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The microscopic structure of fluids of simple spheres is well known. However, the constituents of
most real-life fluids are non-spherical, leading to a coupling between the rotational and translational
degrees of freedom. The structure of simple dense fluids of spheroids – ellipsoids of revolution – was
only recently determined by direct experimental techniques [A. P. Cohen, E. Janai, E. Mogilko, A. B.
Schofield, and E. Sloutskin, Phys. Rev. Lett. 107, 238301 (2011)]. Using confocal microscopy, it was
demonstrated that the structure of these simple fluids cannot be described by hard particle models
based on the widely used Percus-Yevick approximation. In this paper, we describe a new protocol
for determining the shape of the experimental spheroids, which allows us to expand our previous
microscopy measurements of these fluids. To avoid the approximations in the theoretical approach,
we have also used molecular dynamics simulations to reproduce the experimental radial distribution
functions g(r) and estimate the contribution of charge effects to the interactions. Accounting for these
charge effects within the Percus-Yevick framework leads to similar agreement with the experiment.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765100]

I. INTRODUCTION

A fluid of spheroids – ellipsoids of revolution – is among
the simplest and most fundamental models of disordered mat-
ter, where positional and rotational degrees of freedom of
the constituent particles are coupled. However, while flu-
ids of highly anisometric rods2–7 and systems of spherical
particles8–11 have been intensively studied, with the result that
their structure is reasonably well understood, the structure of a
dense fluid of simple spheroids was only recently determined
by direct experimental measurements,1 and a full theoreti-
cal understanding of the observed structures has not yet been
attained.

Colloids – micron-sized particles suspended in a molec-
ular solvent – are common in food industry, cosmetics, and
pharmaceutics.12 In addition, colloids are also considered a
simple model to mimic systems of atoms and molecules.
Since they are observable with confocal microscopy, colloids
provide insight into the behavior of many-body systems, mak-
ing it possible to resolve each individual particle in real mo-
tion, in three spatial dimensions.8–10, 13 Thus, these systems
constitute a unique source of experimental information, form-
ing a bridge between the behavior of individual particles and
macroscopic thermodynamics.14

During the last decade, significant progress has been
made in the synthesis of fluorescent colloids15 with better
protocols being established,16 allowing for the formation of
more stable suspensions. Simultaneously, the image process-
ing techniques used to examine these systems evolved,17–19

permitting higher quantity and quality of data to be col-

a)Electronic mail: eli.sloutskin@biu.ac.il.

lected and analyzed.13 This progress was exploited in many
experiments, where real-time three-dimensional (3D) con-
focal microscopy was employed to collect highly detailed
information on systems of spherical colloids.8–10, 13, 20 Con-
siderably less attention has been devoted to systems of non-
spherical colloids, such as ellipsoids.21–26 While a few mi-
croscopy studies of thermodynamically equilibrated27 and
out-of-equilibrium two-23 and three-dimensional21, 22, 28 sys-
tems of ellipsoids have been carried out, our very recent short
publication1 is hitherto the only work to measure the micro-
scopic structure of a 3D fluid of simple ellipsoids by direct
confocal microscopy.

The current work provides a full account of our confo-
cal measurements1 of radial distribution functions g(r) in col-
loidal suspensions of prolate ellipsoids, with an aspect ratio of
t = 1.6. We introduce a new protocol, based on scanning elec-
tron microscopy, which allows the aspect ratio distribution of
our ellipsoidal colloids21, 24 to be fully characterized. We also
perform molecular dynamics simulations,29 employing parti-
cles that closely approximate the shape of the experimental el-
lipsoids. The molecular dynamics results must be rescaled to
reproduce the experimental g(R), in a manner consistent with
the presence of charges in the suspension. While the origi-
nal Percus-Yevick theory30 does not fit the experimental g(R),
similar rescaling leads to a corresponding improvement in the
fit to experiment.

