iron-alkene 

complexes to give carboxylic acids.
8
 Rovis developed Hoberg’s nickel-mediated carboxylation into a 

reductive carboxylation of electron-deficient and electron-neutral styrene derivatives using a sub-

stoichiometric nickel(II) pre-catalyst (Figure 1).
9
 Hayashi and Shirakawa recently reported a 

cooperative iron-copper catalyzed hydromagnesiation of terminal alkenes by alkene-Grignard 

exchange (Figure 1).
10

 The process required an iron salt for the hydrometallation step and a copper 

salt to aid transmetallation to magnesium.  

We sought to develop an iron-catalyzed hydrocarboxylation of alkenes starting from an inexpensive, 

commercially available, non-toxic and bench-stable iron(II) precatalyst. The reaction of iron(II) salts 

with Grignard reagents bearing β-hydrogens results in reduction of the iron centre to give a low-

valent, highly reactive, ‘inorganic Grignard’ species.
11

 The proposed reduction pathway involves the 

formation of transient low valent iron-hydride species, which we aimed to exploit by trapping with a 
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suitable alkene in a hydrometallation process. The hydrometallated intermediate may then be able to 

react with carbon dioxide to produce the hydrocarboxylation product. 

 

 

Figure 1. Proposed iron-catalyzed hydrocarboxylation of alkenes. 

 

Initial studies focused on the hydrocarboxylation of styrene using 5 mol% of a simple iron salt with 

ethylmagnesium chloride as the hydride source. At room temperature very low yields of the 

carboxylic acid product 2 were observed (Table 1, entries 1-2), however upon heating the reaction at 

reflux, Fe(OTf)2 was found to catalyze the reaction to an equal extent as that reported by Rovis (entry 

3),
9
 however this yield could not be improved upon. At room temperature, 5 mol% N-

methylpyrrolidone (NMP) 3 and FeCl2
12

 gave a reaction yield to 27% (entry 4). N,N,N’,N’-

Tetramethylethylenediamine (TMEDA) 4, tri(n-butyl)phosphine, and tetradentate amine ligand 5
13

 all 

showed moderate reactivity and regioselectivity (entries 5-7). The most active catalyst was formed 

using bis(imino)pyridine ligand 6
14

 which gave a yield of 85% and near-perfect regioselectivity for 

the -carboxylic acid 2 (:00:1) (entry 8). iso-Propylmagnesium chloride gave similar 

conversion, however with reduced regioselectivity (:13:1) (entry 9). Ethylmagnesium bromide 

gave quantitative conversation to the carboxylic acids 2 (96% isolated yield 2 with excellent 

regioselectivity (:75:1) (entry 10), even when using just 0.1 mol% pre-catalyst or the hydrated iron 

salt (entries 12-14). Cyclopentylmagnesium bromide also gave good conversion; however the use of a 

secondary Grignard reagent, again, resulted in a lower regioselectivity (::1) (entry 11). The 

hydrocarboxylation reaction showed reduced activity in other solvent systems and at lower 

temperatures.
15,16 

Importantly, in the absence of iron, no hydrocarboxylation was observed and the addition of trace 

levels of other transition metal salts to the standard reaction conditions did not increase the yield of 

the reaction. The use of these other transition metal salts in the absence of FeCl2 showed no catalytic 

activity.
15

 High purity FeCl2 (99.99%) also catalyzed the reaction with near quantitative yields.
15,17  
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    Yield (%)
b
 

entry Iron salt Ligand RMgX 2 2 

1 FeCl2 - EtMgCl
c
 <1 0 

2 FeCl3 - EtMgCl
c
 2 0 

3 Fe(OTf)2
d 

- EtMgCl
c
 59 2 

4 FeCl2 NMP 3 EtMgCl
c
 27 <1 

5 FeCl2 TMEDA 4 EtMgCl
c
 62 <1 

6 FeCl2 P(n-Bu)3 EtMgBr
e
 66 2 

7 FeCl2 5 EtMgCl
c
 66 0 

8 FeCl2 6 EtMgCl
c
 85 <1 

9 FeCl2 6 i-PrMgCl
f 

79 6 

10 FeCl2 6 EtMgBr
e 

98 (96)
g 

1 

11 FeCl2 6 
Cyclopentyl-

MgBr
h 87 6 

12
i
 FeCl2 (1 mol%) 6 (1 mol%)

