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Abstract

We consider a common investment project that is vulnerable to a self-fulfilling co-
ordination failure and hence is strategically risky. Based on their private information,
agents – who have heterogeneous investment incentives – form expectations or “sen-
timents” about the project’s outcome. We find that the sum of these sentiments is
constant across different strategy profiles and it is independent of the distribution of
incentives. As a result, we can think of sentiment as a scarce resource divided up among
the different payoff types. Applying this finding, we show that agents who benefit lit-
tle from the project’s success have a large impact on the coordination process. The
agents with small benefits invest only if their sentiment towards the project is large per
unit investment cost. As the average sentiment is constant, a subsidy decreasing the
investment costs of these agents will “free up” a large amount of sentiment, provoking a
large impact on the whole economy. Intuitively, these agents, insensitive to the project’s
outcome and hence to the actions of others, are influential because they modify their
equilibrium behavior only if the others change theirs substantially.

JEL classification: C7, D8, O12.
Keywords: Heterogeneous Agents, Global Games, Poverty Traps, Strategic Comple-
mentarity, Representative Agent.

1 Introduction

Coordination failures can be phenomenally costly to society. Perhaps the most important
examples are missed opportunities for economic development.1 Indeed, Debraj Ray (2000)
sets out his survey of development economics based on the following observation:
∗We thank Tijmen Daniëls, Gianni De Fraja, Frank Heinemann, Sergei Izmalkov, Eugen Kováč, Alessan-

dro Pavan, Rani Spiegler, Colin Stewart, Yosuke Yasuda, and seminar participants at U Cambridge, CERGE,
CEU, U Edinburgh, Humboldt U, Queens U (Belfast) and TU Berlin for helpful comments.
†email: jakub.steiner@ed.ac.uk
‡email: jozsef.sakovics@ed.ac.uk
1Coordination problems also arise in bank runs (Diamond and Dybvig, 1983), currency attacks (Obstfeld,

1996), law enforcement (Sah, 1991), standard setting (Farrell and Saloner, 1985), technology adoption (Katz
and Shapiro, 1986), the use of fiat money (Kiyotaki and Wright, 1989) etc.

1



“Paul Rosenstein-Rodan (1943) and Albert Hirschman (1958) argued that [lack
of] economic development could be thought of as a massive coordination failure,
in which several investments do not occur simply because other complementary
investments are not made. . . ”

The risk of such a damaging coordination failure is an obvious cause for public inter-
vention. As intervention is costly, the policy-maker will want to target it on the agents
who have the largest impact in the coordination process. In this paper, we lay down the
foundations of how to identify these.

Which agents are most influential in the development process? Those from towns or
those from the countryside? The skilled ones or the unskilled ones? All these groups differ
in their investment costs and in their benefits from development. Should the subsidies be
targeted on those with large or low benefits? On those with low or high investment costs?
Distinguishing the groups with a large influence on the coordination process is a complex
task, as in the presence of externalities the investment incentives of any group affect the
behavior of all the other groups. Thus, without a formal model, it is hard to identify the
natural target for intervention.

In our model, each agent from a large population simultaneously decides between two
courses of action, say, whether to invest in a “project” or not. If the project succeeds,
the investors enjoy private benefits which exceed the incurred investment costs. Agents
who do not invest do not receive the benefits, so free riding is not an issue. The project
succeeds if and only if the proportion of investing agents exceeds a critical level. The agents
receive noisy private signals about the critical level of investment, which leads to strategic
uncertainty and possibly to a coordination failure.

To assess the influence of different payoff types on the coordination outcome, we examine
a heterogeneous population, which consists of homogeneous groups, g, with corresponding
benefits bg and costs cg. For the moment, let us assume that the project’s outcome does
not depend on the investors’ group identities. For example, in the context of technology
adoption this means that network externalities depend only on the measure of adopting
agents and not on the incurred adoption costs.

When the noise is small, we are able to express the coordination outcome of the het-
erogeneous population as the coordination outcome of a (virtual) homogeneous population
endowed with a representative payoff function. The representative payoffs turn out to be
a weighted average of the groups’ payoffs. The – endogenously determined – weights in
this aggregation exercise provide a good measure of the groups’ influence on the coordina-
tion outcome. We find that the group that benefits least from the project’s success has the
largest aggregation weight ; it has an excessive (relative to its population share) impact on
the coordination outcome. Therefore, a subsidy that decreases investment costs will have
the largest effect when aimed at the group with the lowest benefit from the project.
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Figure 1: Critical signals differ across the groups. (Higher signals are associated with higher
payoffs so that types above the critical signal of their group invest.)

We will derive the result by an analysis of investors’ sentiments. When the project’s
outcome is binary,2 we define sentiment as the probability assigned to the project’s success.
While the sentiment of each group depends on the entire profile of investment incentives,
the aggregate sentiment turns out to be fixed: the across-the-groups average of sentiments
is independent of the investment incentives. This constraint on the sentiments is the key to
our equilibrium analysis.

To explain the notion of sentiments and its implications we need to discuss the details
of strategic uncertainty. Players receive private, noisy signals, xi, where higher signals
indicate lower level of investment necessary for the successful outcome and thus, in monotone
equilibria,3 higher expected returns. A monotone equilibrium is characterized by a tuple
of critical signals,

(
x∗g
)
g
, one for each group, such that each player invests if (and only if)

her private signal, xi, exceeds the critical signal, x∗
gi
, of her group, gi. Generically, when

the investment incentives, (bg, cg) , differ across groups, the critical signals differ as well and
thus the the critical types from different groups have substantially different expectations
about the aggregate investment. To see this, consider a population consisting of two distinct
groups, say country folk and townsfolk. The group with smaller cg/bg ratio (say, townsfolk)
is willing to accept more risk associated with investment and thus its critical signal will be
lower than the critical signal of the group with the higher ratio (country folk). See Figure
1.

The townsfolk’s critical type, x∗t , has a pessimistic belief about the aggregate investment.
To see why, note that she believes that other players receive private signals similar to her
signal. As country folk invest only if their signal exceeds x∗c > x∗t , conditional on her signal,
x∗t , she finds it likely that only few country folk will invest. Symmetrically, the country folk’s
critical type, x∗c , has an optimistic belief about the aggregate investment, as townsfolk invest
already at signal x∗t , which is below her signal, x∗c .

It is not an accident that the beliefs of the two critical types are of an opposite nature. In
fact, this observation complies with a general principle that we identify, and which holds for
an arbitrary number of groups, independently of the assumed error distributions or payoffs.
Normalizing the population size to 1, let us define the critical belief of a group as the belief

2Below we consider projects with a continuum of possible outcomes, in which case the sentiment is defined
as expectation over the outcome.

3As it turns out, essentially all equilibria are monotone.
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of the group’s critical type about aggregate investment l: a probability density λg(l) on
[0, 1]. Our first result states that the (point-wise) average of those densities is constant.

