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Abstract

Secretoneurin (SN) is a functional secretogranin II (SgII)-derived peptide that stimulates luteinizing

hormone (LH) production and its release in the goldfish. However, the effects of SN on the pituitary of

mammalian species and the underlying mechanisms remain poorly understood. To study SN in

mammals, we adopted the mouse LβT2 gonadotropin cell line that has characteristics consistent with

normal pituitary gonadotrophs. Using radioimmunoassay and real-time RT-PCR, we demonstrated that

static treatment with SN induced a significant increment of LH release and production in LβT2 cells in

vitro. We found that GnRH increased cellular SgII mRNA level and total SN-immunoreactive protein

release into the culture medium. We also report that SN activated the extracellular signal-regulated

kinases (ERK) in either 10-min acute stimulation or 3-h chronic treatment. The SN-induced ERK

activation was significantly blocked by pharmacological inhibition of MAPK kinase (MEK) with PD-

98059 and protein kinase C (PKC) with bisindolylmaleimide. SN also increased the total cyclic adenosine

monophosphate (cAMP) levels similarly to GnRH. However, SN did not activate the GnRH receptor.

These data indicate that SN activates the protein kinase A (PKA) and cAMP-induced ERK signaling

pathways in the LH-secreting mouse LβT2 pituitary cell line.

Keywords: secretogranin II, gonadotropin-releasing hormone

AS ONE OF THE MAJOR GRANIN PROTEINS, secretogranin II (SgII) was initially characterized in bovine anterior

pituitary (31). It is an ∼600-amino acid, very acidic, tyrosine-sulfated protein located in secretory

granules of vertebrate neuroendocrine cells (4, 8, 22, 26). Numerous small potentially bioactive peptides

are derived from SgII precursor processing, but only the 33- to 34-amino acid segment, termed

secretoneurin (SN), is conserved from fish to mammals (13, 48). In human pituitary, SgII

immunoreactivity (IR) is localized to gonadotrophs, thyrotrophs, and corticotrophs (39). SgII IR was

detected in the secretory granules and colocalized with LH in bovine gonadotroph, indicating the

copackaging of granins and gonadotropins to form secretory granules (3). Two types of secretory

granules were visualized in rat gonadotrophs: a large-sized moderately electron-dense granule and a

small-sized electron-dense granule. The latter granule contained exclusively the immunoreactive signals

of SgII and LH (41). In addition to the pituitaries of cow, rat and mouse, SgII was found in the LH-

positive granules from female sheep gonadotrophs (6). The above immunocytochemical studies and

other work on in vivo LH release (7) reveal an important association of SgII-related products and LH in
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Neuropeptides.

Culture and static incubation of LβT2 gonadotrophs.

RIA.

RNA isolation, cDNA preparation, and real-time RT-PCR analysis.

mammalian gonadotrophs.

Nicol et al. (28) utilized radioimmunoassay (RIA) to investigate protein release from the mouse LβT2

gonadotroph cell line. They observed that pulsatile GnRH treatments resulted in the marked increments

of both LH and SgII release together at each time point, suggesting a close correlation between the

secretions of these two proteins. Nicol et al. (29) also demonstrated that LH, but not follicle-stimulating

hormone (FSH), is coreleased with SgII and chromogranin A (CgA) in response to GnRH in LβT2 cells,

indicating that GnRH-stimulated LH secretion is via the regulated granin-associated pathway.

Our previous studies in the goldfish model revealed that SN not only stimulates the secretion and

production of LH in vivo (4) and in vitro (45, 47, 50) but is also generated from proteolytic processing of

SgII in the brain and pituitary (46, 47). Therefore, both neuroendocrine and paracrine sources of SN are

involved in stimulation of gonadotroph function in the goldfish pituitary (50). We hypothesize that the

well-conserved SN peptide also plays a role in regulating LH secretion in mammals. The mouse LβT2

gonadotroph cell line was chosen because it is a highly amenable model system that exhibits the major

functional characteristics consistent with those of normal mammalian pituitary gonadotrophs (38) and

produces SgII (28, 29), and intracellular signal transduction pathways are well described (14, 19, 20, 32,

40, 43). Our results show that SN simulates intracellular signaling pathways similar to those regulated

by GnRH. Given that mouse LβT2 cells also release SN-immunoreactive peptides, SN may be part of an

paracrine and/or autocrine mechanism regulating LH release.

MATERIALS AND METHODS

The mammalian GnRH agonist [mGnRH-A (Des-Gly , D-Leu , Pro-NHEt )-LHRH]

was purchased from Bachem Bioscience (King of Prussia, PA). The 33-amino acid mouse SN (mSN)

peptide was synthesized on Fmoc-PAL-PEG polystyrene solid support by using an automated peptide

synthesizer (Pioneer; PE-PerSeptive Biosystems, Framingham, MA) following HATU/DIEA-mediated

Fmoc chemistry and purified by reversed-phase HPLC (2).

