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Sorting and sustaining cooperation

Nick Vikander

School of Economics, University of Edinburgh. 21 Buccleuch Place, EH8 9LN;

email: nick.vikander@ed.ac.uk

Abstract

This paper looks at cooperation in teams where some people are selfish and others are conditional

cooperators, and where lay-offs will occur at a fixed future date. I show that the best way to sustain

cooperation prior to the lay-offs is often in a sorting equilibrium, where conditional cooperators can

identify and then work with one another. Changes to parameters that would seem to make cooperation

more attractive, such as an increase in the discount factor or the fraction of conditional cooperators, can

reduce equilibrium cooperation if they decrease a selfish player’s incentive to sort.

JEL classifications: L23, D82, M50

Keywords: team production, lay-offs, sorting, conditional cooperator

1 Introduction

Managers are often preoccupied with sustaining high morale in the workplace. Bewley (1999) reports their

widely-held view that employee morale is important for productivity, but that high morale also tends to be

fragile. In particular, increased turnover or expected lay-offs can cause morale to break down.

To gain insight into the question of work morale, Gachter (2006) argues a key point is to recognize that

people differ in their intrinsic motivation to cooperate. Some people are selfish and are willing to free-ride

on the work of others. Yet a wealth of evidence suggests many other people are conditional cooperators, who

will cooperate if they expect others to do the same (see e.g. Keser and van Winden (2000), Fischbacher et al.

(2001), Frey and Meier (2004)). Conditional cooperation is widespread, with many experimental estimates

of the proportion of conditional cooperators ranging from 40 to 60 % (see Chaudhuri (2011)).

The presence of conditional cooperators can help explain cooperation when free-riding is possible, while

the presence of selfish types in a heterogeneous population can shed light on how cooperation may break
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down over time. In this sense, Fehr and Schmidt (2001) argue that ‘[t]he interaction between fair and selfish

people is key to understanding ... observed behavior in strategic settings.’

This paper takes up the issue of cooperation in teams in the face of upcoming lay-offs, where some players

are egoists, others are conditional cooperators and where type is private information. There is an infinite

time horizon and players pair up into teams to play a stage game in each period. All players know that

lay-offs will occur at the end of period T0, at which point a given fraction of players will leave the game.

The stage game has players choose between a selfish and a cooperative action. Egoists have a dominant

strategy to take the selfish action, whereas conditional cooperators prefer to cooperate if they expect their

teammates to do the same. A rematching mechanism allows conditional cooperators to rematch together

if they reveal their type through earlier play. The incentives to cooperate arise both through intrinsic

motivation and through repeated interactions, and I explore to what extent cooperation is possible leading

up to the lay-offs.

I show that when the fraction of conditional cooperators is small and the size of the lay-offs is large, then

the best way to sustain cooperation will be through sorting. In a sorting equilibrium, players reveal their type

by taking different actions in some period t ≤ T0− 1, and rematching then allows conditional cooperators to

work together up until the lay-offs. I derive necessary and sufficient conditions for the existence of a sorting

equilibrium, and show that one will exist whenever the material pay-off to unreciprocated cooperation is low

and the intrinsic motivation of conditional cooperators is high.

I also show that an increase in parameters that would seem to favour cooperation, such as the discount

factor or the fraction of conditional cooperators, can decrease the amount of cooperation in equilibrium.

The relationship between these parameters and equilibrium cooperation will sometimes be non-monotonic.

Further results suggest that a firm may benefit from increasing the notice it gives about upcoming lay-offs,

and that laying off workers who reveal they are ‘bad apples’ can be counterproductive.

Sorting is not helpful when lay-offs are small, as a pooling equilibrium then exists with full cooperation in

all periods. Given some assumptions on the discount factor, egoists will cooperate because they are likely to

remain in the game after period T0 to be punished following a deviation. If lay-offs are large but the fraction

of conditional cooperators is large as well, then almost full cooperation is still possible in a non-sorting

equilibrium. Conditional cooperators will cooperate in all periods, while egoists will only defect in period

T0. Egoists wait to defect until just before the lay-offs, because they know their cooperative teammates

would withdraw all cooperation following an earlier deviation.

Cooperation will otherwise break down in any non-sorting equilibrium. Egoists eventually defect because

they are likely to leave the game after period T0, and conditional cooperators will defect to prevent egoists
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from taking advantage of them. Players will then also defect in all earlier periods by a logic of backwards

induction. In this case, more cooperation can be sustained in a sorting equilibrium where conditional

cooperators reveal their type in some period t ≤ T0 − 1, rematch and cooperate for T0 − t periods up until

the lay-offs.

For a sorting equilibrium to exist, two incentive constraints must hold. There must be some period where

conditional cooperators are willing to cooperate even though egoists defect, and where egoists will defect

even though conditional cooperators cooperate. These constraints will hold when intrinsic motivation is high

and the material pay-off to unreciprocated cooperation is low, since this drives a wedge between the expected

pay-off from cooperating for the two different types.

A parameter change that would seem to favour cooperation can have the opposite effect if it causes a

sorting equilibrium to break down. When players are more patient, or conditional cooperators more numer-

ous, then an egoist may prefer to deviate from a sorting equilibrium by imitating a conditional cooperator

and later taking advantage of him. Promising to fire players who are believed to be selfish (bad apples) can

also reduce equilibrium cooperation by decreasing an egoist’s incentive to sort.

The experimental literature on public goods games has shown that cooperation depends crucially on

group composition. As in this paper, cooperation tends to increase when conditional cooperators become

confident they are working with one another. Gachter and Thoni (2005) show that grouping conditional

cooperators togethers will increase subsequent cooperation, and Burlando and Guala (2005) demonstrate

that similar results are robust to different ways of classifying types. Gunnthorsdottir et al. (2007) show

that rematching players based on previous play can help, even if players do not know the rematching rule.

de Oleveira et al. (2009) also indicate that conditional cooperators who are matched together will cooperate

more still if they are informed about this fact. A major difference is that I look at cooperation in the shadow

of upcoming lay-offs and where the timing of sorting is endogenous, whereas the timing of changes to group

composition in most experimental work is exogenous.

Teams are a relevant setting to look at issues of cooperation, rematching, and group composition because

of the rise of self-managed work teams. Using data from Lawler et al. (1995) and Lawler et al. (2001),

Lazear and Shaw (2007) show that the percentage of large firms using self-managed work teams rose from

27 to 78 % from 1987-96. These self-managed teams themselves decide on group composition and whether

to exclude team members who shirk (Lawler and Cohen, 1992). Barker (1993) illustrates this process with

an ethnographic study of a small manufacturing company, where workers decide on team membership.

This paper also relates to recent work on incentives within the firm when workers have social preferences.

Bartling and von Siemens (2010a) show that an equal sharing rule in partnerships can be optimal if workers
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are envious of one another, and Bartling and von Siemens (2010b) examine how worker envy can affect in-

centives under moral hazard. Some experimental work also suggests that a firm might sort its own employees

based on social preferences, as selfish types tend to prefer tournament-based variable pay (Dohmen and Falk,

2011).

Other papers have looked at how workers with different social preferences may sort between different

firms. Kosfeld and von Siemens (2009) and Kosfeld and von Siemens (2011) show that when some workers

are conditional cooperators and others are selfish, then a separating equilibrium may exist where cooperative

types all apply to the same firms. These firms can make positive profits despite free entry since a higher wage

would only attract selfish workers. Firms may also want to screen workers based on other social preferences

such as inequity aversion (von Siemens, 2011) or intrinsic motivation to work (Delfgaauw and Dur 2007,

2008, 2009). One difference here is that I do not consider the sorting of workers between different firms, but

between different teams. Another is that interactions are repeated, so that future punishments can influence

cooperation.