The Belief Constraint. The (population-weighted) across-the-groups average of the crit-
ical beliefs is the uniform density on [0, 1].

The beliefs of the critical types depend on their relative positions as well as on the error
distributions and may be quite complicated. The belief constraint identifies a simple and
robust aggregate statistic. This simplifies the equilibrium analysis, as it avoids the complex
calculation of the critical beliefs of every group.

Importantly, the belief constraint also leads to a conceptual innovation: it allows us to
treat the optimism (or sentiment) about aggregate investment as a virtual resource which is
available in a fixed amount and is distributed among the critical types. If the critical belief
of one group is optimistic then, to comply with the constraint, the other groups’ critical
beliefs must be pessimistic on average. Thinking of optimism as a finite a resource is useful
because it provides an intuition for the excessive influence of the groups with low benefits,
bg.

The expected payoff from investment of the critical type from group g is

bg × pg − cg,

where pg is the probability of the project’s success as evaluated by the critical type x∗g.
In equilibrium, the critical type must be indifferent between investing and not investing,
so bg × pg − cg = 0. If benefit bg is low then the agents from the group are not too
sensitive to a variation in their sentiments. Hence, to keep the critical type indifferent, any
intervention that changes the group’s incentives must be offset by a relatively large change
in the sentiment pg. As the average sentiment is constant, the sentiments of other groups
change substantially as well. For example, a subsidy decreasing investment cost cg of the
insensitive group g decreases substantially the sentiment pg = cg

bg
, and so the sentiment

available to other groups substantially increases. Note that to achieve the same change of
sentiment by subsidizing other groups with higher benefits, would have required a higher
subsidy.

Our paper belongs to the global game literature originated by Hans Carlsson and Eric
van Damme (1993). The most common applied global game setup is the one reviewed
by Stephen Morris and Hyun Shin (2003), which consists of an incomplete information
game with strategic complementarities played by many players who share a common payoff
function.4 In that setup every player follows the same threshold strategy. This greatly
simplifies the analysis because the critical type turns out to have a very simple belief about

4It has been used to study currency attacks (Morris and Shin, 1998), bankruptcies (Morris and Shin,
2004), bank runs (Goldstein and Pauzner, 2005), debt crises (Morris and Shin 2004), political revolutions
(Edmond 2008), and other coordination problems.
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the aggregate investment, which is independent of the assumed error distributions: she
believes that the aggregate investment is distributed uniformly. This well-known property
is a special case of our belief constraint when applied to the setup with only one group.

The analysis of global games with heterogeneous payoffs is harder. We briefly review
the existing literature here. David Frankel, Stephen Morris and Ady Pauzner (2003) prove
equilibrium uniqueness in a large class of games with strategic complementarities, also
allowing for payoff-heterogeneity. However, their general framework provides only a partial
characterization of the unique equilibrium, and hence it is not directly applicable. Solutions
of heterogeneous global games are known for a few particular setups. Stephen Morris and
Hyun Shin (2003) note that heterogeneity in the quality of private signals has no consequence
in a two-action global game in the absence of payoff heterogeneity. Giancarlo Corsetti et al.
(2004) characterize the impact of a large trader on a population of small ones. Bernardo
Guimaraes and Stephen Morris (2007) allow for payoff heterogeneity in a model of currency
attacks. The standard intuition suggests that a few risk-neutral agents would suffice to make
the whole economy appear risk-neutral, because they can provide hedge to the risk-averse
agents. However, risk averse speculators have a non-negligible influence on the attack in
the Guimaraes-Morris model. The high influence of the risk-averse players conforms to our
result. Risk aversion decreases the utility benefit from a successful attack, and therefore
the risk-averse agents have a large impact on the coordination outcome.5

Finally, Sergei Izmalkov and Mehmet Yildiz (forthcoming) provide a formal definition
of investor sentiments. Their concept of sentiment is essentially the belief of the (unique)
critical type about aggregate investment, which in their model is derived from exogenous
heterogeneous prior beliefs. Sentiment in our model also represents the belief of a critical
type about aggregate investment, but it is an endogenous equilibrium phenomenon, and it
differs across groups even under common priors.

The remainder of the paper is organized in a number of short sections. We start by
specifying the information structure and formulating the belief constraint, in Section 2. In
Section 3 we describe details of the investment project and derive its relationship with the
aggregate critical sentiment “supplied” to the critical types. In Section 4 we specify the
investment incentives and using the indifference of critical types, we find the “demand” for
critical sentiment. Section 5 provides the solution to the coordination problem, by matching
“demand” to “supply”. In Section 6 we find a representative payoff function that aggregates
payoffs of individual groups. The impact of individual groups is naturally measured by their
endogenous aggregation weights. We further elaborate the intuition behind our results in
Section 7. We discuss the robustness of our assumptions in Section 8, followed by the proof
of the belief constraint. Finally, Section 10 concludes. The proofs not presented in the main

5Bernardo Guimaraes’s and Stephen Morris’s method of dealing with payoff heterogeneity applies only
to projects with binary outcomes. For their setup, the equilibrium threshold of a heterogenous population is
a simple average of sub-population thresholds. This simple aggregation result does not generalize to setups
with richer outcome spaces.
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body of the paper are in the Appendix.

2 The Information Structure and the Belief Constraint

A continuum of players of measure 1, indexed by i ∈ [0, 1] simultaneously decide whether
to invest a unit amount into a common project. The returns to investment depend on an
uncertain fundamental, θ, and on the aggregate investment. The players are heterogeneous
in two aspects. First, they differ in their information about θ. Second, the population
is divided into G groups, and the investment incentives differ across these groups. The
population share of group g is denoted by mg. The analysis of this section is independent
of the details of the project and of the investment incentives, and hence we introduce them
only later, in Sections 3 and 4, respectively. In this section we focus on the information
structure.

Each player i is endowed with a type, which comprises of a pair of numbers
(
xi, gi

)
. The

first number is a noisy private signal about the fundamental,

xi = θ + σηi,

where σ is a scaling parameter and ηi is a random error. The second number is a label of
group gi ∈ {1, . . . , G} to which player i belongs. The support of the fundamental, θ, is an
interval [θ, θ] with θ < 0 and θ > 1. We will vary σ in our analysis and we will be interested
in setups with σ small. In particular, we assume σ < θ − 1 and σ < −θ.

The probability distributions are as follows. The fundamental, θ, is distributed uni-
formly on its support.6 The combination of a player’s error and her group identity,

(
ηi, gi

)
,

is a two-dimensional random variable with support in [−1, 1]× {1, . . . , G}; it is i.i.d. across
players, and independent of θ. We assume no aggregate uncertainty and hence the marginal
probability, Pr(gi = g), equals the population share, mg, of group g. We do not require the
random variables ηi and gi to be independent. The c.d.f. of the conditional error ηi |

(
gi = g

)
is denoted by Fg(·) and has a closed support contained in [−1, 1]; the associated p.d.f. fg(·)
is assumed to be continuous. This information structure accommodates setups in which
players from different groups draw errors from different distributions Fg. In the special
case, when ηi and gi are independent, the errors are i.i.d. across players from all the groups.