The LβT2 gonadotroph cell line was generously

provided by Dr. P. Mellon (University of California, San Diego, CA). The culture method was described

previously (38). Prior to each static incubation experiment, the cells were plated in 24-well culture plates

at a density of ∼2.5 × 10  cells/well or six-well culture plates at a density of ∼2.0 × 10  cells/well and

cultured in the 5% CO  air at 37°C for 48 h. At the beginning of experimentation, the medium was

replaced with DMEM containing either 10 nM mGnRH-A or various doses of SN (1–100 nM). After the

individual static treatments of 3, 6, and/or 12 h, depending on the experiment, media were collected and

stored at −20°C for radioimmunoassay of LH. Moreover, cells were removed from the plate bottom and

kept at −80°C for RNA or protein extraction. For the study of the signaling pathway, cells were starved in

serum-free DMEM overnight in a wet 5% CO  atmosphere at 37°C at first before the static treatment of

mGnRH-A (100 nM) and SN (10 and/or 100 nM) for 10 min or 3 h. For blocking the PKC-MAPK

pathway, 20 μM PD-98059 (a MEK inhibitor; Cell Signaling Technology, Danvers, MA) and 2 μM

bisindolylmaleimide I (BIM-1, a PKC inhibitor; Calbiochem, La Jolla, CA) were utilized to pretreat the

LβT2 cells for 1 and 0.5 h, respectively, prior to the 10-min acute stimulation of mGnRH-A (100 nM)

and SN (100 nM). PD-98059 and BIM-1 were chosen because they were shown to be effective in other

experiments with LβT2 cells (19).

The LH levels in the culture medium were assayed by a mouse LH-specific RIA, as described

previously, and validated using the LβT2 cell line (24, 28, 29). The intra- and interassay coefficients of

variance were <10% for LH RIA. For the SN assay, 1 million LβT2 cells were treated with 10 nM

mGnRH-A for 6 and 12 h, and the culture medium was lyophilized and resuspended in 150 μl of RIA

buffer. The SN RIA was performed as described (12). The RIA detects SN (SgII 154–186) and any larger

protein derived proteolytically from SgII containing the SN sequence. The linear range of the RIA was

2–60 fmol. Expectedly, gel filtration analysis (16) of 60 fractions of LβT2 cell culture medium indicated

that ∼52 and 27% of the total SN IR was SN and the SgII precursor, respectively (data not shown).

After a 6-h static incubation with

mGnRH-A and SN, the LβT2 cells were carefully washed with 1× PBS. Total RNA was isolated using the

RNeasy Micro Kit (Qiagen, Hilden, Germany), following the company's standard protocol. cDNA
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Intracellular protein extraction and Western blot analysis.

Measurement of total cAMP level.

GnRH receptor activation assay.

Data analysis.

synthesis and real time RT-PCR methods and validation steps were described previously by our

laboratory (23). Briefly, after RNA levels were measured using the NanoDrop ND-100

Spectrophotometer (Thermo Scientific, Wilmington, DE), aliquots of 2 μg of DNA-free RNA were used to

synthesize cDNA with 200 ng of random primers (Invitrogen, Carlsbad, CA) and Superscript II RNase

H  reverse transcriptase (Invitrogen). The PCR primers were designed using Primer 3

(http://frodo.wi.mit.edu), verified by IDT OligoAnalyzer 3.1

(http://www.idtdna.com/analyzer/Applications/OligoAnalyzer), and synthesized by Invitrogen. Based

on the published mouse sequences, the primer sets in the present investigation are LHβ (NM_008497:

forward 5′-CTGTCAACGCAACTCTGG-3′, reverse 5′-AGGGCTACAGGAAAGGAG-3′), SgII

(NM_009129: forward 5′-CTACCCTGGAGTCTGTGTTC-3′, reverse 5′-TTGCTGTCTCTCACCTCTTC-

3′), CgA (NM_007693: forward 5′-AGCATCCAGTTCCCACTT-3′, reverse 5′-

AAGCCTCTGTCTTTCCATC-3′), and 18S ribosomal RNA (X00686: forward 5′-

GATACCGTCGTAGTTCC-3′, reverse 5′-ATCTGTCAATCCTGTCC-3′) as a control for RNA loading.

Depending on the sequence, amplification of cDNAs was performed with 150–300 nM of primers using

the Mx3000 Mulitplex Quantitative PCR System (Stratagene, La Jolla, CA).

The LβT2 cells were removed from the six-well

culture plates and collected by centrifuging at 2,000 rpm for 10 min. After these cells were sonicated in a

homogenizing buffer, a protein extract was obtained from the supernatant and analyzed by Western

blots, as described previously (47). Our anti-goldfish SN antiserum (dilution: 1:2,000–1:4,000) was

generated against the 15-amino acid antigenic peptide YTPQKLATLQSVFEE, which is the most

conserved central core of the SN sequence between various vertebrate species (46). The antibody

specifically recognizes SN in fish and mammals, including human (46, 48). The anti-actin antibody

(A2066, dilution: 1:500; Sigma, St. Louis, MO), phospho p44/42 MAP kinase (ERK1/2; Thr /Tyr )

antibody (9101S, dilution: 1:600–1:1,000; Cell Signaling Technology), and p44/42 MAPK (ERK1/2)

rabbit antibody (9102, dilution: 1:1,000; Cell Signaling Technology) were purchased from the indicated

suppliers. Both MAPK antibodies were previously validated for use on LβT2 cells (20).

The LβT2 cells was preincubated with serum-free DMEM for 15 min and

then changed to DMEM with 100 nM mGnRH-A and/or 100 nM SN and incubated for 0.5 h. The

intracellular and extracellular cAMP level was determined as described previously (10, 17, 36). Total

cAMP level is the sum of the intracellular and extracellular cAMP levels.