In this paper, the strategic situation prior to the lay-offs resembles a finitely repeated prisoners’ dilemma.

As in Kreps et al. (1982) and Conlon (2003), some players are behavioral types and reputation is impor-

tant. Some players will remain in the game after the lay-offs, however, which affects incentives for earlier

cooperation. More broadly, this paper differs in its focus. Kreps et al. (1982) examine whether the standard

theoretical predictions for the finitely repeated prisoners’ dilemma are robust to the introduction of a small

number of behavioral types. This paper instead follows in the spirit of the earlier quote from Fehr and

Schmidt (2001). It looks at the interaction between selfish and intrinsically motivated types, both of which

may be numerous, to understand how cooperation evolves in the shadow of upcoming lay-offs.

The rest of the paper is organized as follows. Section 2 lays out the model, and Section 3 contains

the main analysis on how sorting can help sustain cooperation. Section 4 looks at comparative statics and

equilibrium cooperation. Section 5 examines the impact of linking lay-offs to performance, and Section 6

examines issues of robustness. Section 7 then concludes. All proofs can be found in the appendix.

2 The Model

There are a countably infinite number of players, indexed by i ∈ N. Players differ in type θ ∈ {θE , θC},

where θi = θE if player i is an egoist and θi = θC if he is a conditional cooperator. The ex-ante probability

that any player is a conditional cooperator is λ ∈ (0, 1), and type is private information. Time is discrete

with an infinite horizon and indexed by t = 1, 2, . . .. Players have a common discount factor δ ∈ (0, 1].
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In each period, players work in teams of two on a productive task. Teammates play a stage game, where

each player can choose either to cooperate (C) or to defect (D). If i is the row player and j the column

player, pay-offs are

C D

C a+ Γi, a+ Γj c, b

D b, c d, d

The terms a, b, c and d are the material pay-offs, where b > a > d > c > 0, and 2a > b+ c. Following the

notation of Kosfeld and von Siemens (2011), player i’s extra intrinsic utility from reciprocated cooperation

is Γi = 0 if θi = θE and Γi = Γ > b − a if θi = θC . Egoists only value material incentives, and so they

face a prisoners’ dilemma. Conditional cooperators enjoy intrinsic utility from reciprocated cooperation, so

conditional cooperators who knew each others’ type would face a coordination game. I denote player i’s

period t action by ait ∈ {C,D}, and the vector of all period t actions by at = {ait}i∈N.

Players know that lay-offs will occur at the end of period T0, at which time a randomly selected group of

players will leave the game. The probability that any given player will be laid off is 1− δ0, where 0 ≤ δ0 < 1.

A player who is laid off has a pay-off of zero in all subsequent periods.

If players i and j are teammates then I say that they are matched together. Let mit denote the player

with whom i is matched at the start of period t, where mit = j means that players i and j play the stage

game in period t. Let the vector mt = {mit}i∈N describe the set of matches, or teams, at the start of period

t.

When choosing his period t action ait, player i observes the full history of play ht−1 up to and including

period t− 1, where h0 = m1 and ht = ht−1 × at ×mt+1. A pure strategy si for player i is a function which,

for any history ht, selects an action ait ∈ {C,D}.

Let µi(j|ht−1) ∈ [0, 1] denote the belief of player i at the start of period t that any other player j is a

conditional cooperator. Since histories are fully observable, players hold the same beliefs and I can drop the

subscript i. I simply write µjt, where the dependence on a particular history is implicit.

Players are randomly matched into teams before the start of period 1. Each team continues to work

together in all subsequent periods, unless one player is laid off or unless there is some period t′ where one

player cooperates while his teammate defects. The interpretation in the latter case is that a team splits up

when one teammate has taken advantage of the other.

Any player whose team splits up at the end of period t′ is randomly rematched with another player whose

team has also split up in that period, and who took the same period t′ action: mit′+1 = j if and only if

ait′ = ajt′ . If this rematching is infeasible, say because the number of teams that split up is odd, then one
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player is randomly matched to another who took a different period t′ action, and the remaining players are

rematched as above.

This exogenous matching mechanism reflects the idea that players prefer to work with teammates who

cooperate and that working together requires mutual consent. The results will not depend on the fine details

of the matching mechanism, such as whether a team should also split up after both players defect. What is

relevant is that on the equilibrium path, players who cooperate in period t will be able to work together in

period t+ 1. I also argue in Section 6 that qualitatively similar results will continue to hold if players cannot

rematch.

Rematching means that observability is important, since each player should know the past actions of his

current teammate. Full observability may be more plausible when there are relatively few players. Having a

small number of players would make the exposition less clear, but all the qualitative results would continue

to hold.

I look for symmetric, pure strategy Perfect Bayesian equilibria, where all players of the same type use

the same strategy. I denote the strategy of conditional cooperators by sC and the strategy of egoists by sE .

Each player’s strategy must be optimal given the strategies of other players and given beliefs. Beliefs are

consistent with player strategies, in the sense of following from Bayes’ rule whenever possible.

I am concerned with how upcoming lay-offs can cause cooperation to break down. To separate this effect

from simple impatience, I assume that in the absence of lay-offs players could sustain cooperation in all

periods

δ ≥ b− a
b− d

. (1)

When there are multiple equilibria, I will be interested in the equilibrium that involves the most coop-

eration. By this I mean the equilibrium that maximizes
∑∞
t=1 xt, where xt is the fraction of players who

cooperate in period t.

3 Analysis

Throughout the analysis, I will assume that players use trigger strategies with the following feature. Consider

a particular candidate equilibrium, and suppose that some player i takes an action ait′ after history ht′ that

neither sC nor sE prescribe for player i after this particular history. Suppose furthermore that t′ is the first

period where any player has taken such an unexpected action. Then both sC and sE call on a player to

defect in any later period t ≥ t′ + 1 where he is matched with player i.

6



With these trigger strategies, a player who first deviates from a candidate equilibrium by taking an

unexpected action will be punished in all later periods. The punishment is self-enforcing because mutual

defection is a Nash equilibrium of the stage game for both types. It also satisfies the requirements of Perfect

Bayesian equilibrium for any out-of-equilibrium beliefs, and in that sense it is robust. Trigger strategies allow

me to derive the maximum amount of cooperation that can be sustained in equilibrium, and then focus on

the impact of sorting.

The results will not depend on any further details about play off the equilibrium path, other than what

is specified above. These trigger strategies specify how a player will be punished if he is the first to deviate

from a candidate equilibrium by taking an unexpected action, and the issue is whether any player wants to

be the first to deviate. For the sake of convenience, I therefore assume the simplest self-enforcing punishment

strategy. Following an unexpected action by any player in period t′, sC and sE have all players defect in all

later periods t ≥ t′ + 1.

This punishment simplifies the exposition as I can then describe any equilibrium strategy just by its

actions on the equilibrium path. It also avoids the question of exactly what other play may also be possible

off the equilibrium path, after a particular sequence of unexpected actions and for a particular set of out-of-

equilibrium beliefs. The reasoning is not that cooperation must necessarily break down in all teams following

an unexpected action by a single player. Rather, we can remain agnostic about the extent of cooperation off

the equilibrium path for all players other than the first to deviate, as it will have no bearing on the results.

The first result shows that it is impossible to sustain full cooperation in all periods unless δ0 exceeds a

certain threshold, so unless the fraction of players laid off is sufficiently small.

Proposition 1. An equilibrium exists where both types cooperate in all periods if and only if δ0 ∈ [δ∗0 , 1],

where

δ∗0 =
1− δ
δ

b− a
a− d

.