We examine monotone strategy profiles defined by a G-tuple of critical signals x∗ =(
x∗g
)
g
, such that each type (xi, gi) invests if (and only if) xi ≥ x∗

gi
. We denote such a

strategy by a
(
xi, gi

)
:

a
(
xi, gi

)
=

Invest if xi ≥ x∗
gi
,

Not Invest if xi < x∗
gi
.

(1)

6The uniformity of the prior becomes unimportant in the limit of precise signals, σ → 0, as discussed in
Section 8.
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For the equilibrium analysis below, only tuples with all critical types distant from the
boundaries of the support of θ will be relevant. In particular, without loss of generality of
the equilibrium analysis below, we restrict x∗ to the set X = [−σ, 1 + σ]G.

The aggregate investment, l, is defined as

l =
∫ 1

0
aidi, (2)

where ai ∈ {0, 1} is the investment decision of player i. The assumption, that the invest-
ment of any group has the same impact on the aggregate investment is just a normalization:
If players of group g were deciding between investing 0 and w(g) units, the aggregate invest-
ment would be

∫ 1
0 w

(
gi
)
aidi. However, the unequal investors’ weights could be accommo-

dated by modifying group sizes mg to mgw(g) while keeping the budgets and aggregation
weights equal to 1.

Under a monotone strategy profile defined by a tuple of critical signals x∗ ∈ X, the
aggregate investment is a non-decreasing function of the realized fundamental θ:

l = ` (θ; x∗) = Pr
( {

(x, g) : x ≥ x∗g
}∣∣ θ).

We will mostly omit the dependence of `(θ) on x∗ from the notation.
In the next proposition we examine the beliefs about `(θ) formed by the critical types,

the critical beliefs. Let λg : [0, 1]→ R+ denote the p.d.f. of the conditional random variable

`(θ) |
(
x∗g, g

)
.

Thus, λg(l) is the probability density assigned to investment level l by a player from group
g who observed the critical signal x∗g. Again, we omit the dependence of λg(l) on x∗ from
the notation.

Proposition 1 (The Belief Constraint). For any tuple of critical signals x∗ ∈ X, the
average critical belief is the uniform belief on [0, 1]:

G∑
g=1

mgλg(l) ≡ 1.

See Figure 2. The proof, relegated to Section 9, builds on known results for homoge-
neous populations. Let us state here the known belief characterization for the homogeneous
population as a corollary of Proposition 1:

Corollary 1 (Laplacian Property, (Morris and Shin, 2003)). Suppose that the popu-
lation of players is homogeneous, G = 1, and players follow a symmetric monotone strategy
profile with a critical signal x∗ ∈ [−σ, 1+σ]. Then the player who receives the critical signal
believes that the aggregate investment is distributed uniformly on [0, 1].

7
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λ1(l) λ2(l)

λ(l)

10
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2

Figure 2: Illustration of the belief constraint, Proposition 1. The average belief λ(l) =
m1λ1(l) +m2λ2(l) is the uniform belief on [0, 1].

The corollary, known in the global game literature as Laplacian property, has an in-
tuitive explanation. We paraphrase Stephen Morris and Hyun Shin (2003): The critical
type, x∗, constitutes a boundary in between the investing and non-investing types. She is
uncertain about the realized proportions of types above and below her. These proportions
are determined by the rank of her (critical) signal within the realized population of players’
signals. The only information the critical type receives is her own private signal, which is
entirely uninformative about the rank of her signal and consequently about the aggregate
investment.

The belief constraint establishes that, albeit in the heterogeneous population the Lapla-
cian property does not hold for the critical type of any particular group, it holds on average
across the groups.

Let us illustrate the belief constraint with an example in which the distance between
critical signals is large and, consequently, the critical types know whether players from other
groups invest. Consider two groups, m1 = m2 = 1/2, and x∗1 + 2σ < x∗2. In this case, type
(x∗1, 1) knows that no player from group 2 invests because, according to her information,
the signals of all players satisfy xi ≤ θ + σ ≤ x∗1 + 2σ < x∗2. Additionally, the critical type
(x∗1, 1) believes that the measure of investing players from her group is distributed uniformly
on [0, 1/2] because she does not know the rank of her critical signal in the population of
her own group. Hence the critical type (x∗1, 1) believes that the aggregate investment from
the two groups is distributed uniformly on [0, 1/2]. The critical type (x∗2, 2) knows that
all players from group 1 invest, as, according to her information, the signals of all players
satisfy xi ≥ θ − σ ≥ x∗2 − 2σ > x∗1. Again, she believes that investment from her group is
distributed uniformly on [0, 1/2]. Hence she believes that the total investment is distributed
uniformly on [1/2, 1]. The average of the two critical beliefs is the uniform belief on [0, 1].
In the general case, when the critical signals are close to each other, the critical types will be
uncertain about the investment from other groups, and their beliefs, λg(l), may be complex.
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Remarkably, however, the average of these complex beliefs is always the simple, uniform
belief, see Figure 2.

3 The Project and the “Supply” of Optimism

We now specify the defining characteristic of the common investment project – its outcome
rule. We then use the belief constraint from the previous section to find a restriction on the
expectations about the project’s outcome formed by the critical types.

The project’s outcome

π(θ, l) =

o(θ, l) if l ≥ 1− θ,

0 if l < 1− θ,

is a real number which measures the degree of its success. The project fails if investment l
does not reach 1− θ. When l ≥ 1− θ, the project succeeds and o(θ, l) measures the extent
of the success. A specification often used in literature lets o ≡ 1, in which case the project’s
outcome is binary and no shades of success are distinguished.

We impose the following assumptions on the function o:

A1 o(θ, l) is strictly positive,

A2 o(θ, l) is non-decreasing in both arguments,

A3 o(θ, l) is continuous in θ.

The assumptions imply that the project’s outcome, π(θ, l), is non-decreasing in θ and
l. For negative realizations of θ the project fails regardless of the players’ actions, and it
always succeeds for θ > 1. The aim of our analysis is to predict the outcome for intermediate
values of θ in [0, 1].

For each group g, we denote by pg (x∗) the expectation about the outcome formed by
the critical type x∗g. The mapping pg : X −→ [0, 1] is defined as

pg(x∗) = E
[
π (θ, ` (θ; x∗))

∣∣(x∗g, g) ],
where the source of uncertainty is the realization of θ, unknown to player i. We will refer
to pg(x∗) as the critical sentiment of group g under the tuple x∗. If o = 1, so that the
outcome of the project is binary, the sentiment pg(x∗) is simply the probability that the
critical type of group g assigns to success. We also introduce notation for the aggregate
critical sentiment:

p (x∗) =
G∑
g=1

mgpg (x∗) .

