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ABSTRACT 

Background: Depression is associated with neural abnormalities in emotional processing. 

 

Aims: This study explored whether these abnormalities underlie risk for depression. 

 

Methods: We compared the neural responses of high-risk and low-risk never-depressed 

volunteers during the presentation of fearful and happy faces using fMRI. 

 

Results: High-risk volunteers demonstrated linear increases in response in the right fusiform 

gyrus and left middle temporal gyrus to expressions of increasing fear while low-risk 

volunteers demonstrated the opposite effect. High-risk volunteers also displayed greater 

responses in the right amygdala, cerebellum, left middle frontal and bilateral parietal gyri to 

medium levels of fearful vs. happy expressions. 

 

Conclusions: Risk for depression is associated with enhanced neural responses to fearful 

facial expressions similar to those observed in acute depression. 

 

Declaration of Interest is listed at the end of the article. 
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INTRODUCTION 

 

Facial expression processing bias is one of the most remarkable cognitive-social impairments 

in depression. Depressed patients have biases towards the perception of negative facial 

expressions such as fear and sadness, and / or away from happiness or other positive 

expressions (1-4). Functional imaging studies have outlined the neural basis of these 

behavioural biases. Specifically, depression is associated with elevated responses in the 

amygdala, insula and ventral striatum during the presentation of fearful or sad expressions (5-

10). Aberrant neural responses have also been implicated in extrastriate areas such as the 

fusiform gyrus and cuneus (8, 10-12), possibly mediated via rich interconnections with 

amygdala circuitry (13, 14). These emotional processing biases in depression may be 

important in the underlying aetiology of this disorder, with patients assigning more salience 

and attention to negative vs. positive social cues, thereby fuelling negative thinking, poorer 

social function and increased access to negative memories. However it remains unknown 

whether such biases develop prior to the initial onset of depression. Neuroticism (N) is one of 

the best predictors of vulnerability to depression (15, 16) and we therefore sought to explore 

the neural substrates of facial expression processing biases in high risk (high N) vs. low risk 

(low N) never-depressed volunteers using functional Magnetic Resonance Imaging (fMRI). 

Previous work has suggested that linear modeling of the neural response to different 

intensities of positive and negative emotions is a sensitive way of identifying biases in 

depression (7, 8, 17). Thus we hypothesized that similar biases would be seen as a function of 

vulnerability per se. Specifically we hypothesized that high N would be associated with 

increased neural responses to increasing intensity levels of fear and / or reduced responses to 

increasing intensity of happiness within the amygdala and fusiform gyrus in line with 

previous studies on depression (5, 7, 8, 17, 18).  
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METHODS 

 

Subjects 

Twenty-five right-handed healthy volunteers (17 female, aged 18-22) gave written informed 

consent to the study, which was approved by the Oxford Research Ethics Committee. The 

Structured Clinical Interview for DSM-IV (19) was used to verify that all subjects were free 

of current or past axis-1 disorders, and all of them were free of medication apart from 

contraceptive pills. Participants received payment for their participation. These participants 

were a subset of those previously taking part in the behavioural assessment of emotional 

processing (20), but the testing sessions were on average 11 months apart. 

 

N scores were derived from the 12-item neuroticism scale of the shortened Eysenck 

Personality Questionnaire (EPQ: 21). Twelve (9 women) were in the high neuroticism group 

(N range 8-12), and 13 (8 women) in the low neuroticism group (N range 0-3). This range of 

N scores was consistent with our previous behavioural study (20). The two groups were 

matched for age (mean 20.00, SD 0.60 vs. mean 20.15, SD 0.99), gender, verbal IQ (mean 

119.10, SD 3.03 vs. mean 118.66, SD 4.2 6) and spatial IQ (in ms, mean 2584, SD 941 vs. 

mean 1974, SD 610) assessed by NART (22) and WAIS-R (23) respectively. Two 

participants had a first degree relative with depression (one from each group). 

 

Mood Variables 

The Beck Depression Inventory (BDI; 24) and State-Trait Anxiety Inventory (STAI; 25) were 

used to assess self-rated mood. 