The intuition for the result is straightforward. If there were no lay-offs, δ0 = 1, then (1) implies players

would be patient enough to cooperate in all periods. If instead lay-offs are sufficiently large, δ0 < δ∗0 , then an

egoist who deviates by defecting before period T0 knows he is unlikely to remain in the game to be punished.

His most attractive deviation by (1) is to wait until period T0 before defecting, and if he is laid off escape

the punishment altogether. The critical value δ∗0 is decreasing in the discount factor because a player who is

patient is less tempted to deviate.

Although full cooperation is impossible when δ0 < δ∗0 , cooperation after the lay-offs can still be sustained.

In any candidate equilibrium, (1) implies each player is patient enough to cooperate for all t ≥ T0 + 1 if he
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expects other players to cooperate as well. From now on, I will only consider candidate equilibria where, on

the equilibrium path, both types cooperate in all periods after the lay-offs. I can then examine how much

cooperation is also possible before period T0. Doing so focuses the analysis on how cooperation may break

down due to upcoming lay-offs, not due to simple miscoordination on an inefficient equilibrium.

For brevity, I will often describe a candidate equilibrium simply in terms of actions prior to period T0. The

implicit understanding should then be that both types cooperate on the equilibrium path for all t ≥ T0 + 1.

To explore how cooperation can be sustained prior to the lay-offs when δ0 < δ∗0 , I introduce the notion

of a sorting equilibrium.

Definition. An equilibrium is a sorting equilibrium if, on the equilibrium path, conditional cooperators and

egoists take different actions in at least one period t ≤ T0 − 1.

In a sorting equilibrium, different types take different actions at some point before the last period prior

to the lay-offs. I describe the first such period t as the period where players sort, and refer to any other

equilibrium as a non-sorting equilibria.

This definition implies that an equilibrium where different types first take different actions in period T0

itself is a non-sorting equilibrium. With sorting, I want to focus on how conditional cooperators can identify

each other, rematch and then cooperate in all later periods until the lay-offs. This later cooperation cannot

occur if players first choose different actions in period T0, since the lay-offs then follow immediately.

The following result describes the maximum amount of cooperation that can be sustained in any non-

sorting equilibrium. It also establishes conditions under which sorting will unambiguously help, so where

any sorting equilibrium will involve more cooperation than every non-sorting equilibrium.

Proposition 2. Suppose δ0 < δ∗0 , as given in Proposition 1. If both of the following conditions hold

λ ≥ d− c
a+ Γ− b− c+ d

, (2)

λ ≥ 1

δ(b− d)

(
(b− a)− δ0

δ2

1− δ
(a− d)

)
, (3)

then the equilibrium with the most cooperation will be a non-sorting equilibrium. Otherwise, any sorting

equilibrium will involve more cooperation than every non-sorting equilibrium.

If (2) and (3) hold, then the non-sorting equilibrium with the most cooperation has both types cooperate

for all t ≤ T0 except for egoists who defect in period T0. If (3) is violated but (2) is not, then it instead

has both types defect for all t ≤ T0 except for conditional cooperators who cooperate in period T0. If (2) is

violated, then it has both types defect for all t ≤ T0.
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Sorting is not necessary to sustain cooperation, even with large lay-offs, if the fraction of conditional

cooperators is also large. When (2) and (3) hold, a non-sorting equilibrium will exist where both types

cooperate in all periods, except for egoists who defect immediately before the lay-offs.

The result suggests that a firm with enough intrinsically motivated workers can always sustain cooperation

in the face of lay-offs, but I will show in Section 4 that the relationship between λ and equilibrium cooperation

need not be monotonic. If teammates’ decisions to cooperate are strategic complements, then a small increase

in the fraction of conditional cooperators can actually reduce equilibrium cooperation. Proposition 2 also

implies that whenever the fraction of conditional cooperators is below a certain threshold, sorting will be

crucial for sustaining cooperation.

Condition (2) refers to a conditional cooperator’s incentive to cooperate in period T0, where he expects

other conditional cooperators to cooperate and egoists to defect. A conditional cooperator who deviates will

not be punished because defecting allows him to mimic an egoist. He will cooperate if cooperating gives a

higher immediate pay-off than defecting, which is the case if his teammate is likely a conditional cooperator

as well.

If (2) is violated, then all cooperation prior to the lay-offs will break down in any non-sorting equilibrium.

Egoists will defect in period T0 by δ0 < δ∗0 , as will conditional cooperators since (2) does not hold. Egoists

foresee that nobody will cooperate in period T0 so they will also defect in period T0−1, and any non-sorting

equilibrium must have conditional cooperators choose the same period T0 − 1 action. Following this logic of

backwards induction means that no cooperation is possible until after the lay-offs.

Condition (2) may be necessary to sustain any appreciable amount of cooperation in a non-sorting

equilibrium, but it is not sufficient. Condition (3) refers to an egoist’s incentive to cooperate in period

T0 − 1, when he expects all players to cooperate and then egoists to defect in period T0. An egoist who

deviates by defecting in period T0 − 1 will be punished in period T0, but this punishment can only reduce

his pay-off if his teammate turns out to be a conditional cooperator. The worst his period T0 teammate

can do is to defect, which an egoist would also have done in the candidate equilibrium. A large fraction

of conditional cooperators makes the expected punishment more severe, which discourages an egoist from

defecting earlier than expected and helps to sustain cooperation for all t ≤ T0 − 1.

Any sorting equilibrium will involve more cooperation than every non-sorting equilibrium when either

(2) or (3) is violated, because sorting allows conditional cooperators to cooperate in multiple periods before

the lay-offs. Sorting can only occur in a period where conditional cooperators cooperate and egoists defect.

If instead egoists cooperated, then an egoist who deviated could increase his immediate pay-off and benefit

from rematching with a conditional cooperator. After players sort in period t′, the matching rule pairs
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conditional cooperators together in period t′ + 1. They can then continue cooperating for all T0 − t′ periods

until the lay-offs, where T0 − t′ ≥ 1.

The following result describes necessary and sufficient conditions for the existence of a sorting equilibrium.

Proposition 3. A sorting equilibrium where different types first take different actions in period t′ ≤ T0 − 1

will exist if and only if

λb+ (1− λ)d− λ(a+ Γ)− (1− λ)c ≤ δ

1− δ
(1− δT0−t′)(a+ Γ− d), (4)

δ

1− δ
(1− δT0−t′−1)(a− d) + δT0−t′(b− d)− δ0

δT0−t′+1

1− δ
(a− d) ≤ λb+ (1− λ)d− λa− (1− λ)c. (5)

A sufficient condition for (4) and (5) is that the intrinsic motivation of conditional cooperators is suffi-

ciently high and the pay-off to unreciprocated cooperation is sufficiently low: Γ ≥ K1 and d− c ≥ K2, where

the critical value K1 may depend on c, but K2 does not depend on Γ.

When deciding whether to cooperate in period t′, a conditional cooperator must weigh the future benefit

of following his equilibrium strategy against its immediate cost. The future benefit comes from revealing his

type. Cooperating in period t′ allows him to rematch with another conditional cooperator in period t′ + 1

and earn a+ Γ by cooperating until the lay-offs. The immediate cost of cooperating in period t′ is that his

teammate may be an egoist who will defect, giving the lowest pay-off of c. A conditional cooperator can

avoid this pay-off by defecting in period t′, but this deviation will cost him future cooperation as players

believe he is an egoist. He must then rematch with an egoist in period t′ + 1 and earn only d < a + Γ by

defecting until the lay-offs.

The right-hand side of (4) gives the future benefit to a conditional cooperator from playing his equilibrium

strategy in period t′ and the left-hand side gives the immediate cost. The future benefit is decreasing in t′,

which shows that conditional cooperators will only sort if the lay-offs are sufficiently far off.