Human embryonic kidney (HEK)-293 cells transfected with a GnRH

receptor (GnRHR) reporter construct were used to test the possibility that SN could activate the GnRHR.

The experimental protocol was described in detail previously by Oh et al. (30). The cellular transfection

was performed using the SuperFect transfection kit (Qiagen, Chatsworth, CA), 100 ng of rat GnRHR

cDNA that was constructed at EcoRI and XbaI sites of pcDNA3 (Invitrogen, San Diego, CA), and 200 ng

of SRE-luc (luciferase) vector [containing a single copy of the serum response element (SRE)

CCATATTAGG followed by c-fos basic promoter] along with 200 ng of the internal control plasmid

pCMV-Gal. The cells were treated with natural mGnRH and/or rat SN (Anygen, Gwangju, South Korea)

for 6 h, and then the luciferase activity in the cell extract was determined.

Data were expressed as means ± SE. The statistical analyses were carried out using Sigma

Stat version 3.5. The effects of SN and mGnRH-A on LH release and mRNA levels of LHβ, FSHβ, SgII,

and CgA were analyzed using one-way analysis of variance (ANOVA) followed by the Fisher least

significant difference (LSD) test. When the values were nonparametric, data were naturally log-

transformed before one-way ANOVA. When examining the effect of 10 nM mGnRH-A on SgII

processing and SN IR protein release, we utilized either the t-test (for parametric data) or the Mann-

Whitney rank sum test (for nonparametric data) to compare control and mGnRH-A-treated groups. The

phospho-ERK1/2 and total ERK1/2 data were normalized by the average signal intensity for each

membrane. The ratios between normalized phospho-ERK1/2 and total ERK1/2 levels were examined by

one-way or two-way ANOVA followed by Fisher LSD test to determine specific differences among

treatments. If the data were nonparametric, the Kruskal-Wallis one-way ANOVA on ranks was used.

Means were considered significantly different if P < 0.05. Results are presented as means ± SE. The fold

change represents the ratio of the means of two groups of data (i.e., treatment over control/basal).
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Dose response and time course studies of SN's effect on LH release.

Expression of LHβ, SgII, and CgA in LβT2 cells.

Evaluation of anti-goldfish SN antiserum for the detection of mSN.

Effects of 6- and 12-h mGnRH-A treatments on SgII-immunoreactive products in mouse LβT2 pituitary cells.

RESULTS

Various concentrations (1, 10, and 100

nM) of SN were chosen for the time course and dose response study of LH secretion from LβT2 cells. The

levels of LH release to the culture medium increased from 3 to 12 h in the control group as well as in the

mGnRH-A and SN treatments. We adopted 10 nM of mGnRH-A as the positive control in this

experiment (28). After 3 h of treatment, mGnRH-A induced a 3.1-fold increment of LH levels (P <

0.001) compared with the control (Fig. 1). The LH levels after the exposure to 1 and 10 nM SN were 2.9-

(P < 0.001) and 2.6-fold (P < 0.01) higher, respectively, than the time-matched controls. After 3 h, the

LH level in the 100 nM SN group was increased 1.6-fold, but this did not reach statistical significance (P

> 0.05). After a 6-h incubation, LH increased 3.4-fold (P < 0.001) in response to mGnRH-A; exposures

to all SN doses (1–100 nM) enhanced (P < 0.05) LH levels in culture medium 2.9- to 2.7-fold (Fig. 1). In

contrast, the effects of mGnRH-A and SN were no longer evident after 12 h (Fig. 1).

Another experiment was carried out to explore the effects of

SN on LHβ-subunit mRNA levels. Cellular 18S ribosomal RNA levels were not significantly modified

under any treatment (data not shown), and thus it was chosen as an internal standard to normalize the

expression of LHβ-subunit and other genes. In the dose response study (Fig. 1), there was no significant

difference between 1- and 10-nm SN effects on stimulating LH release after either 3 or 6 h. Previous

studies using goldfish pituitary cells in vitro (45, 49) indicated that 10 nM goldfish SN consistently

enhanced LH production, so we examined a similar dose range (1, 10, 100 nM) of mouse SN to

investigate SN-induced LHβ gene expression in LβT2 cells. In the presence of 10 nM mGnRH-A, the LHβ

mRNA level was increased twofold (P < 0.001) compared with the control. This result was consistent

with previous findings using LβT2 cells (38). Treatments of 1–100 nM SN induced 1.8- to 1.6-fold (P <

0.05) increments in LHβ gene expression (Fig. 2A). Furthermore, SN-induced LHβ mRNA levels

exhibited a pattern similar to that of LH secretion after 6 h, which is shown in Fig. 1. Mammalian

GnRH-A-induced LHβ mRNA in cells and LH levels in the culture medium were similar to the effect of

SN. Treatment with mGnRH-A also upregulated SgII mRNA levels 2.4-fold (P < 0.001) compared with

the control. In contrast, SgII mRNA was not affected by any dose of SN during the 6-h static incubation

of LβT2 cells (Fig. 2B). Compared with SgII expression, CgA mRNA levels were not affected by mGnRH-

A and were somewhat reduced by 1 (57%, P < 0.001) and 10 nM (71%, P < 0.05) SN in the 6-h-treated

cells (Fig. 2C).