9



θ′

s
s(θ′)

s(θ′ − 2σ)

s(θ′ + 2σ)

Figure 3: If all the critical signals lie close to θ′ then the aggregate critical sentiment
p(x∗) =

∑
gmgpg(x∗) lies close to s(θ′), see Corollary 2.

In the equilibrium analysis below, only tuples of critical types close to each other will be
relevant. Accordingly, we will consider here only tuples that satisfy the following proximity
condition:

There exists θ′ ∈ [0, 1] such that
∣∣x∗g − θ′∣∣ ≤ σ for each g. (3)

If (3) holds and σ is small then all the critical types agree that the realized fundamental
lies close to θ′. Yet, the critical types disagree over the outcome because their beliefs,
λg(l), about the aggregate investment differ. Still, the critical sentiments, pg (x∗) , are
not unrelated across the groups. The belief constraint implies that the aggregate critical
sentiment, p (x∗), approximately equals the outcome expectation based on the uniform belief
over l:

p(x∗) ≈
∑
g

mg

∫ 1

0
π(θ′, l)λg(l)dl =

∫ 1

0
π(θ′, l)

∑
g

mgλg(l)dl =
∫ 1

0
π(θ′, l)dl. (4)

We denote the last expression by s(θ′) and refer to it as the “supply” of sentiment. The
function s is continuous, s(θ) = 0 for negative θ, and strictly increasing for θ > 0.

The following corollary of the belief constraint states the approximate relation (4) for-
mally.

Corollary 2. If the proximity condition (3) is satisfied, then the aggregate critical sentiment
is near s(θ′) :

p(x∗) ∈
[
s(θ′ − 2σ), s(θ′ + 2σ)

]
.

See Figure 3 for illustration. The proof of the corollary is in the Appendix.
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4 Investment Incentives and the “Demand” for Optimism

In this section we specify the payoff functions and derive another restriction on the senti-
ments formed by the critical types.

The payoff for not investing is normalized to 0 for all players, while player i’s payoff for
investing is

u(θ, l, gi) = b(θ, gi)π(θ, l)− c(θ, gi).

The payoff functions, together with the information structure from Section 2 and the
project’s outcome function from Section 3 define a Bayesian game among the players.

We assume that the groups differ in their investment costs c(θ, g) and in their benefits
from the success of the project b(θ, g). We impose the following assumptions on b and c:

A4 b(θ, g) is strictly positive.

A5 c(θ, g) is strictly positive, and b(θ, g)o(θ, l) > c(θ, g) for θ, l > 0.

A6 b(θ, g) is non-decreasing, c(θ, g) is non-increasing in θ.

A7 Both b(θ, g) and c(θ, g) are continuous in θ.

Assumption A4, together with the success rule, assures strategic complementarity: the
incentive to invest increases with the investment activity of the opponents. Assumption A5
implies that if the player knew that the project will fail she would strictly prefer not to
invest, and is she knew the project succeeds she would strictly prefer to invest because the
benefit of investment to a successful project always exceeds the investment cost, regardless
of the shade of success o. Assumption A6 together with A1 implies that the payoff for
investing increases, ceteris paribus, with θ and hence θ can be interpreted as the “quality”
of the project. A simple example of benefit and cost functions are payoffs bg and cg, which
depend only on g but not on the fundamental, θ.

Having described the investment incentives, we can derive another endogenous restric-
tion on the critical sentiments. Let us again consider a small σ and a tuple x∗ with all
critical types in the proximity of some value of the fundamental θ′. Again, all the critical
types agree that the realized fundamental θ ≈ θ′ and hence they know that b(θ, g) ≈ b(θ′, g),
and c(θ, g) ≈ c(θ′, g). In equilibrium, all the critical types must be indifferent between in-
vesting, which pays approximately b(θ′, g)× pg(x∗)− c(θ′, g), and not investing, which pays
0. Therefore, the critical sentiment

pg(x∗) ≈
c(θ′, g)
b(θ′, g)

,

for each group g. In equilibrium, a group with high cost/benefit ratio must have optimistic
critical sentiment and vice versa.

11



θ′

d
d(θ′ − 2σ)

d(θ′ + 2σ)d(θ′)

Figure 4: If all the critical signals lie close to θ′ then the aggregate critical sentiment
p =

∑
gmgpg lies close to d(θ′), see Lemma 1.

Let us define the function

d(θ′) =
G∑
g=1

mg
c(θ′, g)
b(θ′, g)

.

We refer to d(θ′) as to the “demand” for sentiment. It is the (approximate) aggregate
amount of critical sentiment “needed” to make all the critical types indifferent between
investing and not investing. Assumptions A4-7 assure that d is continuous, non-increasing,
and strictly positive.

Lemma 1. Suppose that the strategy profile defined by the tuple of critical types x∗ consti-
tutes a Bayes-Nash equilibrium. Further, suppose that x∗ satisfies the proximity condition
(3). Then the aggregate critical sentiment is near d(θ′) :

p (x∗) ∈
[
d(θ′ + 2σ), d(θ′ − 2σ)

]
.

See Figure 4 for illustration. The proof is in the Appendix.

5 The Equilibrium Outcome

For any tuple of critical signals x∗ the aggregate investment ` (θ,x∗) is an increasing function
of θ and hence the project succeeds if and only if the fundamental exceeds the unique
solution7 of

` (θ; x∗) = 1− θ.

We call this solution the critical fundamental and denote it by θ∗ (x∗) . We will often
suppress its dependence on x∗ in the notation.

7The solution exists because `(θ) < 1 − θ for θ < 0, `(θ) > 1 − θ for θ > 1, and ` is continuous. The
solution is unique because `(θ) is nondecreasing.
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θ′

s, d

θ∗∗ − 2σ θ∗∗ θ∗∗ + 2σ

Figure 5: The project succeeds for all realizations of θ ≥ θ∗∗+2σ and fails for all θ ≤ θ∗∗−2σ;
see Proposition 2.

In equilibrium, the critical signals of all groups lie close to the critical fundamental θ∗.
To see this, assume that x∗g > θ∗ + σ for some group g. Then, because of the bounded
errors, the critical type

(
x∗g, g

)
knows that θ > θ∗ and thus knows that the project will

succeed. Assumption A5 assures that the payoff for investment is strictly positive whenever
the project succeeds and so the critical type violates her indifference condition. Similarly,
if x∗g < θ∗ − σ, the critical type would know that the project will fail, and hence she would
strictly prefer not to invest. The following lemma summarizes.

Lemma 2 (proximity of critical signals). For any equilibrium tuple of critical signals
x∗:

|x∗g − θ∗ (x∗) | ≤ σ,

for each g.