II. EXPERIMENTAL DETAILS

A. Formation of colloidal ellipsoids

We form ellipsoids by uniaxial stretching of simple col-
loidal spheres, following the procedure31, 32 which was used

0021-9606/2012/137(18)/184505/7/$30.00 © 2012 American Institute of Physics137, 184505-1
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in the past with polystyrene33 and poly(methyl methacrylate)
(PMMA) particles stabilized by a grafted layer of PMMA-
g-PDMS [poly(dimethylsiloxane)] copolymer.21, 22 Our initial
spherical colloids are made of PMMA and coated by a ster-
ically stabilizing layer of polyhydroxystearic acid (PHSA).
The thickness of the PHSA monolayer34 is below 10 nm,
such that the interparticle potential between the initial (un-
streched) colloidal spheres is closely approximated by the
hard sphere model.34, 35 The reason for choosing PMMA,
rather than polystyrene33 or inorganic materials,4, 7, 36 is that
the density and the refractive index of PMMA can be matched
by mixtures of common organic solvents to form stable sus-
pensions, where light scattering is minimized for confocal
imaging deep into the bulk of the sample. The initial spheres
are fluorescently labelled by the Nile Red dye, for confocal
measurements. The average diameter of the initial spheres is
σ s = 2.40 ± 0.04 μm, as determined by static and dynamic
light scattering techniques. The polydispersity of the initial
spheres is below 4%, as demonstrated by the scanning elec-
tron microscopy (SEM) image in Fig. 1(a). This polydisper-
sity is below the detection limit of conventional dynamic light
scattering techniques.37 The technical details of the stretching
procedure are described in the Appendix.

B. Shape characterization

To characterize the shape of colloidal particles, we de-
posit them from hexane onto a clean aluminum substrate and
obtain SEM images at 30 keV, employing the Quanta Inspect
(FEITM) electron microscopy setup. A typical image of our
initial spherical particles is shown in Fig. 1(a). The ellipsoids,

FIG. 1. (a) SEM image of the original colloidal spheres demonstrates that
their polydispersity is very low. (b) SEM image of the prolate ellipsoids, ob-
tained by stretching; the particles are oriented at different angles to the sub-
strate, so that the apparent aspect ratios are smaller than their actual aspect
ratio t. (c) 3D reconstruction of one of the ellipsoidal particles based on AFM
(atomic force microscopy) measurement. (d) The ellipsoid aspect ratio distri-
bution obtained from the SEM images (described in the text); the peak is at t
= 1.55 ± 0.06. This distribution was obtained from our SEM images, using
the high uniformity of the initial spheres [see (a)] to extract the inclination of
the spheroids with respect to the substrate; see details in the text. The scale
bar length is 15 μm in (a) and (b) and 2 μm in (c).

obtained by the stretching procedure (see the Appendix), are
shown in Fig. 1(b).

In addition, we measure the 3D shape of our ellipsoids,
deposited on an aluminum surface, employing an AFM. The
resulting images, such as in Fig. 1(c) allow, in principle, the
full shape of the particle to be characterized, regardless of the
inclination angle of the particle with respect to the substrate.
Unfortunately, the AFM scanning speed is too low. Thus, to
collect sufficient statistics for shape characterization, we em-
ploy faster two-dimensional SEM measurements.