An egoist has different incentives in period t′, as defecting involves a future cost and an immediate

benefit. The future cost comes from revealing that he is an egoist, which makes further cooperation before

the lay-offs impossible. He is then rematched with another egoist in period t′+ 1 and earns d in each period.

In contrast, defecting in period t′ provides an immediate benefit because it is an egoist’s dominant action

in the stage game. An egoist can sacrifice some immediate pay-off by cooperating in period t′, but this

deviation means he rematches with a conditional cooperator and can earn a > d in each future period. He

can in fact do better still by cooperating until period T0 and defecting just before the lay-offs, even though

he will be punished for this unexpected action if he remains in the game.
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The left-hand side of (5) gives the future cost to an egoist of playing his equilibrium strategy in period t′

and the right-hand side gives the immediate benefit. The future cost is decreasing in t′, so that egoists will

only sort if the upcoming lay-offs are sufficiently close by.

A sorting equilibrium will exist whenever the intrinsic motivation of conditional cooperators is sufficiently

high and the pay-off to unreciprocated cooperation is sufficiently low. If the difference between c and d is

large, then an egoist will defect in period t′ because cooperation simply provides too low an expected material

pay-off. A conditional cooperator will still cooperate as long as he obtains a sufficiently high intrinsic pay-off

from reciprocated cooperation. A large value of Γ increases the wedge between the returns to cooperation

for different types and can allow players to sort.

The timing of sorting is a balancing act, as lay-offs must be sufficiently close by to satisfy egoists and

sufficiently far off to satisfy conditional cooperators. One implication of Proposition 3 is that a firm may

sometimes be able to benefit from announcing lay-offs farther in advance. This advance notice can help

sustain cooperation if sorting then gives conditional cooperators enough future benefit to reveal their type.

Having established when a sorting equilibrium will exist, the following result shows precisely how much

cooperation is possible in a sorting equilibrium.

Proposition 4. Suppose that a sorting equilibrium exists, and let t′H and t′L be the largest and smallest

values of t′ that satisfy both (4) and (5). Consider

λ ≥ 1

δ(b− d)

(
(b− a)− δ0

δT0−t′+2

1− δ
(a− d)

)
. (6)

If t′H satisfies (6), then the sorting equilibrium with the most cooperation has conditional cooperators

cooperate for all t ≤ T0, while egoists cooperate for all t ≤ t′H − 1 and defect for all t′H ≤ t ≤ T0.

If t′H violates (6), then it instead has egoists defect for all t ≤ T0, while conditional cooperators defect for

all t ≤ t′L − 1 and cooperate for all t′L ≤ t ≤ T0.

It is straightforward to describe the amount of cooperation that is possible after players sort. Conditional

cooperators can cooperate in all periods because they are matched together, while egoists must defect until

the lay-offs because they have revealed their type. Proposition 4 shows that the fraction of conditional

cooperators will determine whether cooperation is also possible before sorting.

If t′ = t′H satisfies (6), then players can cooperate in all periods before they sort. The sorting equilibrium

with the most cooperation has players sort late in the game, t′ = t′H , so that egoists cooperate for as long

as possible before revealing their type. Both types cooperate until period t′H and then egoists defect until

the lay-offs.
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Cooperation is otherwise impossible before players sort, so the sorting equilibrium with the most co-

operation has players sort early in the game, t′ = t′L. Conditional cooperators can then reveal their type

and begin to cooperate as soon as possible. Both types defect until period t′L, at which point conditional

cooperators begin to cooperate.

Cooperation before sorting depends on λ for a similar reason to condition (3) from Proposition 2. If

an egoist expects all players to cooperate in period t′ − 1 and then players to sort in period t′, he may

be tempted to deviate by defecting a period earlier than expected. His teammate will then punish him by

defecting in period t′, which is exactly what an egoist would also have done in the candidate equilibrium.

The punishment only reduces a player’s period t′ pay-off if his teammate turns out to be a conditional

cooperator, so the incentive to deviate is decreasing in λ.

Condition (6) is evaluated at t′ = t′H , rather than some lower value of t′, because sorting late in the game

increases the weight of the punishment following an egoist’s deviation. A player who deviates by defecting

in period t′ − 1 will be punished in all later periods. The punishment cannot reduce an egoist’s pay-off

for t′ + 1 ≤ t ≤ T0, since his teammate would also defect in the candidate equilibrium. In contrast, the

punishment will reduce an egoist’s pay-off from a to d in all periods after the lay-offs. The deviation is least

attractive when the periods after the lay-offs are not heavily discounted from the perspective of period t′−1,

so when t′ is close to T0. If any sorting equilibrium exists such that (6) is satisfied, then (6) will also be

satisfied for t′ = t′H .

4 Comparative Statics and Equilibrium Cooperation

The importance of sorting means that changes in certain parameters can have unexpected effects on equi-

librium cooperation. A change that would seem to make cooperation more attractive, such as an increase in

the discount factor or the fraction of conditional cooperators, can reduce equilibrium cooperation if it leaves

players unable to sort.

Making cooperation more attractive can cause sorting to break down because it tightens an egoist’s

incentive constraint, (5). An egoist’s optimal deviation from a sorting equilibrium is to imitate a condi-

tional cooperator, and then take advantage of his teammate after cooperating until period T0. Increasing

for example the pay-off from reciprocated cooperation will make this deviation more attractive. If (5) be-

comes violated then a sorting equilibrium will break down, which by Proposition 2 can reduce equilibrium

cooperation.

Drawing general conclusions about how parameter changes affect equilibrium cooperation is difficult,
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because conditional cooperators and egoists have very different incentives in a sorting equilibrium. A change

that makes period t′ cooperation more attractive will loosen the incentive constraint of a conditional coop-

erator, (4), but tighten the incentive constraint of an egoist, (5). Both incentive constraints must hold in a

sorting equilibrium, so the impact of a parameter change on equilibrium cooperation is often ambiguous.

For this reason, I turn to a related but more specific question: are there situations where the relationship

between these parameters and the amount of equilibrium cooperation is non-monotonic? The reasoning

is that a sufficiently large increase in the discount factor or the fraction of conditional cooperators could

promote full cooperation in all periods, but a smaller increase might just prevent sorting. Propositions 4

and 5 establish conditions under which this is indeed the case.

I first state a lemma that will be useful in proving the results.

Lemma 1. Consider (4) and (5) from Proposition 3. If (4) holds for t′, then it will also hold for all t ≤ t′−1.

If (5) holds for t′, then it will also hold for all t ≥ t′ + 1.

Any t′ that satisfies (4) with equality will strictly satisfy (5), and any t′ that satisfies (5) with equality

will strictly satisfy (4).

The following proposition shows there are parameters for which the relationship between the discount

factor and the amount of equilibrium cooperation is non-monotonic.

Proposition 5. Suppose that (b−a)−(d−c) is small but strictly positive, b−a < (a−d)(1−δ0) and δ0 > 0.

Then for a+ Γ sufficiently close to b, the relationship between δ and the amount of equilibrium cooperation

is non-monotonic. Specifically, there exist δ1 < δ2 < δ3 < 1 such that:

For δ ∈ [δ1, δ2], the equilibrium with the most cooperation has players sort in period t′ = T0 − 1.

For δ ∈ (δ2, δ3), it has both types defect for all t ≤ T0.

For δ ∈ [δ3, 1], it has both types cooperate for all t ≤ T0.