 
EtMgBr

e
 97 1 

13 FeCl2 (0.1 mol%) 6 (0.1 mol%)
 

EtMgBr
e
 97 1 

14 FeCl2.4H2O
j 

6
j EtMgBr

e
 97 1 

a 
Conditions: 0.7mmol 1, 5 mol% iron salt, 5 mol% ligand, THF (0.15M), 150 mol% RMgX, 1h, r.t 

(ii) CO2, 30 min. 
b
 Yield determined by 

1
H NMR using an internal standard. 

c
 2M in THF. 

d
 Heated at 

reflux. 
e
 3M in Et2O. 

f 
1M in THF. 

g
 Isolated yield. 

h
 2M in Et2O. 

i 
3h reaction time. 

j
 1 mol%. 

Table 1. Catalyst identification for the hydrocarboxylation of styrene
a
. 

 

The scope of the reaction was investigated using a 1 mol% catalyst loading, which was formed in situ 

from FeCl2 and bis(imino)pyridine ligand 6 (Table 2). Pleasingly, it was found that the developed 

methodology worked most efficiently for styrene derivatives bearing electron-donating groups, 

demonstrating the complementary nature of this method to those of Rovis and Hayashi and Shirakawa 

(Figure 1).
9,10,18 

Alkyl substitution in all positions on the aromatic ring were well tolerated (Table 2, 8a-e), giving the 

-carboxylic acids 8a-d in excellent yield, with only ortho-methyl styrene showing a slightly reduced 
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regioselectivity (:10:1). The hydrocarboxylation of iso-butylstyrene gave directly the 

pharmaceutical ibuprofen in excellent yield and regioselectively (:40:1). Benzyl protected phenol 

derivative 7f gave the -carboxylic acid 8f with no benzyl deprotection observed under the reductive 

reaction conditions. 

 

a 
Conditions: 0.7mmol 1, 7a-l, 1 mol% FeCl2, 1 mol% 7, THF (0.15M), rt, (i) 120 mol% EtMgBr (3M 

in Et2O), 2h (ii) CO2, 30 min. 
b 
Isolated yield of -product. 

c 
Reaction yield and regioselectivity 

determined by 
1
H NMR using an internal standard. 

d 
120 mol% Cyclopentylmagnesium bromide used 

(2M in Et2O), Isolated yield of -product. 

Table 2. Iron-catalyzed hydrocarboxylation of styrene derivatives: scope and limitations
a
. 

 

The electron-rich ortho- and meta-methoxystyrene derivatives gave the -carboxylic acids 8g and 8h 

in excellent yield and regioselectivity (:>100:1), however para-methoxystyrene gave -carboxylic 

acid 8i in slightly reduced yield and regioselectivity (58%, ::1). 2,5-bismethoxystyene gave -

carboxylic acid 8j in excellent yield and regioselectivity (92%, :>100:1), however 3,4-



Page 5 of 11 

bismethoxystyrene gave a reduced yield, possibly due to Grignard-mediated demethylation which was 

enhanced by coordination to the adjacent methoxy group (8k). Electron-deficient styrene derivatives 

showed reduced activity; 4-vinylbiphenyl and para-fluorostyrene gave moderate yields of -

carboxylic acids 8l and 8m, but with excellent regioselectivity (:>50:1).
19 

When 2,4-dimethyl- and 

2,5-dimethyl styrene derivatives were tested significantly lower regioselectivity was observed 

(:1:1). Cyclopentylmagnesium bromide, in place of EtMgBr, gave much higher yields, albeit 

with a reverse in regioselectivity to the -product 8n and 8o (74-78%, :1:6). Presumably the 

change in regioselectivity arises due to the increased steric bulk around the iron catalyst, resulting in a 

kinetic preference for hydrometallation to give the linear -product.