We use our SEM images, such as in Fig. 1(b) to mea-
sure the distribution of the aspect ratios of our ellipsoidal col-
loids. Particle inclination angles, with respect to the (roughly)
horizontal substrate, make them appear shorter in SEM im-
ages. Fortunately, the volumes of our ellipsoids, obtained by
volume-conserving stretching of monodisperse spheres, are
almost perfectly monodisperse [see Fig. 1(a)]. Moreover, our
particles are spheroids, such that they are symmetric under
rotation about their long axis. Therefore, the minor axis of a
particle b can be measured quite accurately by SEM, being in-
dependent of the inclination angle of the particle with respect
to the substrate. We obtain the aspect ratio and the inclination
angle of each individual particle in our SEM images, based on
the known volume of the initial spheres (v = 7.24 μm3) and
the minor axis length of the given particle, measured from the
SEM image. The distribution P(t) of the resulting aspect ra-
tios t = 6vπ−1b−3, based on ∼100 SEM images of colloidal
particles, is shown in solid symbols in Fig. 1(d); the symbols
represent binned probabilities, with their integral normalized
to unity. A Gaussian fit to our experimental distribution peaks
at t = 1.55 ± 0.06 and the median of our experimental data
is t = 1.6. Both of these values are in perfect agreement with
the nominal aspect ratio of our ellipsoids t = 1.6, confirm-
ing the accuracy of our stretching protocol. The width of the
P(t) distribution (HWHM = 0.47) is non-negligible. While
the imperfect monodispersity of particle aspect ratios does not
significantly change the structure of our fluids, as detailed in
the following, it may significantly impact crystal stability and
crystallization kinetics38 in this system. We suggest that our
protocol for characterization of aspect ratio distributions in
colloidal spheroids should be adopted in a wide range of fu-
ture studies employing these systems.

C. Preparation of the colloidal suspension

To thermalize our particles, we suspend them in a
mixture (18:22:60, by mass) of cis-decahydronaphthalene
(Fluka, 98%), tetrahydronaphthalene (Sigma-Aldrich, 99%),
and tetrachloroethylene (Sigma-Aldrich, 99.5%). This mix-
ture matches the refractive index of our particles. The gravi-
metric density of this mixture is slightly lower than that of
our colloids, such that the sedimentation is balanced by the
osmotic pressure.39 As a result, a colloid density profile is
formed within the sample. This profile stays unchanged on a
scale of several weeks, indicating that the thermodynamical
equilibrium was attained.

The preparation process of our ellipsoids damages parts
of the steric PHSA layer.24 To stabilize our particles by
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short-ranged screened Coulombic repulsions,40 we introduce
70 mM aerosol OT (AOT, or dioctyl sodium sulfosuccinate,
Sigma-Aldrich, 98%) to the suspension. At very small con-
centrations, the AOT micelles charge the particles. At larger
concentrations, the micelles screen Coulombic interactions,
decreasing the range of Coulombic repulsions between the
particles. The Debye length in our solvent, in absence of col-
loids, was previously estimated41 as ∼0.3 μm. This charging
may in principle increase the effective size of a colloidal parti-
cle beyond its geometrical size, which is common in colloidal
suspensions.42 In order to approximate this effect in the the-
oretical model mentioned in Sec. IV B, we can rescale the
theoretical ellipsoids by adding a distance wb to both of their
axes. The aspect ratio of the effective particles will then be-
come t ′ = (w + t)/(w + 1). The volume fraction of these ef-
fective particles will become φ′ = φ(t ′/t)(1 + w)3.

D. Confocal measurements and image analysis

For confocal imaging, the sample is loaded into a Vitro-
com capillary (0.1 × 2 × 50 mm) and sealed with an epoxy
glue. Our resonant laser scanning confocal setup Nikon A1R
is capable of obtaining 512 × 512 pixel images at a rate of
30 frame/s, which is close to the video rate. For rapid acqui-
sition of 3D stacks of confocal slices through the sample, we
mount our objective on a piezo-z stage, such that a collection
of 100 slices, separated by 0.3 μm takes only several seconds.
At this high data acquisition rate, the diffusion of particles,
even for the low density samples, does not matter for structure
determination. The images are taken with an oil-immersed
100x Plan Apo objective. The lateral digital resolution is set
to 0.08 μm/pixel, which slightly oversamples beyond the op-
tical resolution of our setup. This oversampling improves the
accuracy of our particle tracking procedures.18, 19

We used particle tracking codes43 based on the
PLuTARC implementation18 of the Crocker and Grier
algorithm19 for tracking simple spheres. We have general-
ized the code to track ellipsoids. The first part of the code
analyzes each individual two-dimensional confocal slice. A
slice through an ellipsoidal particle is an ellipse. The code de-
tects the centers and orientational angles of all such ellipses,
in each of the slices. The second part of the code links the
centers of ellipses belonging to different slices, based on the
lateral separation and orientation. The reconstructed particle
positions are rendered in 3D in Fig. 2(a).