Our anti-goldfish SN antiserum was

generated against the 15-amino acid antigenic peptide YTPQKLATLQSVFEE, which is the most

conserved part of the SN sequence between various vertebrate species (46). The antigenic peptide shows

80% identity to the middle portion of mSN (48), indicating the possibility of using the anti-goldfish

antibody to examine the SN IR in mice. In addition, our anti-goldfish SN antibody was also used to

detect the SN-IR signals within the pituitary cells in human, rat, and trout (48, 49). To evaluate the

specific binding ability of anti-goldfish SN antibody to the protein extracted from mouse LβT2 pituitary

cells, we carried out Western blot analysis using anti-goldfish SN antiserum preabsorbed with its

antigenic peptide goldfish SN (Fig. 3). We detected several SN-immunoreactive protein bands when using

the anti-goldfish SN antiserum (Fig. 3A, lane I), whereas no signal was observed in the membrane that

was incubated in the SN antibody preabsorbed with SN (Fig. 3A, lane II). These results confirmed that

the SN antiserum recognized SN-associated proteins derived from mouse pituitary cells.

Under a longer enhanced chemiluminescence exposure time than that of Fig. 3A, two strong high-

molecular-weight (MW) bands and two weak low-MW signals were observed in different samples (

Fig. 3B). A standard formula (y = 116.65x , r  = 0.999) was established for describing the

relationship between apparent MW (y) and gel running distance (x) based on protein standards. The

estimated MWs of the two strong and two weak bands were ∼71, ∼46, ∼42, and ∼32 kDa (Fig. 3B). The

∼71-kDa band is corresponding to the size of the unprocessed mouse SgII precursor. The mouse SgII

sequence is 617 amino acids with a calculated MW of 70.6 kDa. Expectedly, the other SN-

immunoreactive signals were noticeably smaller than the calculated MW of the SgII precursor,

indicating that they are processing products derived from this granin.

We

focused on GnRH regulation of SgII products. After a 6-h static incubation, 10 nM mGnRH-A

−0.7 37 8 2
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SN activates the PKC-MAPK cascade in LβT2 cells.

SN regulates the cAMP levels of LβT2 cells.

SN is not able to activate the GnRHR.

significantly decreased the cellular levels of SgII, ∼46-kDa, and ∼32-kDa SN-immunoreactive

polypeptides by 49 (P = 0.05), 28 (P < 0.001), and 37% (P = 0.05), respectively, and also induced a 36%

but statistically nonsignificant decrease (P = 0.505) in the level of ∼42-kDa, SN-immunoreactive, SgII-

derived peptide (Fig. 4, A and B). Twelve-hour treatment of mGnRH-A (10 nM) also modulated the

levels of all SN-immunoreactive peptides. The mGnRH-A treatment decreased the ∼71-, ∼46-, ∼42-,

and ∼32-kDa SN-containing proteins by 63 (P < 0.01), 31 (P < 0.001), 41 (P < 0.05), and 49% (P =

0.05), respectively (Fig. 4, C and D). Note that β-actin served as the protein-loading control and did not

change with treatments (Fig. 4, B and D). Furthermore, 10 nM mGnRH-A increased

radioimmunoassayable SN IR in the culture medium level 3.0- (P < 0.05) and 2.3-fold (P < 0.001) after

6 and 12 h, respectively (Fig. 5, A and B).

ERK is a classic MAP kinase involved in GnRH-

stimulated LH production and release in LβT2 cells (32). In this experiment, Western blot analysis was

used to detect the changes of active phospho-ERK1/2 and total inactive ERK1/2 levels under various

treatments. At first, we examined the acute effect of SN on the activation of ERK1/2. Serum-starved

LβT2 cells were treated with 100 nM mGnRH-A 10 and 100 nM SN for 10 min. As a positive control

group, the treatment of 100 nM mGnRH-A increased activated ERK1/2 3.0-fold (P < 0.001; Fig. 6A),

which is consistent with the data described previously by others (19). Similar to the action of mGnRH-A,

10 and 100 nM SN were capable of inducing 2.2- (P < 0.01) and 4.6-fold (P < 0.001) rapid increments,

respectively, of phospho-ERK1/2 levels (Fig. 6A). The 100-nM SN-stimulated phospho-ERK1/2

increment was significantly higher than that of 100 nM mGnRH-A by 1.6-fold (P = 0.001; Fig. 6A).

When LβT2 cells were exposed to the low-dose treatment for a longer time (3 h), 10 nM SN also

significantly increased the phospho-ERK1/2 levels 1.4-fold (P < 0.05; Fig. 6B). To further define the

signaling pathways involved in activation of ERK by SN, the cells were pretreated with PD-98059 and

BIM-1 to inhibit MEK and PKC, respectively, two major kinases upstream of ERK. We compared the

relative change of activated ERK1/2 after the 10-min stimulation with 100 nM SN and 100 nM

mGnRH-A. PD-98059 significantly reduced both the mGnRH-A- and SN-induced activation of ERK1/2

by 48 (P < 0.05) and 40% (P < 0.01), respectively (Fig. 6C). BIM-1 also significantly (P < 0.001) reduced

both the mGnRH-A- and SN-induced activation of ERK1/2 by 96 and 76%, respectively (Fig. 7A).

