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Synopsis: 

An Iron-catalysed, hydride-mediated reductive cross-coupling has been developed and used to prepare 

a range of alkanes from vinyl halides and Grignard reagents.  
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Abstract 

An iron-catalysed, hydride-mediated reductive cross-coupling reaction has been developed for the 

preparation of alkanes. Using a bench-stable iron(II) pre-catalyst, reductive cross-coupling of vinyl 

iodides, bromides and chlorides with aryl- and alkyl Grignard reagents successfully gave the products 

of formal sp
3
-sp

3
 cross-coupling reactions. 

 

Introduction 

Metal-catalysed cross-coupling reactions have become ubiquitous in synthetic chemistry with 

palladium- and nickel-catalysed reactions used routinely in both academia and industry.
1
 However, 

preceding the seminal discoveries of Heck
2
 and Kumada,

3
 Kharasch

4
 and, later, Kochi reported the 

iron-catalysed cross-coupling of vinyl bromides and Grignard reagents.
5
 Iron-catalysed cross-coupling 

reactions have since been developed into a powerful method for the formation of carbon-carbon
6
 and 

carbon-heteroatom bonds.
7
 

The last decade has seen a significant increase in the number of transformations achieved using iron 

catalysts.
8
 The iron-catalysed reduction of carbonyl groups by hydrosilylation, transfer-hydrogenation 

and hydrogenation are now well developed, with turnover frequencies equal to those of the best 

ruthenium-based catalysts and good enantioselectivities have been achieved for the reduction of 

ketones and imines.
9
 However, the reduction of olefins is only now being realised without the need 

for forcing reaction conditions. Chirik has developed a series of iron(0) complexes, based on the 

polymerisation catalysts of Gibson and Brookhart,
10

 which catalyse the hydrogenation of 

functionalised and unfunctionalised alkenes at low hydrogen pressure and with excellent activity.
11

 de 

Vries has used iron nanoparticles as the catalyst for the hydrogenation of alkenes and alkynes.
12

 

However, both of these powerful methods use air- and moisture-sensitive iron species which require 

synthesis prior to the hydrogenation reaction. Iron porphyrin complexes and sodium borohydride,
13

 

and iron chloride in conjunction with lithium aluminium hydride
14

 have also been used to reduce 

alkenes, ,-unsaturated ketones and esters. 

We recently reported the iron-catalysed, hydride-mediated reduction of alkenes using 

substoichiometric iron triflate and sodium triethylborohydride.
15

 Examination of the postulated 

catalytic cycles of the iron-catalysed hydrogenation
11

 and cross-coupling
16

 reactions reveal common 

low-valent iron species. We therefore sought to combine both of these reactions into one 

transformation, catalysed by a single, bench stable, iron pre-catalyst. Reductive cross-coupling is 

proposed to proceed by iron-catalysed cross-coupling of the vinyl halide and Grignard reagent to give 

an alkene 2. This alkene is then reduced in situ by an iron hydride to the alkane 3 (Figure 1). The iron 
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hydride is generated by the reaction of the iron salt with a stoichiometric hydride reagent. This 

transformation gives the product of an sp
3
-sp

3
 cross-coupling without the problems associated with 

these reactions.
1
 Furthermore, as the Grignard reagent needed for cross-coupling generates a low-

valent iron species in situ, we will be able to use bench-stable iron(II) pre-catalysts. 

 

 

Figure 1. Iron-catalysed, hydride-mediated reductive cross-coupling. 

 

In order to develop the reductive cross-coupling we chose commercially available -bromostyrene 4 

and ethyl magnesium chloride as model coupling partners and iron(II) chloride as the iron source 