To determine the local volume, available for each parti-
cle, we perform a Voronoi tessellation of the reconstructed
samples. The Voronoi cell of a given particle is the locus of
all points, which are located closer to the center of this par-
ticle, than to any other particle in the system. The tesselation
is carried out using the free Qhull software.44 To estimate the
local volume fraction φ of the colloids we divide the single-
particle volume v = πb3t/6 by the volume of its Voronoi cell.
The osmotic colloid density profile in our samples φ(z), dis-
cussed elsewhere,1 is then obtained directly from the average
φ values, measured at different elevations from the bottom of
the sample. This makes it possible to measure, within each
individual sample, the structure at different elevations from

FIG. 2. (a) 3D reconstruction of the experimental particle positions, obtained
by confocal microscopy at a volume fraction of φ = 0.26. (b) 3D rendering of
a system of L3 particles, whose shapes closely approximate the experimental
ellipsoids at φ = 0.26.

the bottom of the capillary. Each of these elevations corre-
sponds to a slightly different volume fraction, such that a large
amount of information is obtained from each individual sam-
ple. The φ = 0.31 data were obtained from a slab of thick-
ness 9b, over which φ(z) varied between 0.310 and 0.314; the
φ = 0.26 data were obtained from a 10b-thick slab, where
φ(z) ranged from 0.23 to 0.28. The similar outcomes for the
two values of φ indicate that the variation in φ(z) does not
significantly affect the results.

III. RESULTS

We quantify the local structure of the fluid of prolate el-
lipsoids by means of the radial distribution function30 g(r),
which is proportional to the probability of finding two parti-
cles with their centers separated by a distance r. g(r) is nor-
malized so that it equals to 1 for an ideal gas. Our particles do
not interpenetrate; thus g(r) = 0 for r < b, as demonstrated in
Fig. 3, for two different particle volume fractions, φ = 0.26
and φ = 0.31. The peaks of g(r) correspond to the coordi-
nation shells surrounding each particle in the fluid. Fluids
are characterized by short-range positional correlations, and
g(r → ∞) = 1, as in the ideal gas. The rotational anisotropy
of our ellipsoids may be expected to smear the shell structure
of the fluid. However, in Fig. 3(b) the 3rd and the 4th coordi-
nation shells are visible, indicating the presence of positional
correlations that increase with φ, as in simple fluids.30

A. Hard potential: Percus-Yevick approximation

To gain a deeper quantitative understanding of the ex-
perimental g(r) data we compare the results to theoretical
predictions based on the well-known Percus-Yevick (PY)
approximation.30 The PY model introduces an approximate
closure to obtain an analytical solution for the Ornstein-
Zernike (OZ) equation, which reproduces the experimental
g(r) of simple colloidal hard spheres.10 Extension of the PY
approximation to ellipsoids has been carried out numerically
by Letz and Latz.45 The pair potential of hard ellipsoids
depends, in a complex way, on their separation and orien-
tation; to overcome this difficulty, the well-known Berne-
Pechukas approximation46 was used, modified to describe
hard interactions.45 The solution of the OZ equation47 yields
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FIG. 3. Experimental1 (dots), PY-theoretical1, 45 (dashed-dotted lines), and
simulated (solid lines) radial distribution functions g(r) for (a) φ = 0.26
and (b) φ = 0.31. The r values are normalized by the ellipsoid minor
axis b, as measured by SEM. To improve the quality of the agreement, the
PY-theoretical ellipsoids are rescaled by adding wb = 0.22b = 0.46 μm to
both of their axes; such rescaling may be justified by Coulomb effects (see
Sec. IV B). The resulting g(r) (dashed lines), where φ and t were adjusted
accordingly, exhibit much better agreement with the experiment.