After 0.5-h static treatments of mGnRH-A (100 nM) and SN

(100 nM), the total cAMP levels were measured for LβT2 cells. As depicted in Fig. 7B, both mGnRH-A

and SN significantly increased the total cAMP levels 1.4- (P < 0.05) and 1.3-fold (P < 0.05).

In HEK-293 cells transfected with the rat GnRHR, natural mGnRH

significantly increased SRE-luc activity over the range of 1–1,000 nM (Fig. 8), confirming previous data

using the same reporter system (30). However, rat SN (1–1,000 nM) did not affect SRE-luc activity (

Fig. 8A). Moreover, there were no interactions between mGnRH and SN; treatment with 10 μM SN did

not alter (P > 0.05) the SRE-luc response to 100 nM mGnRH (Fig. 8B).

DISCUSSION

Our previous studies in the goldfish model demonstrated that SN has neuroendocrine and paracrine

effects to stimulate LH secretion and production in dispersed pituitary cells (47, 50). We have suggested

that the elevation of intracellular Ca  level is a potential transduction signal mediating SN action on

goldfish LH cells. This SN-induced Ca  signaling mechanism was also demonstrated to be partly

independent of GnRH-stimulated Ca  entry (47). However, the SN signaling pathway in gonadotrophs

is still unclear. Therefore, we chose to study SN action on the LβT2 cell. They have many of the common

characteristics of normal mouse pituitary cells, and the signaling pathways to mediate GnRH-stimulated

LH release are well studied (32). In agreement with our previous research in goldfish (47), the present

study revealed that SN increased not only LH secretion but also the mRNA levels of the LHβ-subunit in

mouse LβT2 cells. Therefore, the effect of SN on LH appears to be evolutionarily conserved and indicates

for the first time a potential regulatory role for SN in mammalian reproduction.

Various studies in the goldfish have shown that SN induces LH release and LHβ-subunit gene expression

in pituitary cells (4, 45, 47). However, studies concerning the regulatory effects of SN in mammalian

neuroendocrine and central nervous systems are quite limited. Secretoneurin was demonstrated to dose-

dependently increase dopamine outflow from superfused rat striatal slices (34). An in vivo experiment
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showed that local infusion of SN into the substantia nigra and neostriatum of halothane-anesthesized

rats elevated the extracellular concentrations of dopamine, γ-aminobutyric acid, and glutamate (44).

Here, we adopted mouse LβT2 gonadotrophs to study the effects of SN on LH release. In this cell line,

there is a close correlation between GnRH-induced LH release and secreted SN-immunoreactive SgII-

like proteins. A possible regulatory effect of SgII (or derived peptides) on LH secretion from LβT2

gonadotrophs had been proposed previously (28). We found that the effective concentrations of SN to

stimulate LH release in vitro from both LβT2 gonadotrophs and goldfish pituitary fragments are similar

(45). A similar dose range and effect of SN were also observed in primary cultures of dispersed goldfish

pituitary cells. Six-hour static treatment of 10 nM SN significantly increased LH secretion from

gonadotrophs (47). We conclude that low physiologically relevant nM doses of SN are able to stimulate

LH secretion from pituitary cells.

During the 3- and 6-h static cultures, the LβT2 cells were very sensitive to even the lowest dose of SN (1

nM) tested. Similar to the effect of SN in LβT2 cells, a low-dose pulse of 10 nM GnRH could induce more

LH release than 50 and 200 nM GnRH in the same cell line (28). Unlike LβT2 gonadotrophs, which are

tumor derived, dispersed normal mouse pituitary cells show a classical LH response to increasing doses of

GnRH after 4-h static treatments over a wide range of GnRH concentrations (10–1,000 nM) (1). This

difference between LβT2 gonadotrophs and normal pituitary cells is likely due to alteration of secretory

pathways, a well-known characteristic of the highly selected LβT2 cell line. A previous investigation

revealed that 10 and 100 nM GnRH evoked a similar increment in exocytosis as well as intracellular

Ca  level within a single LβT2 cell (37). These authors' interpretation of the result was that only ∼400

vesicles were found to be involved in fusion with the plasma membrane for further secretion. Thus,

secretion under the long-term stimulation of the LβT2 cell might be highly limited by the availability of

secretory products (37). The secretory limitation was also observed in long-term GnRH-evoked LH

release; the LH secretory response declined dramatically under the repeated stimulation of GnRH for

several hours in LβT2 cells (38). In contrast, multiple administrations of GnRH to perifused normal rat

pituitary cells always induced dose-dependent LH release (21). It is likely that the absence of a dose

response to SN-induced LH release over the dose range tested results from this limitation of secretory

vesicles in the mouse LβT2 cell line. Nevertheless, we show for the first time that SN stimulates LH

release from mouse pituitary cells in a manner similar to that which we have documented for normal

goldfish pituitary cells in vitro.

To further examine the effects of SN on LH generation, we demonstrated that the increasing doses of SN

induced similar increment in LHβ gene expression within LβT2 gonadotrophs, consistent with the pattern

of SN-induced LH release. An unvaried LH synthesis under increasing doses of SN treatments might be

an alternative explanation for the absence of a dose-dependent effect of SN on LH secretion in LβT2 cells.