 

Stimuli and Task 
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Each volunteer participated in a single 16 minute experiment employing rapid event-related 

fMRI. Eight faces (4 male, 4 female) displaying prototypical expressions of fear and 

happiness were taken from a standardized series of facial expressions (26). In addition to the 

prototypic or high intensity (100%) facial expression, medium (60%) and low (30%) intensity 

expressions generated using morphing software (27) were used. Each face was also presented 

in a neutral facial expression. Thus, there were eight facial stimuli representing each of the 

following categories: high fearful (fear-H), medium fearful (fear-M), low fearful (fear-L), 

high happy (happy-H), medium happy (happy-M), low happy (happy-L), and neutral. Each of 

these faces was presented three times and 24 presentations of a fixation cross were included 

as baseline, giving a total of 192 trials. Stimuli were presented in a random order for 500ms 

each, and the intertrial interval varied according about a Poisson distribution with a mean of 

intertrial interval of 5000ms. Subjects were asked to indicate the gender of each face by 

pressing one of two keys on an MRI compatible keypad. No motor response was required for 

baseline trials of fixation cross. Stimuli were presented on a personal computer using E-Prime 

(version 1.0; Psychology Software Tools Inc., Pittsburgh, PA) and projected onto an opaque 

screen at the foot of the scanner bore, which subjects viewed using angled mirrors. 

Behavioural responses were recorded using a MRI-compatible keypad.  Accuracy and 

reaction times were recorded by E-Prime.  

 

fMRI Data Acquisition 

Imaging data was collected by a 1.5T Siemens Sonata scanner located at the Oxford Centre 

for Clinical Magnetic Resonance Research (OCMR). Functional imaging consisted of 30 

contiguous T2*-weighted echo-planar image (EPI) slices [repetition time (TR) = 3000ms, 

echo time (TE) = 50ms, matrix = 64 x 64, field of view (FOV) 192 x 192, slice thickness 

4mm]. A Turbo FLASH sequence (TR = 12ms, TE = 5.65, voxel size = 1mm
3
) was also 
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acquired to facilitate later coregistration of the fMRI data into standard space. The first two 

EPI volumes in each run were discarded to ensure T1 equilibration. 
 

 

Data Analyses 

Functional MRI data analysis was carried out using FSL version 3.2β (28). Preprocessing 

included slice acquisition time correction, within-subject image realignment (29), non-brain 

removal (30), spatial normalisation (to Montreal Neurological Institute [MNI] 152 

stereotactic template), spatial smoothing, and high-pass temporal filtering (to a maximum of 

0.025Hz).  

 

In the first level analysis, individual activation maps were computed using the general linear 

model with local autocorrelation correction (31). Eight explanatory variables were modelled, 

including each intensity (low, medium, high) of fear and happy as well as neutral and 

fixation. The main contrasts of interest were fear vs. happy expressions (and vice versa) for 

each intensity level, i.e. fear-H vs. happy-H; fear-M vs. happy-M, fear-L vs. happy-L.  In 

addition, each individual activation map was analysed by fitting linear trends at each voxel at 

the three intensity levels of fear and happy, separately, with orthogonal polynomial trend 

analysis. Positive linear trends modelled responses for increasing emotional intensity while 

negative linear trends modelled responses for decreasing emotional intensity. All variables 

were modelled by convolving the onset of each stimulus with a haemodynamic response 

function, using a variant of a gamma function (i.e. a normalisation of the probability density 

function of the gamma function) with a standard deviation of 3s and a mean lag of 6s. 

 

In the second level analysis, individual data were combined at the group level (high N vs. low 

N) using a mixed effects analysis (32). This mixed effects approach accounts for intra-subject 
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variability and allows population inferences to be drawn. We aimed to establish, first, the 

effect of neuroticism on the responses to fear vs. happy facial expressions at each intensity 

level; and second, the effect of neuroticism on the linear trend across increasing or decreasing 

intensity of fear and happy expressions. Significant activations were identified using a cluster 

based threshold of statistical images [height threshold of Z = 2.0 and a (corrected) spatial 

extent threshold of p < 0.05 (33)]. Significant interactions were further explored by 

extracting percent BOLD signal change within the areas of significant difference, which were 

then analysed using repeated measures ANOVA (between Ss variable = group; within Ss 

variable = intensity or valence) followed by appropriate post hoc t-tests (SPSS v.14.0). 

Corresponding Brodmann Areas (BA) were identified by transforming MNI coordinates into 

Talairach space (34). 

 

Due to the strong a priori evidence implicating the amygdala in the processing of facial 

expressions (5-9), we also performed a region-of-interest (ROI) analysis.  Amygdala masks 

(left and right) were segmented for each individual using a robust fully automated Integrated 

Registration and Segmentation Tool (“FIRST”; 35). Percent BOLD signal change for each 

emotional stimulus (fear and happy) was extracted from each individual amygdala. These 

data were entered into 2x2x3 repeated measures ANOVA (between Ss variable = group; 

within Ss variables = valence or intensity). Significant three-way interaction was clarified by 

two-way ANOVA and subsequent t-tests.  