g(r) and the structure factor S(q), which is related30 to the
Fourier transform of g(r). The calculated S(q) were only re-
cently compared with event-driven molecular dynamics sim-
ulations of hard ellipsoids, for several different combinations
of t and φ;48 the results showed agreement between the analyt-
ical and the simulated S(q). The comparison of the PY-based
g(r) with our experimental data is much less encouraging,
as shown in Fig. 3; the PY g(r) significantly underestimates
positional correlations, with the oscillations in g(r) decaying
much faster than observed experimentally.1 Importantly, this
disagreement with experiment is not related to the finite shape
polydispersity of the colloids [Fig. 1(d)]; indeed, introducing
shape polydispersity into the theory further suppresses posi-
tional correlations,49 resulting in even larger deviations from
experiment.

B. Molecular dynamics simulations

In order to determine whether the discrepancy between
the experimental results and PY theory is due to the inade-
quacy of the theory we have carried out molecular dynam-
ics (MD) simulations29 of systems of particles whose shapes
approximate the colloidal ellipsoids. The particles consist of
rigid assemblies of overlapping identical soft spheres posi-
tioned to reproduce the required shape. The interactions be-
tween particles are determined by combining the individual
interactions of those pairs of soft spheres whose separation r
is less than the cutoff range rc; the interaction is the repulsive
truncated LJ (Lennard-Jones) potential29

uss(r) =
{

4ε[(σ/r)12 − (σ/r)6 + 1/4] r < rc = 21/6σ

0 r ≥ rc

.

(1)
The parameters σ and ε can be used to define convenient MD
length and energy units, respectively, with mass expressed in

FIG. 4. (a) Fitting the shape of an L3 particle to match the experimental el-
lipsoids by tuning the separation between the spheres of L3. The longitudinal
cross sections are overlayed in (b), where the non-overlapping area is shaded.
χ is the ratio between the non-overlapping and overlapping area. With the
soft sphere ‘geometrical’ diameter set to 0.86σ (see text), minimal χ is at
s ≈ 0.22σ [this is the value used for the cross sections shown in (b)]. The
interaction potential between the spheres of L3 appears in (b); the vertical
dashed line corresponds to the fitted value of the “geometrical” diameter of
these spheres (see discussion in Sec. IV A).

terms of the sphere mass, and the MD temperature unit T ob-
tained by setting kB = 1.

Our approach, where the ellipsoids consist of rigid as-
semblies of soft spheres, is readily extended to other particle
shapes and potentials. An alternative approach for ellipsoidal
particles involves the use of anisotropic hard particles48 or
interaction potentials;46 this method lacks both the computa-
tional simplicity of the present approach and its extensibility
to particles of arbitrary shape.50, 51 Comparison of published
computational results to the experimental data is not possi-
ble because of the different parameter values used in these
studies.48, 52, 53

In the present work, we use a sphere assembly labelled
“L3,” which is a linear array of three overlapping spheres
with spacing s < σ chosen to approximate the shape of the
colloidal ellipsoids, as shown in Fig. 4. [The shape shown in
Fig. 4(b) also corresponds closely to an equipotential.]

The simulations involve systems of 8000 particles, run
at T = 0.67, for which the mean translational kinetic energy
is unity [see Fig. 2(b)]. Periodic boundaries are used and the
simulation cell size is determined by the overall number den-
sity. It should be pointed out that the MD approach is used
here only to sample equilibrium configurations; the dynamics
is not that of a colloidal system since the solvent is absent.