(Table 1). Sodium triethylborohydride was initially used as the hydride source and N-methyl 

pyrrolidinone (NMP) 7 as a stabilising ligand due to the success we had with these reagents for the 

isolated reduction of alkenes.
15

 Using 10 mol% iron(II) chloride, 110 mol% NMP and 10 equivalents 

of NaHBEt3 gave the reduced cross-coupled alkane 5 in only 9% conversion and the cross-coupled 

alkene 6 in 53% (entry 1). This indicated that although cross-coupling was successful, the alkene was 

not being reduced under these conditions. We assumed that either the iron catalyst was not capable of 

mediating the hydrogenation or was degrading before hydrogenation could occur. To extend catalyst 

lifetime we screened multidentate ligands and found that the tetradentate dipyridyldiimino ligand 9 

gave 56% conversion to the alkane 5 and 44% alkene 6 (entries 2 and 3). This showed that complete 

cross-coupling was achieved and the hydrogenation step now needed improvement. Thus, we 

screened a number of hydride sources (entries 4-12). Variation of the cation of the hydride source 

showed that KHB
s
Bu3(K-Selectride) (entry 6) gave a similar conversion as NaHBEt3, but the use of 

reagents with a lithium counter ion gave the best conversions (entries 7-9). LiHBEt3 gave a 20% 

increase in alkane 5 (entry 7), compared to NaHBEt3, and lithium N,N-dimethylaminoborohydride
17

 

gave quantitative conversion to the alkane 5 (entry 8). It should be noted that even in the absence of 

ligand the reductive cross-coupling proceeded, but only 61% of the alkane 5 and 24% alkene 6 were 

observed (Table 1, entry 9). Without iron(II) chloride no cross-coupling or reduction products were 

observed. To test if the reductive cross-coupling was catalysed by an iron species or a trace metal 

impurity,
18

 the reaction was carried out with added Cu, Ni and Co salts and with these metals in the 

absence of iron. No reductive cross-coupling was observed using Cu, Ni or Co salts alone and the 

yield of the reaction was not increased when these salts were added to the standard reaction 

conditions.
19 
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a
 Conditions: 1 mmol 4, 10 mol% FeCl2, 10 mol% ligand, THF (0.1 M), -20 C, i) 1.4 eq. EtMgCl 

(2M in THF), 15 min, ii) 10 eq. hydride, warm to rt, 16 h. 
b
 Conversion measured by GC-MS of the 

crude reaction mixture by comparison to authentic samples. 
c
 110 mol% NMP. 

Table 1. Optimisation of the iron-catalysed, hydride-mediated reductive cross-coupling
a
 

 

Having developed optimised reaction conditions we investigated the scope and limitations of the 

reductive cross-coupling (Table 2). We began by using -bromostyrene and a range of alkyl Grignard 

reagents (entries 1-6). Ethyl- and iso-propylmagnesium chloride both gave excellent conversions to 

the alkanes (entries 2 and 3). tert-Butyl- and phenylmagnesium chloride gave a moderate conversion 

to the alkane, but no alkene was observed (entries 4-5). Using Grignard reagents without a -

hydrogen was expected to give poor conversion as the formation of the key low-valent iron species is 

now not possible. However, methylmagnesium chloride gave moderate conversion to the alkane 11a 

(entry 1). Presumably an anionic ferrate complex
17

 is the catalytically active iron species when using 

this Grignard reagent. Using allylmagnesium chloride introduced a second alkene to the reaction and 

this was also reduced under the reaction conditions to give the fully saturated alkane 11e, albeit in low 

yield (entry 6). 

      Conversion (%)
b
 

Entry Hydride Ligand Alkane 5 Alkene 6 

1 NaHBEt3 NMP 7
c
 9 53 

2 NaHBEt3 DPB 8 2 91 

3 NaHBEt3 9 56 44 

4 NaHB(OAc)3 9 - 78 

5 LiHAl(O
t
Bu)3 9 25 73 

6 KHB
s
Bu3 9 55 44 

7 LiHBEt3 9 73 27 

8 LiH3BNMe2 9 99 - 

9 LiH3BNMe2 - 61 24 

10 NaBH4 9 - 93 

11 LiAlH4 9 - 94 

12 HSiEt3 9 - 87 
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We next turned our attention to the effect of varying the halide substituent of the vinyl halide (entries 

7-12). Using the elegant methodology of Charette
20

 we prepared a series of aryl-vinyl halides bearing 

differing aryl and vinyl functionality. -Iodo- and -bromo-4-methylstyrene gave equal conversions 

to the alkane 11f, but -chloro-4-methylstyrene gave 13% of the alkane 11f and 46% of the alkene 

(entries 7-9). Electron-deficient aryl-vinyl halides showed no such dependence on the vinyl halide 

substituent. Both -chloro- and -bromo-4-chlorostyrene gave similar conversion to the alkane 5 

(entries 10-11). However, proto-dehalogenation of the aromatic ring was observed in both cases, 

possibly suggesting a low-valent iron catalyst.
21

 Finally, we tested the electron-rich -bromo-3,5-

dimethoxystyrene and this gave comparable conversion to that observed when using the electron-

neutral aryl-vinyl halides (entry 12). 