Once we know that the critical signals satisfy the proximity condition (3) with θ∗, we can
use Corollary 2 and Lemma 1. These two results imply that the aggregate sentiment p (x∗)
approximates both the supply s (θ∗ (x∗)) and demand d (θ∗ (x∗)) of sentiment. Therefore,

s (θ∗) ≈ d (θ∗) ,

and thus θ∗ is close to the solution of

s(θ′) = d(θ′). (5)

We denote the solution of equation (5) by θ∗∗. The solution exists because, for θ′ < 0,
s(θ′) = 0 < d(θ′) and for θ′ > 1 s(θ) =

∫
o(θ′, l)dl ≥ o(θ′, 0) > d(θ′) and both functions

s and d are continuous. The solution is unique because s is strictly increasing and d non-
increasing. The following proposition formally states the result:

13



Proposition 2. Suppose that the players use rationalizable strategies.8 Then

1. the project succeeds whenever θ > θ∗∗ + 2σ and fails whenever θ < θ∗∗ − 2σ,

2. each player i invests whenever xi > θ∗∗ + 3σ, and she does not invest whenever
xi < θ∗∗ − 3σ,

where θ∗∗ is the unique solution of s(θ′) = d(θ′), and independent of the assumed error
distributions.

The proof is in the Appendix.
We say that θ∗∗ is the solution of the coordination problem, where the problem is defined

by the population
(
mg, b(θ, g), c(θ, g)

)G
g=1

and by the outcome function π(θ, l). The solution
θ∗∗ is relevant for predicting the coordination outcome both from the ex ante and the ex
post perspective. From the ex post point of view, an observer who observes the realized
fundamental θ > θ∗∗ knows that the project succeeds if σ is sufficiently small. From the ex
ante perspective, the probability of success decreases with θ∗∗ when σ is small.

The equilibrium characterization is based on an analogy to aggregate supply and de-
mand. The advantage of the analogy is that it identifies two independent parts of the
analysis. We defined the “supply” of aggregate sentiment using only the belief constraint
and the outcome rule, but not the investors’ incentives. As the belief constraint does not
depend on the investment incentives, the “supply” side is defined solely by the project’s
characteristics. The “demand” for the aggregate sentiment was defined based on the indif-
ference conditions of the critical types and hence it is a function of investment benefits and
costs but it is independent of the project’s characteristics. Distinguishing the two sides will
be useful below, where we examine how the variation of incentives affects the critical fun-
damental θ∗∗. The critical fundamental plays the role of the “clearing price” that equates
“supply” and “demand” of sentiment. As the “supply” side is independent of the incentives,
we can focus solely on the “demand” side which greatly simplifies the analysis.

6 Who Matters in Coordination Problems?

In this section we provide an aggregation result that characterizes the critical fundamental
of the heterogeneous population in terms of a representative payoff. For a heterogeneous
population with group-dependent payoffs u(θ, l, g), we identify a homogeneous population,
with representative payoff function ũ(θ, l), that has the same critical fundamental θ∗∗ as
the solution to the original heterogeneous problem. This representative payoff turns out to
be an endogenously weighted average of the group-wise payoffs, with the low-benefit groups
having large weights.

8Assuming rationalizable instead of equilibrium behavior makes the result stronger; see the proof in the
Appendix.
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Corollary 3 (Representative Payoffs). The solution of the coordination problem with a
heterogeneous population

(
mg, u(θ, l, g)

)G
g=1

is identical to the solution of a problem with a
homogeneous population with payoff function

ũ(θ, l) =
∑
g

m̃(θ, g)u(θ, l, g),

where the aggregation weights of group g,

m̃(θ, g) =
mg/b(θ, g)∑G
h=1mh/b(θ, h)

,

are decreasing with b(θ, g).

We only sketch the proof: Note that the game with the representative payoff is a special
case of our set-up and therefore the coordination problem of the homogeneous population
with the representative payoff has a well-defined, unique solution. The corollary then can be
verified by noting that the “demand” and “supply” functions resulting for the heterogeneous
population coincide with the ones resulting for the representative homogeneous population.

We have found that the players who are less sensitive to the project’s outcome have
a larger impact on coordination than the sensitive players. The excessive influence of the
insensitive group makes them a natural target of policy interventions. For example, consider
that the policy maker has committed s funds per capita for a subsidy scheme, and therefore
she can credibly promise subsidy s/mg per capita to the members of the targeted group
g. By our results, the heterogeneous population coordinates as a homogeneous population
with representative payoffs ũ(θ, l) =

∑
g m̃gu(θ, l, g) where the weights m̃g are proportional

to mg
bg

. The subsidy increases u(θ, l, g) in the targeted group by s/mg. As a result, the
representative payoff increases by m̃gs/mg, which is proportional to mg

bg
s/mg = s/bg. Hence,

the effect of subsidization is largest when it is aimed at the group with the lowest benefit,
bg, independently of the costs, cg, and of the distribution of group sizes, mg.

Remark: The aggregation result can be easily extended to the case where groups
differ in their impact on the project. If aggregate investment is l =

∫ 1
0 w(gi)aidi, then the

aggregation weights are given by

m̃(θ, g) =
mgw(g)/b(θ, g)∑G
h=1mhw(h)/b(θ, h)

,

and hence the most influential group is the one with the highest w/b ratio.
In the next section we discuss the intuition behind the excessive influence of the insen-

sitive players.
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Figure 6: An improvement of investment incentives of a group causes a downward shift of
the “demand” function. The shift is large when b(·, g) is small.

7 Intuition

Why do the players with low benefits have large impact on the critical fundamental? To
develop an intuition, we will consider a policy intervention targeted on a single group that
slightly modifies the group’s incentives. As we discussed at the end of Section 5, variation
of incentives affects the “demand” for sentiment but not the “supply”, and thus we only
need to examine the “demand” shift.

To quantify the impact of the intervention on the “demand” for sentiment, we compute
the rate of substitution between the investment incentives b, c and the sentiment pi. First,
when σ is small, so that signals xi are very precise, player i knows that her benefit and
cost are approximately b(xi, gi) and c(xi, gi). Letting sentiment pi denote the player’s
expectation about the project’s outcome, her expected net investment return is close to

b(xi, gi)× pi − c(xi, gi).

If her benefit b(·, gi) increases by db then, to keep the expected return constant, pi must
decrease by pi

b(xi,gi)
db. Similarly, if c(·, gi) decreases by dc then pi must decrease by 1

b(xi,gi)
dc.