C. Simulation results for “L3” particles

To compare the simulated g(r) with experiment, the value
of b (the short axis of the experimental ellipsoidal colloids)
must be related to σ , which sets the length scale for the com-
puter simulations. The experimental b as obtained from SEM
images does not necessarily reflect the range of interparticle
interactions; in particular, if Coulombic repulsions are present
(see Sec. II C), the distance of closest approach between col-
loids is increased beyond their geometrical size. To have the
position of the principal peak of the simulated g(r) match
the experimental data we set b = 0.86σ . In the following,
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we refer to b as the “geometrical minor axis” of L3, which (as
with the experimental colloids) does not necessarily match the
distance of closest approach of the centers of mass. As evident
from the shape of the L3 assembly [in the inset to Fig. 4(a)],
b also defines the “geometrical diameter” of the soft spheres,
which constitute this assembly. Once the b value is set, we fit
the spacing s between the spheres to optimize the match be-
tween the shape of L3 and that of the experimental ellipsoids,
as shown in the inset to Fig. 4(b). The optimal match is ob-
tained for s = 0.22σ , and the cross section of the resulting L3

closely matches the shape of the experimental ellipsoids (see
Fig. 4).

Fixing s and b determines the volume of L3 as
v = πb3[1 + 3(s/b) − (s/b)3]/6. For a given experimental
colloidal volume fraction φ, the number density of the simula-
tion is set to φ/v. Figure 3 shows the simulated g(r) curves for
two different φ, and these are seen to be in very good agree-
ment with experiment. This suggests that finite shape polydis-
persity of the experimental colloids [Fig. 1(d)] does not sig-
nificantly change the structure of our colloidal suspensions.

IV. DISCUSSION

A. Estimating interparticle potential

The good agreement of the L3 simulations with the ex-
perimental g(r), with only one adjustable parameter used for
both φ values, suggests that simply rescaling particle size cap-
tures the most important properties of the experimental sys-
tem. This fact can be used to gain a deeper insight into the
actual interaction between the colloids. The fitted b = 0.86σ

is close to the distance of closest approach in a simple soft
sphere system, which, by examination29 of g(r) is 0.9σ . With
b identified as the minor axis of the colloidal particle [vertical
dashed line in Fig. 4(b)], the contribution uss(r > b) produces
a similar effect to that of the screened Coulombic interactions
due to the presence of AOT micelles in the experimental sys-
tem. To gain a more quantitative insight into the nature of
colloidal interactions in the system, we calculate the second
virial coefficient of the simulated soft spheres,

B2 = −2π

∫ ∞

0
[exp (−uss(r)/kBT ) − 1]r2dr

= 2.3σ 3 = 3.6b3. (2)

The exact shape of the simulated uss(r) may not be an accu-
rate representation of the experimental interaction potential.
However, the good match between the simulated g(r) and ex-
periment suggests that at least the B2 values, corresponding
to the largest term in the virial expansion, should be correct.
For an experimental charged spherical particle of size b, the
B2 coefficient can be separated in two parts: (a) the second
virial coefficient due to the short-ranged hard potential of the
particle BHS

2 = 2πb3/3; (b) a contribution due to the screened
Coulombic interactions BDL

2 = B2 − BHS
2 . In particular, if B2

of a colloidal sphere of size b is the same as in the simu-
lations, we get BDL

2 = 1.5b3. To account for the Coulombic
interaction, we adopt the classical formalism of Verwey and
Overbeek,40 which is widely used with various aqueous sus-
pensions. According to this formalism, the interaction poten-

tial between two charged colloidal spheres, due to the overlap
of their electrical double layers, is

VDL (r) = πε0εrσψ2
0 ln

{
1 + exp

[−κσ (r/σ − 1)
]}

,

(3)
where εr ≈ 2.5 is the dielectric constant of the medium and

ψ0 = (πε0εrσ )−1 Qs/(2 + κσ ) (4)

is the surface potential of the sphere, carrying an electrical
charge Qs. While the exact expressions for the interaction po-
tentials of the ellipsoids are complicated,54, 55 the sphere as-
semblies used in our simulations provide an approximation
for these anisotropic interactions. The corresponding contri-
bution to the second virial coefficient is then given by