 

 

Conditions: 1 mmol 10, 10 mol% [9FeCl2], THF (0.1 M), -20 C, i) 1.4 eq. R
2
MgCl (2M in THF), 15 

min, ii) 10 eq. [LiH3BNMe2] (1.7 M in THF), warm to rt, 16 h. 
b
 Conversion measured by GC-MS of 

the crude reaction mixture by comparison to authentic samples. 
c
 Isolated yield. 

d 
61% 1,4-

diphenylbutane. 
e
 40% biphenyl. . 

f
 Complete reduction of R

2
 observed in the reaction, product 11e R

2
 

= n-propyl. 
g
 46% alkene. 

Table 2. Scope and limitation of the iron-catalysed, hydride-mediated reductive cross-coupling
a 

 

At this point we were unsure why the low alkane conversions were not accompanied by significant 

amounts of the intermediary alkenes. In the cases with low conversion to the alkane 11, careful 

examination of the crude reaction mixtures revealed that the vinyl halide 10 was undergoing reductive 

       Conversion (%)
b
 

Entry R
1
 X R

2
 Alkane  11 

1 Ph Br Me 53 11a 

2 Ph Br Et 99 (84
c
) 5 

3 Ph Br 
i
Pr 87 11b 

4 Ph Br 
t
Bu 37

d
 11c 

5 Ph Br Ph 41
e
 11d 

6 Ph Br Allyl 35 11e
f 

7 4-Me-Ph I Et 92 (87
c
) 11f 

8 4-Me-Ph Br Et 91 11f 

9 4-Me-Ph Cl Et 13
g
 11f 

10 4-Cl-Ph Cl Et 60 5 

11 4-Cl-Ph Br Et 66 5 

12 3,5-MeO-Ph Br Et 81 11g 
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homo-coupling to give the 1,4-diarylbutane 13, presumably via the 1,4-diarylbutadiene 12 (Figure 2). 

 

 

Figure 2. Proposed homocoupling of vinyl halides. 

 

In order to address this we examined the time between Grignard and hydride addition, the time over 

which the Grignard reagent was added, and the initial temperature of the reaction. Under our standard 

reaction conditions using 
i
PrMgCl, variation of all these parameters led to very similar results with no 

increase in the conversion to the target alkane. We therefore suspected the hydride reagent was 

causing the low conversions. Carrying out the reaction in the absence of Grignard reagent confirmed 

this. Reaction of -bromostyrene 4 with 10 mol% [9FeCl2] and 10 equivalents of lithium N,N-

dimethylaminoborohydride gave 74% conversion to the fully reduced homo-coupled product, 1,4- 

diphenylbutane 14, and 26% of the mono-reduced homo-coupled alkene 15 (Scheme 1). Presumably 

when cross-coupling is slow, for example with 
t
BuMgCl, the rate of hydride-mediated homo-coupling 

becomes competitive with the rate of Grignard-mediated cross-coupling. Thus, on addition of the 

hydride reagent any remaining vinyl halide 10 can either undergo reductive homo-coupling to give the 

diarylbutane 13 or reductive cross-coupling to alkane 11. Further studies are ongoing to overcome and 

exploit this problem. 

 

 

Scheme 1. Iron-catalysed, hydride-mediated homo-coupling of -bromostyrene 

 

In summary, we have developed an iron-catalysed, hydride-mediated reductive cross-coupling 

reaction for the preparation of alkanes from vinyl halides and Grignard reagents using a simple, 

bench-stable iron(II) pre-catalyst and commercially available reagents. This transformation gives the 

product of a formal sp
3
-sp

3
 cross-coupling reaction by the in situ reduction of an intermediate alkene 

to the alkane. The scope and limitations of this reaction have been tested and moderate to excellent 

conversions have been observed in the reductive cross-coupling of vinyl bromides, iodides and 

chlorides with aryl and alkyl Grignard reagents.  
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