 

For the behavioural data, independent samples t-tests were used to examine group difference 

for subjective mood ratings, overall accuracy and reaction time of the gender discrimination 

responses. Due to technical difficulties, reaction time and accuracy data (measured during 

fMRI) from four low N subjects were not recorded. These subjects were included in the 
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analysis of fMRI data because the behavioural response of gender discrimination is incidental 

to the main outcome measure of neural response to emotional valence. 
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RESULTS 

 

Mood Ratings and Behavioural Data 

As expected high N subjects had significantly higher scores on trait anxiety (mean 39.00, SD 

8.15 vs. mean 27.47, SD 4.91, p=0.00) and a non-significant trend of higher scores on state 

anxiety (mean 32.08, SD 7.09 vs. mean 26.46, SD 7.02, p=0.06). There was no significant 

group difference in BDI scores (mean 2.50, SD 1.93 vs. mean 1.23, SD 1.92, p=0.11). 

Behaviourally, both groups achieved higher than 90% correct for gender discrimination of all 

facial expressions, with no between-group difference (mean 94.29, SD 5.62 vs. mean 92.80, 

SD 9.51, p=0.66) and did not differ in overall reaction time (mean 674.38, SD 87.29 vs. mean 

725.97, SD 161.84, p=0.36).  

 

Functional Imaging Results 

Neural Responses for Fearful vs. Happy Expressions: Between-Group Differences 

Our primary hypothesis was that fearful and happy faces would be differentially processed by 

the subject groups. Indeed, high N vs. low N subjects exhibited greater activity for fear vs. 

happy expressions with medium intensity (i.e. fear-M vs. happy-M) in the following areas: 

cerebellum (MNI: 0, -64, -26, z=3.91), left middle frontal gyrus (BA10, MNI:-30, 58, 2, 

z=3.46), left superior parietal (BA7, MNI:-18, -66, 60, z=3.25) and right superior parietal 

cortex (BA7, MNI: 4, -48, 68, z=3.25). Analysis of percent BOLD signal change for fear-M 

and happy-M stimuli revealed increased responses in high N subjects during presentation of 

fearful facial expressions, which in some areas was accompanied by relatively reduced 

responses during the presentation of happy facial expressions (see Figure 1 for simple main 

effect analyses). These effects remained significant after including BDI or STAI scores as 

covariates (all p<0.01).  
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[Figure 1 about here] 

 

Linear Trend for Increasing Intensity of Fear or Happiness: Between-Group Differences 

For fearful expressions, high N subjects demonstrated a significant positive linear trend in 

right fusiform gyrus (BA 19, MNI: 26, -66, -14, Z=3.48, see Figure 2) and left middle 

temporal gyrus (BA21, MNI: -56, -32, 0, z=3.51, see Figure 3) relative to low N subjects. 

Further analyses of percent BOLD signal change confirmed a significant group-by-intensity 

interaction in both fusiform gyrus (F (2, 46) = 14.155, p<0.001) and middle temporal gyrus 

(F (2, 46) =18.736, p<0.001), which remained significant after including mood scores (BDI, 

STAI) as covariates (all p’s ≤ 0.001). In right fusiform gyrus, high N subjects showed greater 

activation for increasing fearful intensity whereas low N subjects showed the opposite effect 

(Figure 2). Post hoc t-tests revealed greater activation in high N subjects for the high intensity 

of fear (p=0.006) and a marginal reduction in activation for low intensity of fear (p=0.060). A 

similar pattern was found in middle temporal gyrus (Figure 3), in which high N had greater 

activation for high intensity (p<0.001) and reduced activation for low intensity (p=0.001) of 

fearful expressions. By contrast, there was no between-group difference in terms of linear 

trends for happy expressions.  

 

[Figures 2 & 3 about here] 

 

ROI Analysis of Amygdala Responses 

Amygdala volumes were not significantly affected by group (main effect of group: 

F(1,23)=0.563, p=0.461; group x hemisphere: F(1,23)=0.261, p=0.614), allowing functional 

responses to be examined in the absence of potentially confounding structural differences. In 

the right amygdala there was a non-significant trend for an emotion x intensity x group 
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interaction (p=0.092). Due to the strong a priori hypothesis regarding the effects on 

ambiguous facial expressions, two-way ANOVAs were run for each intensity level. These 

revealed a significant group x valence interaction for medium intensity (i.e. fear M vs. happy 

M; p=0.024). This interaction was driven by high N having greater amygdala activation for 

medium fearful expressions relative to the low N group (p=0.029; see Figure 4). By contrast, 

there was no significant effect in the left amygdala. 