BDL
2 = −2π

∫ ∞

σ

[exp(−VDL(r)/kBT ) − 1]r2dr. (5)

With the Debye length in the solvent estimated as
κ−1 = 300 nm (Sec. II C), a charge of Qs ≈ 60e must
be present on the surface of a colloidal sphere, to obtain
BDL

2 = 1.5b3, which accounts for the extra repulsion between
the simulated spheres. Thus, we estimate the equivalent di-
mensionless charge41, 56, 57 of the experimental ellipsoids as
ZλB/R, where R = σ s/2 is the radius of the initial spherical
colloids before stretching, λB = e2/(4πε0εrkBT) ≈ 23 nm is
the Bjerrum length40 and Z = 3Qs/e is the valency of an exper-
imental colloid, which is here approximated by an assembly
of three soft spheres. The resulting value of this simplistic cal-
culation ZλB/R ≈ 3 agrees with ZλB/R = 2.6 obtained for an
apolar system of spherical colloids by direct measurements
of the electric charge.41, 56, 57 This charge, which is very small
compared to the typical electrical charges in an aqueous col-
loidal dispersion (εr ∼ 80), cannot be neglected in our apolar
system (εr ≈ 2.5).

B. Rescaled PY approximation

Charging effects were not taken into account in the PY
model of hard ellipsoids (Sec. III A). Thus, the poor agree-
ment between PY and experiment (Fig. 3) is hardly surprising.
In order to account for Coulomb effects, the theoretical hard
ellipsoids must be rescaled, as described in Sec. II C. Thus,
we add a distance wb to both the major and minor axes of the
particles, where w is a free adjustable parameter. The aspect
ratio and the volume fraction of the ellipsoids are then ad-
justed accordingly (see Sec. II C). The best match between the
PY model and experiment occurs for w = 0.22. This results
in a major improvement compared to the original PY analy-
sis, as shown in Fig. 3. The fitted increase in the radius of the
particles wb/2 ≈ 230 nm is close to the estimated thickness
of the double layer in our system being equal to 300 nm (see
Sec. II C).

The rescaled version of PY model provides an in-
dependent test of the interparticle potentials obtained in
Sec. IV A. The second virial coefficient of a hard spheroid
is BHE

2 = v + RS, where R, S, and v are the mean radius
of curvature, surface area, and volume of the particle.58 In
particular, if the minor axis is b and the aspect ratio is
t = 1.6, we obtain BHE

2 = 3.6b3. The rescaled spheroid,
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with a minor axis of 1.22b and an aspect ratio of 1.49,
yields BSE

2 = 5.9b3. Therefore, the double layer contribu-
tion to the second virial coefficient is BSE

2 − BHE
2 = 2.3b3.

A ∼1.5-fold smaller value was calculated in Sec. IV A
for BDL

2 = 1.5b3, which is the double layer contribution to
B2 for each of the spheres in the L3 assembly. This can
be justified by noting that the spheres in the L3 assembly
have only part of their surface exposed to the surrounding
fluid; the unexposed parts of the surface do not contribute
to B2. Approximating the L3 by an ellipsoid, we estimate
the exposed area of an L3 assembly to be larger by a fac-
tor of ∼1.4, compared to that of a sphere of diameter b.
Therefore, we estimate the charge contribution to B2 of the
spheres to be smaller by roughly the same factor: 2.3b3/1.4
≈ 1.6b3, very close to the value which was calculated in
Sec. IV A. This further supports the conclusion that charge
effects play a significant role in determining the structure of
these colloidal fluids.