In both cases the rate of substitution is proportional to 1
b(xi,gi)

.
The concept of rate of substitution turns out to be naturally useful when applied to the

critical types because their expected returns are automatically kept constant, equal to 0,
by the indifference conditions. Consider a small intervention affecting incentives, b(·, g) or
c(·, g), of a particular group g. The sentiment pg that keeps the critical type of group g

indifferent necessarily adjusts and hence, the whole “demand” curve, d(θ′), for the aggregate
level of sentiment adjusts. The adjustment is large when the rate of substitution between
the sentiment and the investment incentives of the targeted group is large, which is the case
when the benefit if small. As illustrated on Figure 6 the shift of the “demand” curve will
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cause a shift in the intersection θ∗∗ and this will be large when the benefit of the targeted
group is small. Technically speaking, the group with a small benefit has a large impact
because derivative of demand

d(θ′) =
G∑
g=1

mg
c(θ′, g)
b(θ′, g)

.

with respect to b(θ′, g) or c(θ′, g) is large when b(θ′, g) is small.
The above intuition can be complemented by drawing an analogy with mixed strategy

equilibria. In a mixed equilibrium, players −i must make i indifferent. If i’s payoff param-
eters change then −i must modify their strategies to keep i indifferent. If player i is quite
insensitive to −is’ actions then −i have to modify their strategy substantially. Hence, a
change in i’s payoff has the larger impact on the strategy profile the less sensitive i is to
the opponents’ behavior. The monotone strategy equilibria in our model are pure but, as
in the mixed equilibrium analogy, the equilibrium is determined by indifference conditions.
In order to keep the critical types of insensitive groups indifferent, others have to modify
their behavior substantially.

8 Robustness Check

In order to gauge the generality of our results, let us discuss the importance of our major
assumptions.

Our most general result is the belief constraint, Proposition 1. This result does not
require any restrictions on the payoff functions; it holds under any monotone strategy pro-
file defined by a tuple of critical signals and under the standard global-game information
structure: errors must be independent across players and of θ and the prior must be un-
informative. The latter assumption is not too restrictive as any well-behaved prior belief
about θ becomes approximately uninformative when signals are sufficiently precise.9 Hence,
for small σ, the belief constraint remains approximately valid under any prior.

The belief constraint becomes useful in games that have monotone threshold equilibria.
The existence of such equilibria is assured in our game because it satisfies global game
assumptions: state monotonicity, the existence of dominance regions, and strategic com-
plementarity. As discussed in Morris and Shin (2003), the last assumption can be relaxed.
The monotonicity of the project’s outcome π(θ, l) with respect to the aggregate investment
l can be replaced by single-crossing in l. If the error functions satisfy monotone likelihood
ratio property then the characterization of monotone equilibria remains valid, though other,
non-monotone equilibria may emerge.

In fact, we impose a further restriction on the payoff structure. The discontinuity in the
project’s outcome guarantees that all the critical signals lie in the proximity of the critical

9See David Frankel, Stephen Morris and Ady Pauzner (2003). They show that for any prior φ(θ) the
posterior beliefs converge to the posteriors formed under the uniform prior, as σ → 0.
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fundamental θ∗∗, the lowest at which the project succeeds. Hence, when the signals are
very precise, the critical types approximately agree on the value of θ and the analysis can
solely focus on the differences in the beliefs over aggregate investment. However, even in
the absence of the outcome discontinuity, the critical types often lie in the proximity of each
other, and the results carry over. Let us discuss the details in a setup with two groups.

Assume that the function π(θ, l) measuring the level of the project’s outcome is contin-
uous and increasing in both arguments, and that it has dominance regions. As before, let
the payoff for investing be u(θ, l, g) = b(θ, g)π(θ, l) − c(θ, g). Let us consider a population
consisting of two groups. Let θg be the unique solution of∫ mg

0
u(θ, l, g)

dl

mg
= 0,

and θg be the unique solution of

∫ 1

1−mg
u(θ, l, g)

dl

mg
= 0.

The variables θg, θg are natural bounds on the critical signal x∗g. The variable θg would be
the critical signal of population g if group −g never invested, and θg would be the critical
signal of the group g if group −g always invested.

The following proposition states that our results carry over whenever the bounds on the
critical signals overlap across the two groups.

Proposition 3. Suppose players use rationalizable strategies. Then each player i invests
whenever xi > θ∗∗g + 3σ, and she does not invest whenever xi < θ∗∗g − 3σ, where θ∗∗g are as
follows:

1. If
⋂
g[θg, θg] 6= ∅ then θ∗∗1 = θ∗∗2 is the unique solution of s(θ′) = d(θ′). Moreover, the

aggregation result in Corollary 3 applies.

2. If
⋂
g[θg, θg] = ∅ then θ∗∗1 = θ1 and θ∗∗2 = θ2, where the labels g are such that θ1 < θ2.

The proof is in the Appendix.
In the case when the bounds do not not overlap, the critical signals lie far from each

other, and the critical beliefs about the investment from the other group are trivial. The
lower critical type knows that players from the other group do not invest, whereas the higher
critical type knows that the players from the other group invest. Consequently, whenever
our aggregation result does not apply, aggregation is actually not needed; the interaction
between different groups is trivial.

Finally, let us discuss the time structure of the model. We have set up our model as
a simultaneous move game. However, in many applications players from different groups
move sequentially. For example, in the case of industrialization, the townsfolk may receive
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information about new technologies before the country folk, who may learn about the tech-
nology only by observing the aggregate action of the townsfolk. Such sequential interaction
can be studied within our setup. Assume that first the townsfolk receive private signals,
xit = θ + σηit, with ηit ∼ Ft with a support on [−1, 1], upon which the townsfolk decide
(simultaneously) whether to invest or not. Second, the country players observe private
signals, xic = y + ηic, where y is some monotone transformation of the aggregate townsfolk
investment, lt. Consider monotone equilibria with critical signals x∗t , x

∗
c . The aggregate

investment of the townsfolk is lt = 1 − Ft
(
x∗t−θ
σ

)
if θ ∈ [x∗t − σ, x∗t + σ] and lt = 0 or 1

otherwise. As lt, and hence y, is a monotone function of θ, the country folk can deduce
information about θ from their noisy observation of y. If we assume that the observed ag-
gregate statistic is y = −F−1

t (1− lt) then the model becomes analytically tractable. To see
this, notice that a linear transformation of the country folk’s private signals σxic+x∗t equals
θ+σηic. Thus, if we restrict attention only to monotone threshold equilibria, the sequential
game has the same equilibria as the simultaneous game with the same error distributions.10

9 The Proof of the Belief Constraint

As the belief constraint is our central result, we wish to include its demonstration in the
main body of the paper. It consists of finding a virtual homogeneous problem in which the
critical belief is related to the critical beliefs of the original heterogeneous problem. This
provides a useful characterisation of the original heterogeneous problem because the critical
belief in the virtual homogeneous problem is well understood.11

Let us define the mapping ∆
(
xi, gi

)
= xi − x∗

gi
that reduces the two-dimensional type(

xi, gi
)

to a one-dimensional signal, which we denote by x̃i = ∆
(
xi, gi

)
and we call it a

virtual signal. Notice that the strategy

a
(
xi, gi

)
=

Invest if xi ≥ x∗
gi
,

Not Invest if xi < x∗
gi

depends on the type
(
xi, gi

)
only via the virtual signal x̃i: a

(
xi, gi

)
≡ ã

(
∆
(
xi, gi

))
, where

ã
(
x̃i
)

=

Invest if x̃i ≥ x̃∗,

Not Invest if x̃i < x̃∗,

with the virtual threshold set to x̃∗ = 0.
10This modeling approach to sequential global games has been first used in Dasgupta (2007). It has been

widely used in the emerging dynamic global games literature as it conveniently reduces dynamic problems
to static ones. This approach assumes away informational externalities and other details. Hence it is useful
in cases where the details of social learning are not the main focus of the analysis.