When the discount factor is sufficiently high, δ ∈ [δ3, 1], Proposition 1 shows that an equilibrium will

exist where players cooperate in all periods. If the discount factor drops to δ < δ3, an egoist’s deviation from

this candidate equilibrium becomes profitable, and the parameter assumptions imply that (5) is also violated

on an interval (δ2, δ3). Egoists are unwilling to sort for these values of δ which rules out any cooperation

before the lay-offs. When the discount factor is lower still, δ ∈ [δ1, δ2], then (5) becomes satisfied and sorting

increases cooperation.

This non-monotonicity result holds under quite specific parameter assumptions. It may also be useful to

say something more, to identify when an increase in the discount factor will clearly increase cooperation and

when its impact will be ambiguous.
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An increase in δ always reduces an egoist’s incentive to deviate from a candidate equilibrium with full

cooperation in all periods. Deviating from such a candidate equilibrium provides an egoist with an immediate

benefit, but also carries a future cost as he is punished in later periods. An increase in the discount factor

increases the weight of this cost.

An increase in δ also increases an egoist’s incentive to deviate from any sorting equilibrium. Deviating

from a sorting equilibrium provides a future benefit, since an egoist can mimic a conditional cooperator and

later take advantage of him. An increase in the discount factor increases the weight of this benefit, tightening

(5) and making the deviation more attractive.

The non-monotonicity result follows from these two opposing effects. These effects also imply that a

sufficiently large increase in the discount factor to make δ∗0 ≤ δ0 will clearly help by making full cooperation

possible. A smaller increase that leaves δ0 < δ∗0 will just increase an egoist’s incentive to deviate from any

sorting equilibrium, and its impact on cooperation will be ambiguous.

I now consider a similar question but with the fraction of conditional cooperators.

Proposition 6. Suppose δ = 1 and δ0 = 0. Then for b − d < d − c, and a + Γ sufficiently close to b, the

relationship between λ and the amount of equilibrium cooperation is non-monotonic. Specifically, there exist

λ1 < λ2 < λ3 < 1 such that:

For λ ∈ [λ1, λ2], the equilibrium with the most cooperation has players sort in period t′ = T0 − 1.

For λ ∈ (λ2, λ3), it has both types defect for all t ≤ T0.

For λ ∈ [λ3, 1], it is a non-sorting equilibrium where conditional cooperators cooperate in at least period

T0. Specifically, for λ sufficiently close to one, it has both types cooperate for all t ≤ T0 except for egoists

who defect in period T0.

Proposition 2 showed that almost full cooperation can be sustained without sorting when the fraction

of conditional cooperators is sufficiently high. If instead λ takes on a lower value, λ ∈ (λ2, λ3), then

these parameter values imply that cooperation breaks down because a sorting equilibrium does not exist.

Cooperation again becomes possible when λ ∈ [λ1, λ2], as (5) is then satisfied and egoists are willing to sort.

An important condition here is b − d < a − c, implied by b − d < d − c, which says that teammates’

decisions to cooperate are strategic complements. Strategic complementarity means that an increase in λ

will tighten the egoist incentive constraint (5) in any sorting equilibrium. An egoist deviates from a sorting

equilibrium by cooperating, which under strategic complementary is more attractive if his teammate will

cooperate as well. An egoist will then have a larger incentive to deviate if his teammate is a conditional

cooperator, which can cause a sorting equilibrium to break down.
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In this way, the relationship between the fraction of conditional cooperators and equilibrium cooperation

depends on the nature of production complementarities within the team. If teamwork is necessary for

production but there are decreasing returns to effort within the team (strategic substitutes), then a firm

can clearly benefit from increasing its proportion of intrinsically motivated workers. If instead there are

increasing returns to effort within the team (strategic complements), then the impact can be ambiguous.

5 Linking Lay-offs to Performance

I have emphasized how sorting can help sustain cooperation in the face of upcoming lay-offs, but one

limitation has been the assumption of a random firing rule. The probability of being laid off after period T0

has been constant at 1− δ0, regardless of a player’s actions in previous periods.

A random firing rule might be plausible if actions are difficult for a manager to observe, but it would

otherwise seem natural to base lay-offs on performance. A manager might prefer to lay off workers who have

produced low output or who have exhibited bad character. Basing lay-offs on performance would also be

consistent with Bewley (1999), who argues that managers often want to fire workers who are bad apples.

I now examine the effect of a firing rule where bad apples are more likely to be laid off. I still assume

that a fraction 1− δ0 of players are laid off after period T0, but priority is now given to those believed most

likely to be egoists.

This performance-based firing rule will increase the range of parameters for which full cooperation in all

periods is possible, as long as deviating increases the probability of being laid off. For this to be the case,

the out-of-equilibrium belief about a deviating player being a conditional cooperator must be more negative

than the prior. Such a belief is certainly reasonable as only an egoist could possibly benefit from a deviation.

Full cooperation may still be impossible under a performance-based firing rule if the lay-offs are sufficiently

large. Propositions 2 suggests that the equilibrium with the most cooperation will then have conditional

cooperators cooperate and egoists defect in some period t ≤ T0. In this case, moving from a random firing

rule to a performance-based rule would not unambiguously increase equilibrium cooperation, because it may

cause such an equilibrium to break down.

Proposition 7. Suppose that a fraction 1− δ0 of players are laid off after period T0, in decreasing order of

the belief that they are egoists: if µiT0+1 = µjT0+1, then players i and j are equally likely to be laid off, and

if µjT0+1 < µiT0+1 and player i is laid off, then player j will be laid off as well. Suppose furthermore that

δ0 < λ.

Consider any candidate equilibrium where different types take different actions in some period t ≤ T0.
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Then an egoist’s incentive to make any deviation from this candidate equilibrium is now strictly larger than

under a random firing rule.

A performance-based firing rule makes it unattractive for an egoist to reveal his type. If this effect is

sufficiently strong, then the rule can help sustain an equilibrium where players always cooperate. Otherwise

the rule will just tighten an egoist’s incentive constraint in any candidate equilibrium with partial cooperation,

including any sorting equilibrium, by pushing an egoist to imitate a conditional cooperator.

When lay-offs are large, δ0 < λ, an egoist who plays his equilibrium strategy is sure to be laid off. He then

loses the discounted stream of pay-offs he would have received after the lay-offs had he remained in the game

under a random firing rule. This pay-off of a per period is at least as high as he would receive after making

any deviation, so the performance-based rule makes a deviation more attractive for any out-of-equilibrium

beliefs.

This result raises questions related to a firm’s firing policy and to issues of commitment. In a setting where

workers differ only in their intrinsic motivation, laying off egoists could help safeguard future cooperation

in the face of currently unforseen shocks. The problem is that a performance-based firing rule can prevent

players from revealing their type. It could even leave defection in all periods before the lay-offs as the unique

equilibrium.

A manager could instead promise a different firing rule that does not penalize egoists, but this promise

may not be credible. In the absence of commitment, a manager who prefers to lay off egoists would simply

renege on his promise once he can identify them.

6 Robustness

Conditional cooperators can cooperate in multiple periods before the lay-offs in a sorting equilibrium because

they are all able to rematch. Rematching may be difficult in practice, for example if workers require a

transition period before they can work together productively. A natural question is then whether sorting

can still promote cooperation if each player must remain with his initial teammate until period T0.

Not allowing for rematching will decrease the amount of cooperation in any sorting equilibrium, because

a player who discovers his teammate is an egoist has nowhere to turn. The pair must still work together

until period T0, and cooperation would break down whenever δ0 < δ∗0 . Sorting would only allow a fraction

λ of conditional cooperators to cooperate up until the lay-offs, those who learn that their teammate is also

of the same type.