V. CONCLUSIONS

We have studied the structure of a fluid of colloidal ellip-
soids. The shape polydispersity of these ellipsoids has been
characterized, employing a new protocol based on SEM mea-
surements. We have demonstrated that the structure of the col-
loidal fluid can be reproduced by molecular dynamics simula-
tion, employing L3 particles to approximate the shape of the
experimental ellipsoids. These simulations allow the charge
effects in the experimental system to be estimated, with the
charge per particle reaching ∼200e, a non-negligible charge
for an apolar colloidal suspension. Equivalent results can be
obtained from a similarly rescaled PY calculation.

These results demonstrate that important insights into the
physics of these fundamental fluids can be achieved by a
combination of experiment and computer simulation. In the
future, we plan to study the combined orientational and po-
sitional correlation functions, to determine their mutual inter-
dependence. We anticipate that future efforts in this direction
should provide a deeper understanding of the bulk and sur-
face phases which are formed in these simple but fundamental
systems.
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APPENDIX: STRETCHING OF COLLOIDAL SPHERES

To stretch our colloidal spheres,21 we suspend them in
a 25% (w/w) solution of hydroxy terminated PDMS (typ-

ical molecular weight Mn = 105, Sigma-Aldrich) in hex-
ane (BioLab, AR >96%). The volume fraction of spheres
in this mixture is low, φ ≈ 0.03. Next, a cross-linking
agent, trimethylsilyl terminated poly(dimethylsiloxane-co-
methylhydrosiloxane) (Mn = 950, Sigma-Aldrich) and a cat-
alyst [tin(II) 2-ethylhexanoate, Sigma-Aldrich, ∼95%] are
added to polymerize the PDMS, to form a rubber matrix.
The weight fractions of the cross-linking agent and the cat-
alyst are 6 × 10−3 and 8 × 10−3, respectively. Immediately
after the introduction of the cross-linking agent and the cata-
lyst, the suspension is poured onto a rectangular mold, where
∼1 mm-thick composite rubber film forms. When the cross-
linking reaction is over (∼13 h later), the films are post-cured
for 2 h in an oven, pre-heated to 120 ◦C. The rubber is then
uniaxially stretched to a desired length inside an oven, at T
= 180 ◦C, above the glass transition temperature of the col-
loids. In order to make the stretching process accurate and re-
producible, to minimize film tearing, and to reduce the shape
polydispersity of the resulting ellipsoids, we have constructed
a computerized stretching device. This device, mounted in-
side the oven, is capable of stretching the films at sufficiently
slow and uniform rates, <70 μm/s. The door of our oven is
equipped with a glass window, which allows the stretching
process to be followed visually in real time. Assuming that
the volume of an individual particle is conserved in our uni-
axial stretching process, the aspect ratio of the particle t is
related to the elongation 
l of the film as t = (1 + 
l/l)3/2,
where l is the initial length of the film. Thus, to obtain ellip-
soids which have an aspect ratio of t = 1.6, we stretch the
film by 37% of its length l ≈ 3 cm. After the stretching, the
oven is cooled down to the ambient temperature and the film
is removed from the stretching device.

We release the ellipsoids by destroying the PDMS matrix.
The PDMS films are first swollen in hexane for 24 h. Then, the
films are transferred to a mixture of iso-propyl alcohol (Fru-
tarom, AR) and hexane (5:23 w/w), to which a small amount
(0.04%, w/w) of sodium methoxide (Fluka, >97%) is added.
This mixture is filled into an hermetically sealed flask, which
is placed on a magnetic stirring plate. To have the film cut into
many small fragments, each of which is readily destroyed by
sodium methoxide, we put a piece of a ferromagnetic razor
into the flask, instead of a common Teflon-coated magnetic
stirrer. The razor is agitated by the magnetic field of the stir-
ring plate, cutting the PDMS film and mixing the solution.
When the film is fully degraded, the particles are sedimented
by centrifugation and transferred to mixed decahydronaphtha-
lene (mix-DHN, Sigma-Aldrich, 98%) or hexane.
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