11A similar proof strategy is used by Eugen Kováč and Jakub Steiner (2008) in a different context. They
study a dynamic global game and reduce the complex critical belief in the dynamic environment to a simple,
well understood belief in a virtual static global game.
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Next, we analyze the random variable `(θ)|
(
x̃i = x̃∗

)
. (It can be interpreted as a belief

about l of a player who knows that her virtual signal is x̃i = x̃∗, but does not know her
original type

(
xi, gi

)
.) Recall that the investment level l = `(θ) where `(θ) was defined as

`(θ) = Pr
( {

(x, g) : x ≥ x∗g
}∣∣ θ).

Notice that `(θ) also satisfies
`(θ) = Pr

(
x̃i ≥ x̃∗

∣∣ θ) .
All players use the identical virtual critical signal x̃∗ and all are identical at the ex

ante stage. In this symmetric environment, the belief `(θ)|
(
x̃i = x̃∗

)
is already well under-

stood. A player receiving the critical virtual signal has no information about the aggregate
investment:

Lemma 3 (Laplacian property, Morris and Shin, 2003). The belief about the measure of
aggregate investment conditional on the critical virtual signal, `(θ) |

(
x̃i = x̃∗

)
, is uniformly

distributed on [0, 1].

For convenience, we include the proof in the Appendix.
Finally, we relate the belief of the virtual critical type x̃∗ to the beliefs of the original

critical types
(
x∗g, g

)
. We observe that the virtual signal is entirely uninformative about

player i’s original group identity, gi:

Lemma 4.

Pr
( (
xi, gi

)
=
(
x∗g, g

) ∣∣∣x̃i = x̃∗
)

= mg,

for all groups g.

The proof is in the Appendix.
The result in Lemma 4 is intuitive. Consider a player who is told only that her virtual

signal is critical, x̃i = x̃∗, but receives no additional information about her original type(
xi, gi

)
. She knows that she is one of the original critical types

(
x∗g, g

)
because x̃i = xi−x∗

gi
=

x̃∗ = 0. Yet, she learns nothing about her original group identity: In the proof of Lemma
4 we show that the virtual signal, x̃i, is uniformly distributed12 and hence the observation
of x̃i does not contain any information and the posterior belief gi|

(
x̃i = 0

)
equals the prior

belief.
Lemma 4 implies that the belief of the virtual critical type is the following compound

lottery:
12Apart from close to boundaries of the support of θ.

20



`(θ)
∣∣ (x̃i = x̃∗

)
= �
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`(θ)
∣∣ ((xi, gi) = (x∗1, 1)

)

`(θ)
∣∣ ((xi, gi) = (x∗G, G)

)

Hence, denoting the p.d.f. of `(θ) |
(
x̃i = x̃∗

)
by λ(l), we get

1 = λ(l) =
∑
g

mgλg(l),

where we used Lemma 3 in the first equality.
Q.E.D.

10 Conclusion

Economic agents that are relatively insensitive to others’ actions have a large impact on the
whole economy during coordination processes, because a large change in the others’ behavior
is required to motivate them to change their own behavior. We formalize this intuition in
a global game model with heterogeneous payoffs and information. The analysis focuses on
the beliefs about aggregate investment held by critical types – the players who based on
their private information are indifferent between the two available courses of action. These
critical beliefs turn out to be interrelated by a simple constraint: their average across all
groups is a uniform belief.

The belief constraint implies that groups that are relatively insensitive to the project’s
outcome have relatively large influence in the coordination process. Suppose, for example,
that the investment cost of a particular group decreases. To keep the critical type of the
group indifferent, she must become less optimistic about the aggregate investment. Then,
in order to satisfy the belief constraint, the critical types from other groups have to become
more optimistic. If the members of the directly affected group are not too sensitive to the
project’s outcome then the changes of beliefs induced by the initial change in costs are large
and they have large consequences on the equilibrium coordination outcome of the whole
economy.
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Appendix

Proof of Corollary 2. A player who has received the critical signal, x∗g, knows that θ ≤
x∗g + σ ≤ θ′ + 2σ. Using the monotonicity of π(θ, l) we get

pg(x∗) ≤ E
[
π
(
θ′ + 2σ, `(θ)

)
|
(
xi, gi

)
=
(
x∗g, g

) ]
=
∫ 1

0
π
(
θ′ + 2σ, l

)
λg(l)dl.

Summing up over g we obtain

p(x∗) ≤
∑
g

mg

∫ 1

0
π
(
θ′ + 2σ, l

)
λg(l)dl =

∫ 1

0
π
(
θ′ + 2σ, l

)∑
g

mgλg(l)dl

=
∫ 1

0
π
(
θ′ + 2σ, l

)
dl = s(θ′ + 2σ).

A symmetric argument establishes the lower bound.

Proof of Lemma 1. The expected payoff conditional on being the critical type, (x∗g, g), is
0. As in the previous proof, a player who has received the critical signal, x∗g, knows that
θ ≤ x∗g + σ ≤ θ′ + 2σ. Using the monotonicity of functions b and c with respect to θ we get
0 ≤ b(θ′ + 2σ, g)× pg(x∗)− c(θ′ + 2σ, g). By rearranging, we obtain

c(θ′ + 2σ, g)
b(θ′ + 2σ, g)

≤ pg(x∗).

Summing up over g gives d(θ′+2σ, g) ≤ p(x∗). The upper bound follows from the symmetric
argument.

Proof of Proposition 2. Let us first analyze monotone Bayes-Nash equilibria defined by a
tuple of critical signals x∗.

By Lemma 2 the proximity condition,
∣∣x∗g − θ′∣∣ ≤ σ for each g, is satisfied with θ′ =

θ∗(x∗). Therefore we can use Corollary 2 and Lemma 1. The corollary implies that p(x∗) ≤
s(θ∗(x∗) + 2σ) and the lemma implies d(θ∗(x∗) + 2σ) ≤ p(x∗) and therefore

d (θ∗ (x∗) + 2σ) ≤ s (θ∗ (x∗) + 2σ) .

The function d is non-increasing and s is strictly increasing. Therefore θ∗(x∗) + 2σ lies
above the unique solution of d(θ′) = s(θ′):

θ∗(x∗) + 2σ ≥ θ∗∗.