Although cooperation in any sorting equilibrium will decrease without rematching, the qualitative results

16



of the previous sections will remain unchanged. Propositions 1 and 2 describe when sorting can increase

cooperation and both will continue to hold. Conditions (2) and (3) consider an egoist’s incentive to deviate

by defecting when all other players cooperate, which will trigger a punishment regardless of whether players

can rematch. When either (2) or (3) is violated, a non-sorting equilibrium will have cooperation in no more

than one period t ≤ T0, which is still less than in any sorting equilibrium without rematching.

The incentive constraints in a sorting equilibrium, (4) and (5) from Proposition 3, will change somewhat

without rematching. A conditional cooperator will now have a lower incentive to sort, because the expected

future benefit from revealing his type is a fraction λ of what it was with rematching. Looking at (4), a

conditional cooperator’s incentive constraint becomes

λb+ (1− λ)d− λ(a+ Γ)− (1− λ)c ≤ λ
(

δ

1− δ
(1− δT0−t′)(a+ Γ− d)

)
. (7)

An egoist will now have a higher incentive to sort, because the expected future benefit from deviating is

also reduced to a fraction λ of what it was with rematching. This is the probability that an egoist discovers

his teammate is a conditional cooperator who he can later take advantage of. Looking at (5), an egoist’s

incentive constraint becomes

λ

(
δ

1− δ
(1− δT0−t′−1)(a− d) + δT0−t′(b− d)− δ0

δT0−t′+1

1− δ
(a− d)

)
≤ λb+ (1− λ)d− λa− (1− λ)c. (8)

The only difference between (4) and (7), and between (5) and (8), is the extra term λ that now multiplies

one side of each expression. Comparative statics of the type described in Section 4 will continue to hold

without rematching.

I have also assumed that the timing of lay-offs is certain, whereas in reality workers might just foresee a

time period where lay-offs are more likely. This time period could correspond to an expected announcement

on firm performance or a discussion of restructuring.

A way to capture this idea would be to assume that lay-offs could occur at most once over a stretch of N

periods, beginning in period T0, where the conditional probability of lay-offs after any given period is p ≤ 1.

Setting p = 1 would then yield the original model.

Sorting would continue to play a role under uncertainty if full cooperation cannot be sustained prior to

period T0. It is straightforward to show this will remain the case when δ0 < δ∗0 , as long as p exceeds a certain

threshold. The assumption that lay-offs are certain is not necessary for some cooperation to break down, it

is enough that lay-offs are sufficiently likely. The threshold value is also decreasing in N . The longer the
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period of uncertainty, the lower the value of p needed for egoists to defect in period T0 and for sorting to

play a role.

7 Conclusion

This paper has examined how sorting can help sustain cooperation in teams where some players are intrinsi-

cally motivated conditional cooperators, others are selfish egoists, and where lay-offs occur at a fixed future

date. Unless players are sufficiently patient or the fraction of conditional cooperators is sufficiently high,

then the equilibrium with the most cooperation will be a sorting equilibrium. Sorting allows players to reveal

their type, so that conditional cooperators can identify each other and cooperate leading up to the lay-offs.

Certain changes that would seem to make cooperation more attractive may decrease equilibrium coop-

eration if they increase an egoist’s incentive to sort. An increase in the discount factor, in the fraction of

conditional cooperators, or a performance-based firing rule that targets selfish players can all push an egoist

to deviate from a sorting equilibrium by imitating a conditional cooperator. Cooperation may then break

down because conditional cooperators cannot reveal their type.

Appendix

Proof of Proposition 1. Consider a candidate equilibrium where both types cooperate in all periods. A

conditional cooperator has no incentive to deviate because he earns the maximum pay-off a + Γ in each

period. The equilibrium pay-off for an egoist is

T0∑
t=1

δt−1a+ δ0
δT0

1− δ
a,

where δ0 is the probability of remaining in the game after period T0. An egoist who deviates in some

period t′ ≥ T0 + 1 earns b but is then punished by the trigger strategy. The deviation will not be profitable

if

b+
δ

1− δ
d <

1

1− δ
a.

This inequality is equivalent to δ < (b− a)/(b− d), which holds by (1). An egoist who deviates in some

t′ ≤ T0 earns

t′−1∑
t=1

δt−1a+ δt
′−1b+

T0∑
t=t′+1

δt−1d+ δ0
δT0

1− δ
d.
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This pay-off is increasing in t′, since (1) implies a + δb ≥ b + δd. The most profitable deviation has

t′ = T0, and an egoist’s incentive constraint becomes

b+ δ0
δ

1− δ
d < a+ δ0

δ

1− δ
a.

This constraint is just

1− δ
δ

b− a
a− d

< δ0,

so the deviation is unprofitable whenever δ0 ∈ [δ∗0 , 1].

Proof of Proposition 2. Full cooperation is not possible by δ < δ∗0 , so consider a candidate equilibrium

where both types cooperate in all periods except for egoists who defect in period T0.

A conditional cooperator will not deviate in any t ≤ T0−1, because he earns the maximum pay-off a+Γ.

His pay-off as of period T0, discounted as of that period, is

λ(a+ Γ) + (1− λ)c+ δ0
δ

1− δ
(a+ Γ).

The first two terms give the pay-off from cooperating in period T0, where the probability his teammate is

also a conditional cooperator is the prior λ. A deviation in period T0 will not be punished because defecting

mimics an egoist’s equilibrium action. The subsequent pay-off from deviating is

λb+ (1− λ)d+ δ0
δ

1− δ
(a+ Γ).

The deviation will not be profitable if

λb+ (1− λ)d ≤ λ(a+ Γ) + (1− λ)c,

which is equivalent to (2). The pay-off for an egoist in this candidate equilibrium is

T0−1∑
t=1

δt−1a+ δT0−1 (λb+ (1− λ)d) + δ0
δT0

1− δ
a.

A deviation in period T0 cannot be profitable, since defection is an egoist’s dominant strategy in the

stage game. The only profitable deviation can be to defect in some period t′ ≤ T0 − 1, which yields

t′−1∑
t=1

δt−1a+ δt
′−1b+

T0∑
t=t′+1

δt−1d+ δ0
δT0

1− δ
d.
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This pay-off is increasing in t′, since (1) implies a + δb ≥ b + δd. The most profitable deviation has

t′ = T0 − 1, which gives

T0−2∑
t=1

δt−1a+ δT0−2b+ δT0−1d+ δ0
δT0

1− δ
d.

The deviation will not be profitable if

b+ δd+ δ0
δ2

1− δ
d ≤ a+ δ (λb+ (1− λ)d) + δ0

δ2

1− δ
a,

which is equivalent to (3).

An equilibrium cannot exist where both types cooperate in all periods, except for conditional cooperators

who defect in period T0. An egoist could then deviate by defecting in period T0, increase his immediate

pay-off from λa + (1 − λ)c to λb + (1 − λ)d, and avoid any punishment because he mimics a conditional

cooperator. When (2) and (3) both hold, the equilibrium with the most cooperation therefore has both types

cooperate in all periods except for egoists who defect in period T0.

If (3) is violated but (2) is not, then another non-sorting equilibrium exists where both types defect for all

t ≤ T0 except for conditional cooperators who cooperate in period T0. A deviation in any period t′ ≤ T0− 1

cannot be profitable, because it reduces a player’s immediate pay-off from d to c and triggers a punishment.

An egoist will not deviate in period T0 because defection is his dominant strategy in the stage game, while

a conditional cooperator will not deviate in period T0 because (2) holds.