Interestingly, the levels of SN-induced LH release (2.6- to 2.8-fold increase) were higher than those of

LHβ-subunit mRNA (1.6- to 1.8-fold increment). SN might affect not only LHβ mRNA synthesis but also

other pathways associated with LH protein generation and secretion. This possibility has been suggested

but never tested in a previous study using this cell line (28). The acute GnRH-induced LH protein

synthesis and secretion were dependent mainly upon the activation of translation initiation proteins 4E-

binding protein 1 and eukaryotic initiation factors 4E/4G but not LHβ transcription. The stimulation of

these proteins by GnRH was mediated by the MAPK/ERK pathways (27). The stimulatory effects of SN

on the MAPK cascade in the LβT2 cell line (this study) indicate the possibility of multiple pathways

mediating SN-induced LH release.

In comparison with pulsatile GnRH stimulation that increased the secretion of both SgII and CgA from

perifused LβT2 cells (28), we determined that static exposure to mGnRH-A also increased the cellular

level of SgII mRNA but had no remarkable effect on CgA gene expression. However, Nicol et al. (28)

reported that the pulses of GnRH did not alter SgII mRNA level in estradiol- and dexamethasone-treated

LβT2 cells. The variation between our data and early observations might be attributed to differences in

GnRH stimulation strategies and the different in vitro models adopted. Under the same conditions as the

GnRH treatment, SN was unable to elicit any changes in SgII mRNA levels in our experiment with LβT2

cells. In contrast, SN significantly decreased CgA mRNA levels at the doses of 1 and 10 nM. These data

indicate that, under the in vitro conditions described, mGnRH-A and SN are acting differentially on

expression of SgII and CgA. They are both granins but from distinctly different molecular families (48).

2+

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B44
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B45
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B47
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B37
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B37
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B38
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B27
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B48


8/6/13 Secretoneurin stimulates the production and release of luteinizing hormone in mouse LβT2 gonadotropin cells

www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/ 7/16

Our previous studies of SN generation in goldfish revealed the formation of several SgII-derived proteins

and polypeptides. In the pituitary, we detected proteins of molecular masses of ∼57, ∼30, ∼19.6, ∼15,

and ∼12 kDa in addition to the free SN peptide (molecular mass: 3,655 Da) (46, 47). Using a similar

strategy, we discovered four SN-immunoreactive signals with distinct molecular masses predicted as

∼71, ∼46, ∼42, and ∼32 kDa in mouse LβT2 gonadotrophs. Moreover, the ∼71- and ∼46-kDa proteins

showed significantly higher levels than the ∼42- and ∼32-kDa polypeptides. Some of the resultant

processing products have sizes similar to those reported for other mammalian SgIIs (9, 11, 39). Almost

all of the SgII precursor protein is processed to generate free SN in normal rat pituitary (18), and

gonadotrophs secrete SN-immunoreactive products (Ref. 28 and this study).

It was demonstrated previously using RIA that GnRH decreased the cell content and increased the

secretion of total SgII-related proteins from LβT2 cells (28). Under the conditions of in vitro culture, the

speed of GnRH-induced SgII processing appears to be faster than SgII generation at some time points,

which explains the observed decrease in cellular SgII-related proteins (28). Consistent with this, our

Western blot analysis showed that GnRH was able to decrease cellular levels of SgII and its derived

proteins. Moreover, GnRH also increased SN-immunoreactive protein release from mouse LβT2 pituitary

cells and GnRH-increased SgII mRNA levels, indicating the potential for increased SgII precursor

protein production. This result is similar to what we found in goldfish in vivo (33) and in vitro (50).

These data indicate that GnRH enhances SgII synthesis and processing.

The MAPK cascade is one of the essential GnRH-activated G protein-coupled signaling pathways to

induce early genes for gonadotropin production and release. The MAPK pathway includes mainly ERK,

p38 MAPK, and c-Jun NH -terminal kinase (JNK) (32). The activated form of ERK is phosphorylated on

threonine and tyrosine residues within the phosphorylation lip (5). In the LβT2 cell line, GnRH was

demonstrated to rapidly activate ERK and p38 MAPK, but activation of JNK was weaker and slower (19).

In agreement with this previous report, our observations confirmed that the 10-min acute mGnRH-A

treatment caused the activation of ERK in LβT2 cells. Similarly to the stimulatory action of mGnRH-A,

10 and 100 nM SN also increase the ERK phosphorylation 2.2- and 4.6-fold, respectively. However,

chronic GnRH exposure can suppress PKC- and cAMP-induced ERK activation in LβT2 cells (20). In

another experiment, we found that long (3 h) exposure to a low dose (10 nM) of SN treatment still

stimulated ERK phosphorylation, but this was weaker than that observed at 10 min. MEK, in association

with GnRH-stimulated PKC and Raf, has been reported to stimulate activation of downstream ERK in

LβT2 cells (19). We also found that the inhibition of MEK with PD-98059 reduced both GnRH-A and SN-

induced ERK phosphorylation. This result indicates that SN signals through the ERK-dependent MAPK

pathway.