 

[Figure 4 about here] 
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DISCUSSION 

 

To our knowledge this is the first study to demonstrate the neural basis for negative biases in 

emotional facial processing in subjects at high risk for depression by virtue of high 

neuroticism. Our high N never-depressed volunteers exhibited a linear increase in neural 

signals in right fusiform gyrus and left middle temporal gyrus for increasing intensity of 

fearful expressions, whereas the low N volunteers showed the opposite effect. Furthermore, 

high N volunteers showed a larger response in right amygdala, cerebellum, left middle frontal 

gyrus, and bilateral superior parietal cortex during the presentation of ambiguous medium 

levels of fearful vs. happy expressions. These areas have been implicated in facial expression 

processing and depression in previous studies. We believe we have demonstrated neural 

processes which may be involved in vulnerability to depression.  

 

A key role for the amygdala and the fusiform gyrus in facial expression recognition and 

depression has been proposed previously from studies of currently depressed individuals 

(5,7,8,17,18) and a similar pattern of effect was seen here as a function of neuroticism.  Thus, 

the increased responses shown by high N volunteers for increasing intensity of fear in the 

right fusiform gyrus and heightened amygdala responses to ambiguous fearful facial 

expressions are similar to those observed in depressed patients (5, 8). Vulnerability to 

depression has also been associated with aberrant amygdala responses to negative facial 

expressions in subjects with familial risk for depression (e.g. 36, 37). These results are also 

consistent with recent evidence which suggests that amygdala responses to emotional 

information correlates with neuroticism scores in unselected populations (38, 39). Together 

these findings suggest that increased amygdala responses to negative affective stimuli may be 

involved in risk for depressive disorders. 
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It is notable that while high N volunteers showed the expected increase in fusiform response 

as a function of increasing fear value, the low N volunteers showed the opposite pattern. This 

implies decreased visual processing with increasing fear in volunteers at low risk of 

developing depression. Perception of fearful faces is believed to convey social signals of 

threat or danger (13, 40). Such a pattern of effect could be explained by differential 

evaluation of threat value in high vs. low N volunteers, according to the curvilinear response 

function of the cognitive motivational account (41). This theory suggests that low threat 

stimuli may be avoided in order to reduce distraction while high threat stimuli are monitored 

for potential importance. The observed pattern of results would be expected if low N 

volunteers estimated the face stimuli as having a lower threat value, leading to the high 

intensity fearful faces being perceived as low threat and thus ‘avoided’. In other words, the 

current observation of reducing neural responses towards fearful expressions with higher 

intensity suggest that low risk for depression may be manifest as a reduced estimation of 

threat value in the environment. 

 

In addition to the effects on the fusiform gyrus and amygdala, our results implicate a network 

of brain areas that are involved in facial processing and vulnerability to depression. First, the 

middle temporal gyrus revealed differential responses for fearful expressions in high and low 

N volunteers similar to that observed in the fusiform gyrus. The temporal gyrus is within the 

core system of face perception (13, 42) and the increased responses seen here in high N 

volunteers appear to be consistent with greater processing of threat relevant facial stimuli in 

this group.  
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The medium intensity of fear versus happy expressions revealed group differences in the left 

middle frontal gyrus, and bilateral parietal cortex. Indeed, such a frontoparietal network plays 

a central role in the concept of self, perception of social relationships and attention (e.g. 43, 

44). Thus, the specific activations for fearful expressions in these regions by high N 

individuals could be explained by their greater tendency to view negative expressions as self-

relevant or self-threatening and thereby requiring activation of attentional systems. In line 

with this, the reduced activation for happy expressions may reflect their inclination to 

disregard positive social information as self-referent and deserving of further attention. In 

other words, these individuals are more likely to interpret negative social signals to be 

personally relevant or threatening, but at the same time unable to translate positive social 

signals for positive self regard. This interpretation is consistent with the self-referent and 

facial expression processing biases observed in a similar high N sample (20).  

 

The same analysis also revealed increased cerebellum responses in the high N volunteers 

towards fearful vs happy facial expressions.  The cerebellum is well known to play a key role 

in fear conditioning, anticipation of pain and co-ordination of motor action (45-48). Its role in 

processing fearful facial expressions is therefore not unexpected and the greater response in 

the high risk volunteers may represent either greater conditioned responses or increased 

readiness for action (49), potentially mediated via increased drive from limbic areas.   