Rearranging gives θ∗(x∗) ≥ θ∗∗−2σ. The symmetric argument establishes the upper bound
θ∗(x∗) ≤ θ∗∗ + 2σ. The bounds θ∗∗ − 3σ ≤ x∗g ≤ θ∗∗ + 3σ follow from the bounds on θ∗(x∗)
and from Lemma 2.
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We have proved that statements 1. and 2. of Proposition 2 hold in any monotone
symmetric equilibrium.13 Moreover these two results hold under any rationalizable strategy
profile: The analyzed game is monotone supermodular and symmetric. Hence by Mil-
grom and Roberts (1990) and Van Zandt and Vives (2006), all rationalizable strategies are
bounded by the greatest and the least Bayesian equilibria which are monotone and symmet-
ric. Applied to our game, this implies that the greatest and least equilibrium are defined
by some tuples of critical signals x∗ and x∗, respectively. The statements 1. and 2. of
Proposition 2 hold for the greatest and the least rationalizable strategy profile and hence
they hold for any rationalizable strategy profile.

Proof of Proposition 3. Statement 1 : We will show that, for sufficiently small σ, the prox-
imity result from Lemma 2 applies: there exists θ′ such that |x∗g − θ′| < σ for both critical
signals in any monotone strategy profile. When the proximity result holds then the proof
of Proposition 2 applies.

Suppose for contradiction that x∗g < x∗−g − 2σ. Then type (x∗g, g) knows that no player
from the group −g invests. Therefore, type (x∗g, g) believes that l is distributed uniformly
on [0,mg] and so

0 = E
[
u(θ, l, g) | (x∗g, g)

]
≤
∫ mg

0
u
(
x∗g + σ, l, g

) dl
mg

.

Therefore
θg ≤ x∗g + σ. (6)

Similarly, type (x∗−g,−g) knows that all players from the group g invest. Therefore, type
(x∗−g,−g) believes that l is distributed uniformly on [mg, 1] and so

0 = E
[
u(θ, l,−g) | (x∗−g,−g)

]
≥
∫ 1

1−m−g
u
(
x∗−g − σ, l,−g

) dl

m−g
.

Therefore
θ−g ≥ x∗−g − σ. (7)⋂

g[θg, θg] 6= ∅ implies that θ−g ≤ θg. This, combined with inequalities (6) and (7) leads to
x∗g ≥ x∗−g − 2σ, which contradicts the hypothesis. Thus x∗g ≥ x∗−g − 2σ and symmetrically
x∗−g ≥ x∗g − 2σ, as needed for the proximity condition.

Statement 2 : Consider any equilibrium in threshold strategies. Type (x∗1, 1) can satisfy
the indifference condition only if x∗1 ≤ θ1 + σ. Similarly x∗2 ≥ θ2 − σ. We use labeling in
which θ1 < θ2. Therefore, for sufficiently small σ, x∗1 < x∗2 − 2σ. Then the type (x∗1, 1)
knows that no player from group 2 invests. Hence her expected payoff for investment is
bounded in the interval

[∫m1

0 u(x∗1 − σ, l, 1) dl
m1
,
∫m1

0 u(x∗1 + σ, l, 1) dl
m1

]
, and the indifference

13Players from different groups may play different actions in a symmetric equilibrium because a strategy
is a mapping from type to action and the two-dimensional types include the group identity.
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condition implies |x∗1 − θ1| ≤ σ. Similarly |x∗2 − θ2| ≤ σ.
We have proved that player i invests whenever xi > θ∗∗g + σ, and she does not invest

whenever xi < θ∗∗g − σ in any monotone symmetric equilibrium.14 The extension to all
rationalizable strategy profiles is the same as at the end of the proof of Proposition 2.

Proof of Lemma 3 (based on Morris and Shin 2003). The virtual error defined as η̃i = x̃i−θ
σ

is a compound lottery(
ηi1 +

x∗1
σ
, ηi2 +

x∗2
σ
, . . . , ηiG +

x∗G
σ

;m1,m2, . . . ,mG

)
.

Therefore η̃i is i.i.d. across players, and also independent from θ. Let F̃ denote the c.d.f. of
η̃i. (The mean of η̃i is not 0, so that the virtual signal x̃i has a bias, but that is not relevant
for the Laplacian Property.)

Note that if critical signals x∗g are not sufficiently close to each other then the support
Sη̃ of η̃ may not be connected. In that case, the inverse of F̃ may not be uniquely defined at
the points of discontinuity of the support. We uniquely specify the inverse function F̃−1(p)
as minη∈Sη̃{η̃ : F̃ (η) = p}.

The computation below shows that the c.d.f. of `(θ) | (x̃i = x∗1) is indeed that of the
uniform distribution on [0, 1]. In the first equality we use that `(θ) = Pr(x̃j > x̃∗ | θ).

Pr
(
`(θ) < z | x̃i = x̃∗

)
=

Pr
(

Pr
(
x̃j ≥ x̃∗ | θ

)
< z | x̃i = x̃∗

)
=

Pr
(

Pr
(
η̃j ≥ x̃∗ − θ

σ

)
< z | x̃i = x̃∗

)
=

Pr
(

1− F̃
(
x̃∗ − θ
σ

)
< z | x̃i = x̃∗

)
=

Pr
(

1− F̃
(
η̃i
)
< z | x̃i = x̃∗

)
=

Pr
(
η̃i > F̃−1 (1− z)

)
=

1− F̃
(
F̃−1 (1− z)

)
= z.

Proof of Lemma 4. We fix player i and omit her index. Let us write capital letter for a
random variable, and small letter for its realization. To distinguish it from the number of
groups G, we denote the random variable describing player i’s group by G′.

14To unify the formulation of Proposition 3, we stated in both statements that player i invests whenever
xi > θ∗∗g + 3σ , and she does not invest whenever xi < θ∗∗g − 3σ.
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Let (Θ, X,G′) be a random variable describing the fundamental and the type of player
i. The probability density of (Θ, X,G′) is

pΘ,X,G′(θ, x, g) =
1

θ − θ
fg

(
x− θ
σ

)
1
σ
mg,

where fg(·) is the p.d.f. of the conditional random variable ηi | (gi = g).
The marginal probability density of (X,G′) is

pX,G′(x, g) =
∫ x+σ

x−σ

1
θ − θ

fg

(
x− θ
σ

)
mg

dθ

σ
=

mg

θ − θ
,

for all x ∈ [θ+σ, θ−σ]. The marginal probability density of the virtual signal x̃ = x−x∗g is

pX̃(x̃) =
∑
g

pX,G′(x̃+ x∗g, g) =
∑
g

mg

θ − θ
=

1
θ − θ

,

if
x̃+ x∗g ∈ [θ + σ, θ − σ] for each g. (8)

Finally, if x̃ satisfies (8) then

Pr
(
G′ = g | X̃ = x̃

)
=
pX,G′

(
x̃+ x∗g, g

)
pX̃(x̃)

= mg.

Notice that x̃ = x̃∗ = 0 satisfies (8) because we consider only critical signals x∗g ∈ [θ+σ, θ−σ]
(which is without loss of generality because if player receives signal outside of [θ+ σ, θ− σ]
then she knows that θ lies in a dominance regions. Hence signals outside of [θ + σ, θ − σ]
cannot satisfy the indifference condition.).
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