An equilibrium always exists where both types defect for all t ≤ T0, since deviating reduces a player’s

immediate pay-off and triggers a punishment. I now show that when (3) is violated but (2) is not, this is the

unique non-sorting equilibrium. In any other non-sorting equilibrium, both types must cooperate in some

period t′ ≤ T0− 1. An egoist who deviates in period t′ will be punished in all later periods. Both types take

the same action for any t′ + 1 ≤ t ≤ T0 − 1 in a non-sorting equilibrium, and the punishment only reduce

an egoist’s pay-off in period t if both types would have cooperated. The incentive to deviate is then lowest

when both types cooperate for all t ≤ T0 − 1. This deviation is still profitable because (3) is violated.

If a sorting equilibrium exists, then there is some period t′ ≤ T0 − 1 where different types first take

different actions. By Bayes’ rule, players then update their beliefs to µit′+1 = 1 if player i is a conditional

cooperator and µit′+1 = 0 if he is an egoist. The matching rule pairs conditional cooperators together so

they can cooperate for all t ≥ t′ + 1. Since t′ ≤ T0 − 1, any sorting equilibrium involves more cooperation

than a non-sorting equilibrium where both types defect for all t ≤ T0 − 1.

Proof of Proposition 3. Consider a candidate sorting equilibrium where different types first take different
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actions in period t′ ≤ T0 − 1. If both types defect for all t ≤ t′ − 1, then no player wants to deviate in any

of these periods. The deviation would just reduce a player’s immediate pay-off from d to c and trigger a

punishment.

Egoists cannot cooperate and conditional cooperators defect in period t′, since then an egoist would

prefer to deviate. By defecting in period t′, he could increase his immediate pay-off from λc + (1 − λ)a to

λd + (1 − λ)b, and earn a in all subsequent periods by mimicking a conditional cooperator. In the period

where players sort, it follows that conditional cooperators must cooperate and egoists defect.

A conditional cooperator’s pay-off as of period t′ in a sorting equilibrium is

λ(a+ Γ) + (1− λ)c+

T0−t′∑
t=1

δt(a+ Γ) + δ0
δT0−t′+1

1− δ
(a+ Γ), (9)

and an egoist’s pay-off as of period t′ is

λb+ (1− λ)d+

T0−t′∑
t=1

δtd+ δ0
δT0−t′+1

1− δ
a. (10)

The probability that a player’s teammate will cooperate in period t′ is just the prior λ. By Bayes’ rule,

players then update their beliefs after period t′ to µit′+1 = 1 if player i is a conditional cooperator and

µit′+1 = 0 if he is an egoist. The matching rule pairs conditional cooperators together so they can cooperate

and earn a in all later periods, while egoists must defect for all t′ + 1 ≤ t ≤ T0 by backwards induction.

It is sufficient to consider players’ incentive to deviate by changing their period t′ action. A conditional

cooperator will not deviate in any t ≥ t′ + 1, because he earns the maximum pay-off a+ Γ, while an egoist’s

deviation in any t ≥ t′ + 1 would reduce his immediate pay-off to c and trigger a punishment.

A conditional cooperator who deviates by defecting in period t′ will mimic an egoist in all later periods,

since an unexpected action would reduce his immediate pay-off and trigger a punishment. The pay-off from

deviating is given by (10), but with a replaced by a+ Γ.

Comparing (9) with (10), a conditional cooperator’s incentive constraint is

λb+ (1− λ)d+

T0−t′∑
t=1

δtd ≤ λ(a+ Γ) + (1− λ)c+

T0−t′∑
t=1

δt(a+ Γ),

which is equivalent to (4).

An egoist who deviates by cooperating in period t′ earns λa+ (1− λ)c and rematches with a conditional

cooperator. His teammate will cooperate as long as he continues to mimic a conditional cooperator and

cooperate himself. The egoist’s incentive to defect in any period t ≥ t′ + 1 will therefore be the same

as in a candidate equilibrium where both types always cooperate. By the same argument as in the proof
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of Proposition 1, (1) and δ0 < δ∗0 imply that an egoist who deviates in period t′ will cooperate for all

t′ ≤ t ≤ T0 − 1 and then defect in period T0.

An egoist’s pay-off as of period t′ from this deviation is

λa+ (1− λ)c+

T0−t′−1∑
t=1

δta+ δT0−t′b+ δ0
δT0−t′+1

1− δ
d. (11)

Comparing (10) with (11), an egoist’s incentive constraint is

λb+ (1− λ)d+

T0−t′∑
t=1

δtd+ δ0
δT0−t′+1

1− δ
a ≤ λa+ (1− λ)c+

T0−t′−1∑
t=1

δta+ δT0−t′b+ δ0
δT0−t′+1

1− δ
d,

which is equivalent to (5). Rearranging (5) gives

1

1− λ

(
δ

1− δ
(1− δT0−t′−1)(a− d) + δT0−t′(b− d)− δ0

δT0−t′+1

1− δ
(a− d)− λ(b− a)

)
≤ d− c,

where the left-hand side does not depend on Γ. Setting the critical value K2 equal to this left-hand side,

a sufficient condition for (5) is that d− c ≥ K2.

Recall that (4) is given by

λb+ (1− λ)d− λ(a+ Γ)− (1− λ)c ≤ δ

1− δ
(1− δT0−t′)(a+ Γ− d),

where the right-hand side is increasing without bound in Γ. For a given value of K2, define K1 as the

value of Γ for which (4) holds with equality. Then a sufficient condition for (4) is that Γ ≥ K1.

Proof of Proposition 4. If both (4) and (5) hold for some t′, then a sorting equilibrium will exist where

both types defect for all t ≤ t′ − 1 and then conditional cooperators begin to cooperate. Consider another

candidate sorting equilibrium where both types cooperate in some period t′′ ≤ t′ − 1. For this to be an

equilibrium, an egoist must not want to deviate by defecting in period t′′.

An egoist who defects in period t′′ is punished in all later periods. This punishment only reduces his

pay-off in periods where he would obtain more than d in the candidate equilibrium, so the incentive to

deviate is lowest when the candidate equilibrium has both types cooperate for all t ≤ t′ − 1. An egoist’s

pay-off in this candidate equilibrium is

t′−1∑
t=1

δt−1a+ δt
′−1(λb+ (1− λ)d) +

T0∑
t=t′+1

δt−1d+ δ0
δT0

1− δ
a, (12)
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while his pay-off from deviating in period t′′ is

t′′−1∑
t=1

δt−1a+ δt
′′−1b+

T0∑
t=t′′+1

δt−1d+ δ0
δT0

1− δ
d.

This pay-off is increasing in t′′ because (1) implies a + δb ≥ b + δd. The most profitable deviation has

t′′ = t′ − 1, which yields

t′−2∑
t=1

δt−1a+ δt
′−2b+

T0∑
t=t′

δt−1d+ δ0
δT0

1− δ
d. (13)

An egoist will not deviate if (12) exceeds (13), which is equivalent to condition (6). When (6) holds, a

sorting equilibrium will exist where conditional cooperators cooperate for all t ≤ T0, and egoists cooperate

for t ≤ t′ − 1 and defect for t′ ≤ t ≤ T0.

The right-hand side of (6) is decreasing in t′, and so is easiest to satisfy for t′ = t′H . The sorting

equilibrium with the most cooperation then has both types cooperate until t′ = t′H , then egoists begin to

defect. If t′H does not satisfy (6), then players cannot cooperate before period t′ in any sorting equilibrium.

The most cooperation occurs when players sort as early as possible, in period t′ = t′L

Proof of Lemma 1. To establish the first part of the lemma, it is sufficient to show that the right-hand

side of (4) and the left-hand side of (5) are both decreasing in t′. This is the case for (4) because 1− δT0−t′

is decreasing in t′. Adding and subtracting δT0−t′(a− d) to the left-hand side of (5) gives

δ

1− δ
(1− δT0−t′)(a− d) + δT0−t′(b− a)− δ0

δT0−t′+1

1− δ
(a− d). (14)

Subtracting (14) from the same expression evaluated at t′ + 1 yields

δ

1− δ
(−δT0−t′−1 + δT0−t)(a− d) + (δT0−t′−1 − δT0−t′)(b− a) + δ0

δ

1− δ
(−δT0−t′−1 + δT0−1)(a− d).