 

The current study demonstrated differential responses to emotional cues in the high N group 

in the absence of current or past Axis 1 psychiatric disorders from DSM-IV, thereby 

indicating that these biases exist prior to mood or anxiety disorder. Analyses including mood 

scores as covariates confirmed that the current effects were a function of neuroticism per se 

independent of mood state. The absence of family history of depression in the high N group 
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further suggested that the aberrant signals found in high risk group were a function of high 

neuroticism per se independent of familial risk for depression.  As noted in the introduction, 

neuroticism has been identified as a robust predictor for depression. For example, Kendler 

and colleagues (15) found that a 1-SD difference in neuroticism translates into a 100% 

difference in the rate of first onsets of depression over 12 months. Similarly, in a recent report 

based on a large Swedish twin sample (>20000 individuals; 16), neuroticism strongly 

predicted the risks for lifetime and first onset depression assessed in 25-years follow up. 

Thus, the differences in neural response to positive and negative affective stimuli seen here 

may be involved in predisposition to depression, consistent with cognitive theories of 

depression. 

 

The differential responses for positive vs. negative expressions shown here were seen largely 

with the medium intensity level of facial expression. This probably represents maximal 

ambiguity as behavioural data suggests that low intensity levels are usually perceived as 

neutral and high intensity levels usually elicit ceiling levels of performance, with the longest 

reaction time to identify facial expressions being seen around mid-intensity level (50, 51). 

Such ambiguous social signals may be particularly relevant for problematic social interaction 

and, experimentally, for differentiating group differences. The current findings were also 

obtained from direct contrast between positive and negative emotional stimuli, which avoided 

potential confounds linked to the interpretation of neutral stimuli. The current study 

specifically investigated the emotional processing of fearful and happy expressions, which 

have been previously shown to be affected by depression and its treatment (e.g. 5, 52). 

However, risk for depression may also be related to negative biases in the perception of other 

expressions such as sadness as previously seen in depression (3, 4, 7).  
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Our behavioural study on a similar high N vs. low N sample found a decrease in the 

recognition of happy facial expressions in the absence of differences in the threshold for 

perception of fear (20). In other words, the neural bias towards negative stimuli does not 

appear to be simply translated into a behavioural bias to detect negative expressions more 

easily.  The observed biases do not necessarily give rise to current depression or anxiety but 

may remain latent until triggered by stress or decreased mood.  

 

Finally, the current study has a number of limitations. The generalization of the current 

finding could be potentially limited by the relative small sample. Although high neuroticism 

is a robust risk factor for depression, the relatively low prevalence rates of depression imply 

that only a small proportion of the high N population will go on to develop depression, 

thereby potentially diluting any effects that we may have seen. Longitudinal studies are 

required to assess the predictive power of negative biases for subsequent depression in a 

sample adequately powered for the detection of infrequent events. In addition, in the current 

study the experimenters were not blind to group membership. Although this is unlikely to 

have an influence on the results because responses were collected automatically and task 

instructions were standardized across participants, future studies may want to assess negative 

bias using a blinded design to confirm these findings.   

 

In conclusion, our results illuminate the role for a distributed neural network, including the 

fusiform gyrus and amygdala, in facial expression processing biases in volunteers at high risk 

for developing major depression. These areas overlap with those thought to be important in 

depression and those targeted by antidepressant drug administration (5, 7, 12). Longitudinal 
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studies are underway to estimate whether, and to what extent, this aberrant neural behaviour 

predicts onset of depression. 
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TITLES AND LEGENDS TO FIGURES 

 

Figure 1: The image and BOLD percent signal change of the brain regions where high N 

volunteers (black) showed greater activation for fearful vs. happy faces at medium intensity 

than low N volunteers (white). Colour bar represents Z score between 2.0 and 3.9. Asterisks 

(*) represent significant group comparisons p<0.05. 

 

Figure 2: The image and BOLD percent signal change of right fusiform gyrus (MNI: 26, -66, 

-14), in which high N volunteers (black) showed increased signals for increasing intensity of 

fearful expressions whereas low N (white) showed the reversed pattern. Colour bar represents 

Z score between 2.0 and 3.5. Asterisks represent significant group comparison p<0.05. 

 

Figure 3: The image and BOLD percent signal change of left middle temporal gyrus (MNI: -

56, -32, 0), in which high N volunteers (black) showed increased signals for increasing 

intensity of fearful expressions whereas low N (white) showed the reversed pattern. Colour 

bar represents Z score between 2.0 and 3.5. Asterisks represent significant group comparison 

p<0.05. 

 

Figure 4: Percent BOLD signal change in right amygdala for fearful and happy expressions at 

medium intensity by high N (black) and low N (white) volunteers. Asterisks represent group 

comparison p<0.05. 

 

 

 

 