PKC is the most important signaling molecule to connect the G protein-coupled signal transduction and

the MAPK cascade for mediating GnRH-induced LH subunit gene transcription (25). Activation of ERK

caused by GnRH-induced PKC was reported for rat pituitary cells (42) and the mouse αT3–1

gonadotropin cell line (35). Liu et al. (19) demonstrated that GnRH activated ERK and two other MAPK

family members, JNK and p38 MAPK, via a PKC-dependent signaling pathway in LβT2 cells. We

observed that SN-induced ERK activation was significantly blocked by pharmacological inhibitors of PKC

and MEK. SN-regulated migration and number of mouse endothelial progenitor cells in the

inflammatory system are also via ERK activation (15). A previous study also showed that cAMP is

involved in activating ERK to mediate GnRH-induced LH generation in LβT2 cells (20). Moreover, cAMP

is important for GnRH-regulated G protein-coupled PKA signaling transduction in LβT2 cells (32).

Secretoneurin exposure elevated total cAMP production in LβT2 cells, providing additional evidence for a

G protein-coupled signaling pathway. To exclude the possibility that SN binds to the GnRHR to activate

these transduction pathways, we examined GnRHR-induced SRE-luc activities following SN treatments

of transfected HEK-293 cells. In this sensitive system, SN did not activate the rat GnRHR, and SN did not

interfere with GnRH action. These data support the proposal that the putative receptor-linking SN action

to cAMP-dependent and PKC-MAPK signaling pathways and LH synthesis is distinct from the GnRHR.

In conclusion, results from the present study provide the first evidence for a direct stimulatory action of

SN on LH release and LHβ-subunit mRNA levels in mammalian pituitary cells. Furthermore, we have

shown that SN activates ERK, which is likely involved in the stimulation of LHβ-subunit transcription

via multiple G protein-coupled signaling pathways, including the PKC-MAPK and cAMP-dependent
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mechanisms, in a similar manner as that observed for GnRH actions on LβT2 cells. GnRH regulates SN-

immunoreactive peptides derived from SgII in the gonadotroph, suggesting that endogenous SN is a

participant in an autocrine mechanism under the control of hypothalamic hormones. The studies of SN

production, biological activities, and functional mechanisms in a mouse gonadotroph cell line support

our hypothesis that SN is an evolutionarily conserved hormonal peptide involved in the regulation of

vertebrate reproduction (45, 47, 50). To our knowledge, the clearest example of an endocrine role for SN

is the stimulatory effects on LH release that we report in both fish and mammalian model systems. We

suggest that SN activates a G protein-coupled receptor in gonadotrophs. Future investigations must focus

on isolating the SN receptor, which has yet to be identified in any species.
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Figures and Tables

Fig. 1.

Time- and dose-dependent effects of secretoneurin (SN; 1 , 10, and 100 nM) and mammalian GnRH agonist

(mGnRH-A; 10 nM) after 3-, 6-, and 12-h static incubation on LH secretion from the mouse LβT2 pituitary  cells.

Results are presented as means ± SE (n = 9–10). One-way  ANOVA was chosen to assess the difference between

control and treatment at a given time point, followed by  Fisher least significant difference (LSD) test. Natural

logarithms were adopted if data were not normally  distributed in statistics. *Significant difference from control at

a given time point (P < 0.05).

Fig. 2.
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Assessment of the gene expression changes of LHβ (A), secretogranin II (SgII; B) and chromogranin A (CgA; C) in

LβT2 cells after 6-h static incubation with treatments of 10 nM mGnRH-A and 10 nM SN. The mRNA level was

measured by  real-time RT-PCR; 18S ribosomal RNA was used as an internal standard for sample loading control.

One-way  ANOVA was chosen to assess the difference between control and treatment, followed by  Fisher LSD test.

Natural logarithms were adopted if data were not normally  distributed in statistics. Values are expressed as mean

folds of control ± SE. *Significant difference relative to control (P < 0.05).

Fig. 3.

Western blotting analy sis of the total proteins exacted from mouse LβT2 cells using anti-SN antibody  (1 :2,000–

1:4,000). A: 30 μg of protein extracts was separated by  10% SDS-PAGE gel and detected by  anti-goldfish SN

antiserum (46). Lane I: detection using anti-SN antibody  (1 :4,000); lane II: detection using anti-SN antibody

(1:4,000) preabsorbed by  1  μM goldfish SN. B: the loading samples of lanes I and II are taken from different

culture wells. Arrows indicate 4 SN-immunoreactive signals that are ∼7 1, ∼46, ∼42, and ∼32 kDa. Their

estimated molecular weights (EMW) are calculated from a standard curve and a formula depicting the relation

between molecular weight of biotiny lated protein standards and gel running distance.

Fig. 4.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B46
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Effects of mGnRH-A (G) on intracellular content of SgII and derived peptides containing the SN sequence in LβT2

cells. A and B: levels of SN-immunoreactive (IR) proteins (∼7 1, ∼46, ∼42, and ∼32 kDa) were analy zed by

Western blots using anti-SN antibody  (dilution 1 :2,000) after 6-h treatment of 10 nM mGnRH-A. C and D: the

expression changes of SN-IR proteins under 12-h static incubation of mGnRH-A (10 nM). β-Actin was measured

as an internal standard for loading control (C). Note that no signal was observed on membranes that were

incubated in the SN antibody  preabsorbed (4°C for 18 h) with 1  μM SN (not shown), confirming prev iously

reported specificity  (46, 48). For A and C, results were presented as means ± SE of the relative expression of SN-

IR; n = 8 for both experiments. Western blots of SN and β-actin were preformed on the same membrane. The

results of ∼42- and ∼46-kDa protein intensities and SN-IR protein release after 12-h treatment were parametric,

and the rest of the data were nonparametric. When the data were nonparametric, Mann-Whitney  rank sum test

was used instead. *Significant difference between treatment and control (P < 0.05).