When the reaction was quenched with d
4
-methanol complete conversion to (1-deuteroethyl)benzene 

was observed implying the presence of an intermediate -aryl organometallic species (Scheme 1A). 

To confirm that the incorporated hydride originated from the Grignard reagent, d
5
-ethylmagnesium 

bromide was used in the reaction (Scheme 1B).
20

 This gave a complex mixture of -deuterated 

products, with zero, one, two and three deuterium atoms incorporated at the terminal position. This 

suggests that hydrometallation is both fast and reversible under the reaction conditions. It was 

calculated that 150 mol% deuterium incorporation had occurred, which is in support of a highly 

reversible process. No deuterium incorporation was observed at the alpha-position, suggesting that 

hydrometallation is highly regioselective in this case. 

 

a
 Percentage yields with respect to 10. 

b
 Percentage yields with respect to 4-

t
Bu-styrene. 

Scheme 1. Mechanistic investigations into the iron-catalyzed hydrometallation of alkenes and 

isomerization of Grignard reagents. 
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To investigate whether the -selectivity originated from a regioselective hydrometallation or by 

isomerization of an intermediate Grignard reagent to the thermodynamically more stable -Grignard, 

the -Grignard reagent 10 was independently synthesized and exposed to the standard reaction 

conditions (Scheme 1C). Very little isomerization to the -Grignard reagent was observed, suggesting 

the -hydride elimination-hydrometallation process is faster than the conformational isomerization of 

the intermediate iron-hydride-styrene species needed to produce the -product 2. However, the 

addition of an equivalent of tert-butylstyrene showed isomerization of the -Grignard 10 to give a 

majority of the -carboxylic acids arising from both the Grignard 10 (by -hydride elimination, 

conformational isomerization and hydrometallation) and tert-butylstyrene (by direct 

hydrometallation) (Scheme 1D). Considering the rapid rate of -hydride elimination-hydrometallation 

with respect to transmetallation or con conformational isomerization, and the decrease in 

regioselectivity (Table 2), it seems likely that tert-butylstyrene is co-ordinated to iron prior to -

hydride elimination of the Grignard reagent 10 or competitively coordinates to iron with the generated 

styrene. 

Thus our suggested mechanism is based on the iron-catalyzed formation of a hydromagnesiated 

intermediate species capable of reaction with carbon dioxide (Scheme 2).
21

 Alkylation of the iron 

precatalyst and co-ordination of styrene gives an organoferrate complex B, which can undergo -

hydride elimination to give an active low-valent iron hydride complex C. Hydrometallation of styrene 

gives the organoferrate complex D, which could undergo transmetallation with another equivalent of 

ethylmagnesium bromide to release the hydromagnesiated product E, and reform the initial 

organoferrate complex A. 

 

Scheme 2. Proposed mechanism for the iron-catalyzed hydrocarboxylation of alkenes. 
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In summary, an operationally simple, highly active, iron-catalyzed hydrocarboxylation of aryl alkenes 

has been developed for the synthesis of -aryl carboxylic acids using CO2 as the C1-feedstock. 

Excellent yields have been achieved for alkyl substituted styrene derivatives with excellent control of 

regioselectivity. Significantly, styrene derivatives bearing electron-donating groups, which have 

proved difficult previously, were successfully hydrocarboxylated with good yields and excellent 

regioselectivity. Mechanistic investigations showed the reaction proceeds by a highly regioselective 

and reversible iron-catalyzed hydrometallation, followed by transmetallation giving an -aryl 

Grignard reagent which reacts with CO2. This methodology provides a significant advance in the iron-

catalyzed functionalization of alkenes using mild and operationally simple conditions. 
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