Dividing through by δT0−t′−1 − δT0−1 > 0 and rearranging shows this will be negative if

b− a ≤ δ

1− δ
(a− d)(1 + δ0). (15)

The right-hand side of (15) is minimized when δ0 = 0 and δ = (b − a)/(b − d), so that (1) holds with

equality. Then (15) also holds with equality, so the left-hand side of (5) is decreasing in t′.

The left-hand side of (5) is given by (14), and rewriting (4) gives
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λb+ (1− λ)d− λa− (1− λ)c ≤ δ

1− δ
(1− δT0−t′)(a+ Γ− d) + λΓ.

To establish the second part, it is sufficient to show that

δ

1− δ
(1− δT0−t′)(a− d) + δT0−t′(b− a)− δ0

δT0−t′+1

1− δ
(a− d) <

δ

1− δ
(1− δT0−t′)(a+ Γ− d) + λΓ. (16)

The left-hand side of (16) is decreasing in δ0, while the right-hand side is increasing in Γ. I set δ0 = 0

and let Γ tend to b− a to give

δT0−t′(b− a) <
δ

1− δ
(1− δT0−t′)(b− a) + λ(b− a).

Simplifying shows this is equivalent to

(
(
δT0−t′ − δ

1− δ
)− λ

)
(b− a) < 0,

which holds because δT0−t′ − δ < 0.

Proof of Proposition 5. Proposition 1 showed that players can cooperate in all periods if δ0 ≥ δ∗0 , which

is equivalent to

δ ≤ b− a
b− a+ δ0(a− d)

. (17)

Define δ3 as the right-hand side of (17), where δ = δ3 implies δ0 = δ∗0 and where δ3 < 1 by δ0 > 0. An

equilibrium exists where both types cooperate in all periods if δ ∈ [δ3, 1].

Since b > a, d > c and λ < 1, condition (2) will be violated for Γ close enough to b−a. Whenever δ < δ3,

Proposition 2 then shows that the only non-sorting equilibrium has both types defect in all t ≤ T0.

I now show that no sorting equilibrium exists when δ = δ3. Condition (5) evaluated at t′ = T0 − 1 is

δ(b− d)− δ0
δ2

1− δ
(a− d) ≤ λb+ (1− λ)d− λa− (1− λ)c, (18)

while δ∗0(a− d)[δ/(1− δ)] = b− a means that (18) evaluated at δ = δ3 is

δ3(b− d)− δ3(b− a) ≤ λb+ (1− λ)d− λa− (1− λ)c. (19)

Rearranging (19) gives
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δ3(a− d) ≤ λ(b− a) + (1− λ)(d− c),

which I now show does not hold. Substituting for δ3 from (17) yields

[
b− a

b− a+ δ0(a− d)

]
(a− d) ≤ λ(b− a) + (1− λ)(d− c).

Since b− a > d− c, it is enough to show that

[
1

b− a+ δ0(a− d)

]
(a− d) > 1,

which is satisfied by b − a < (1 − δ0)(a − d). Lemma 1 then implies that (5) is also violated for all

t′ ≤ T0 − 2, and no sorting equilibrium exists for δ = δ3.

The right-hand side of (18) is strictly positive, so (18) must hold when δ is small. Since the left-hand

side of (18) is concave in δ, there is a unique value of δ ∈ (0, δ3) such that (18) holds with equality. Define δ2

as this value of δ. No sorting equilibrium exists when δ ∈ (δ2, δ3), so the unique equilibrium has both types

defect for all t ≤ T0.

Since (5) holds with equality at t′ = T0 − 1 and δ = δ2, Lemma 1 implies that (4) must strictly hold.

Moreover, (18) also holds for all δ ≤ δ2. By continuity, there must be some δ1 < δ2 such that a sorting

equilibrium exists with t′ = T0 − 1, whenever δ ∈ [δ1, δ2].

To complete the proof, I verify that (1) holds for all δ ≥ δ1. It will be sufficient to show that (18) holds

strictly when evaluated at δ = (b− a)/(b− d). Substituting and rearranging gives

(1− λ)(b− a)− (1− λ)(d− c) ≤ δ0
δ2

1− δ
(a− d),

which holds because the right-hand side is strictly positive and (b− a)− (d− c) is small.

Proof of Proposition 6. Define λ3 as the value of λ for which (2) holds with equality,

λ3b+ (1− λ3)d− λ3a− (1− λ3)c = λ3Γ. (20)

For all λ ∈ [λ3, 1], Proposition 2 shows that a non-sorting equilibrium exists where conditional cooperators

cooperate in period T0. When λ is sufficiently close to 1, so that (3) also holds, a non-sorting equilibrium

exists where both types cooperate in all periods except for egoists who defect in period T0.

I now show that no sorting equilibrium exists when λ ∈ [λ3, 1], because (5) is violated for all t′. First,

let t′ = T0 − 1. Since δ = 1 and δ0 = 0, (5) becomes
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b− d ≤ λb+ (1− λ)d− λa− (1− λ)c. (21)

When λ = λ3, substituting from (20) into (21) yields

b− d ≤ λ3Γ.

This inequality is violated for a+ Γ sufficiently close to b, because b− d > b− a. The right-hand side of

(21) is decreasing in λ, as b − d < d − c implies b − d < a − c. This means that (21) is also violated for all

λ ∈ [λ3, 1] and a sorting equilibrium does not exist with t′ = T ′0− 1. By Lemma 1, (5) is also violated for all

t′ ≤ T0 − 2, and no sorting equilibrium exists for any value of t′.

Since pay-offs are continuous in λ, (5) is violated for all t′ whenever λ is marginally less than λ3. This

implies there is an interval (λ2, λ3) where no sorting equilibrium exists. Condition (2) is also violated for all

λ < λ3, so the unique equilibrium when δ ∈ (λ2, λ3) has both types to defect in all t ≤ T0.

Condition (21) will hold when λ is small by b − d < d − c, so there is some λ2 for which (21) holds

with equality, and where (21) strictly holds for all λ < λ2. When λ = λ2, Lemma 1 implies that (4) must

strictly hold for t′ = T0 − 1. This means that for λ = λ2, an equilibrium exists where players sort in period

T0 − 1. Pay-offs are continuous in λ, so (5) also holds for λ marginally less than λ2, and there is an interval

λ ∈ [λ1, λ2] where this sorting equilibrium exists.

Proof of Proposition 7. Consider a candidate equilibrium where different types take different actions in

some period t ≤ T0. Egoists reveal their type, so δ0 < λ means that all egoists and (1 − δ0) − (1 − λ)

conditional cooperators are laid off. Compared to a random firing rule, an egoist’s expected pay-off as of

period T0 + 1 decreases from δ0
δ

1−δa to zero.

If an egoist deviates by imitating a conditional cooperator in all periods, he will be laid off with probability

1− δ0/λ. Compared to a random firing rule, his expected pay-off as of period T0 + 1 increases from δ0
δ

1−δa

to (δ0/λ) δ
1−δa.

If an egoist deviates by taking an unexpected action, at worst he will be laid off with probability one.

His expected pay-off as of period T0 + 1 then decreases from δ0
δ

1−δd to zero. Compared to a random firing

rule, his expected pay-off from this deviation cannot decrease by more than δ0
δ

1−δd < δ0
δ

1−δa. This means

that an egoist’s incentive to make any deviation has strictly increased.
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