Fig. 5.

Ten nanomolars of mGnRH-A stimulates the release modification of SN-IR protein release into culture medium

after 6 (A) and 12 h (B). Note that Western blots of SN and β-actin were preformed on the same membrane. A t-

test was used to compare control and mGnRH-A groups. *Significant difference between treatment and control (P

< 0.05).

Fig. 6.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B46
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154532/#B48
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Action of SN to stimulate ERK1/2 in LβT2 cells. A: both mGnRH-A (100 nM) and SN (10 and 100 nM) stimulated

ERK phosphory lation. These cells were cultured in serum-free DMEM overnight and stimulated by  mGnRH-A and

SN for 10 min. Protein extracts were first-analy zed Western blots with the antibody  for phosphory lated ERK1/2

(p-ERK; II, top). After p-ERK1/2 blots were stripped, the membranes were immunoblotted again with the total

ERK1/2 antibody  (II, bottom). In I, data were presented as means ± SE of the normalized ratio between p-

ERK1/2 and total ERK1/2; n = 5. One-way  ANOVA was chosen to assess the difference from control, followed by

Fisher LSD test. *Significant difference between treatment and control (P < 0.01). B: SN (10 nM) activated ERK

after 3 h. Cells were stimulated with a low dose of SN for 3 h in the static incubation. Western blots were used to

assess p-ERK1/2 (II, top) and total ERK (II, bottom). The normalized ratio of 3-h-induced p-ERK/total ERK is

shown as means ± SE in I. *Statistical difference (P < 0.01, t-test; n = 5). C: PD-98059 (20 μM, a MEK inhibitor)

attenuated ERK1/2 phosphory lation. LβT2 cells were cultured in serum-free medium overnight and pretreated

with 0.1% DMSO (the PD-98059 vehicle) and 20 μM PD-98059 for 1  h and then stimulated by  mGnRH-A (100 nM)

and mouse SN (mSN; 100 nM), respectively , for 10 min. Cellular exacts were separated by  10% SDS-PAGE gel and

detected by  p-ERK and ERK1/2 antibodies. In I, relative change of normalized ratio (p-ERK/ERK) with respect to

the group-matched control value was shown as means ± SE (n = 6). *P < 0.05 vs. treatment without the MEK

inhibtor PD-98059. The statistical difference was analy zed by  2-way  ANOVA followed by  Fisher LSD method. In

II, the changes of signal intensities for p-ERK1/2 (top) and total ERK1/2 (bottom) were exhibited. Note that

Western blots of ERK and p-ERK were preformed on the same membrane.

Fig. 7.
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A: bisindoly lmaleimide (BIM-1; a PKC inhibitor) reduced ERK1/2 phosphory lation. LβT2 cells were cultured in

serum-free DMEM overnight and pretreated with 0.1% DMSO (BIM-1  vehicle) and 2 μM BIM-1  for 0.5 h and then

stimulated by  mGnRH-A (100 nM) and SN (100 nM), respectively , for 10 min. Cellular exacts were separated by

10% SDS-PAGE gel and detected by  p-ERK1/2 and ERK1/2 antibodies. In I, relative change of normalized ratio (p-

ERK/ERK) with respect to the group-matched control value was shown as means ± SE (n = 4). Different letters

represent statistical differences (P < 0.001 vs. treatment without BIM-1). The statistical difference was analy zed

by  2-way  ANOVA, followed by  Fisher LSD method. In II, the changes of signal intensities for phospho-ERK1/2

(top) and total ERK1/2 (bottom) were exhibited. B: the effects of SN (100 nM) and mGnRH-A (100 nM) on the

total cAMP levels of LβT2 cells after 0.5 h. Results presented means ± SE; n = 6. One-way  ANOVA was chosen to

assess the difference between basal and treatments. The data were nonparametric and the Student-Newman-

Keuls method was used for analy sis. *Significant difference relative to control (P < 0.05). Note that Western blots

of ERK and p-ERK were preformed on the same membrane.

Fig. 8.

a –d
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Lack of SN activ ity  on rat gonadotropin-releasing hormine receptor (GnRHR). human embry onic kidney -293

cells were transiently  transfected with 100 ng of rat GnRHR and 200 ng serum response element (SRE)-luc

reporter construct. A: the SRE-driven transcriptional activ ity  in response to various concentrations of 1–1,000

nM (10 –10  mol/l) for natural mGnRH and rat SN. *P < 0.001 vs. the basal SRE-luc activ ity  (n = 3). Data were

analy zed by  2-way  ANOVA followed by  Fisher LSD method. B: mGnRH (100 nM)-induced GnRHR activ ity  in the

presence or absence of rat SN (10 μM). Data are shown as means ± SE (n = 3). One-way  ANOVA followed by  Fisher

LSD method was used to assess the difference between basal and treatments. Different letters indicate that

means are significantly  different from each other (P < 0.001).
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