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Abstract

The limited proportion of complex trait variance identified in genome-wide association studies may reflect the limited
power of single SNP analyses to detect either rare causative alleles or those of small effect. Motivated by studies that
demonstrate that loci contributing to trait variation may contain a number of different alleles, we have developed an
analytical approach termed Regional Genomic Relationship Mapping that, like linkage-based family methods, integrates
variance contributed by founder gametes within a pedigree. This approach takes advantage of very distant (and
unrecorded) relationships, and this greatly increases the power of the method, compared with traditional pedigree-based
linkage analyses. By integrating variance contributed by founder gametes in the population, our approach provides an
estimate of the Regional Heritability attributable to a small genomic region (e.g. 100 SNP window covering ca. 1 Mb of DNA
in a 300000 SNP GWAS) and has the power to detect regions containing multiple alleles that individually contribute too little
variance to be detectable by GWAS as well as regions with single common GWAS-detectable SNPs. We use genome-wide
SNP array data to obtain both a genome-wide relationship matrix and regional relationship (‘‘identity by state’’ or IBS)
matrices for sequential regions across the genome. We then estimate a heritability for each region sequentially in our
genome-wide scan. We demonstrate by simulation and with real data that, when compared to traditional (‘‘individual SNP’’)
GWAS, our method uncovers new loci that explain additional trait variation. We analysed data from three Southern
European populations and from Orkney for exemplar traits – serum uric acid concentration and height. We show that
regional heritability estimates are correlated with results from genome-wide association analysis but can capture more of
the genetic variance segregating in the population and identify additional trait loci.
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Introduction

Despite the success of genome wide association studies (GWAS)

in detecting new loci associated with complex traits, for most traits

only a relatively low proportion of the total genetic variation has

been localised. Although a variety of genetic mechanisms may

contribute to this missing heritability [1], a significant component

is likely to be the lack of power of GWAS to detect rare causative

alleles that individually generate little SNP-associated variation but

which collectively may contribute a substantial fraction of the

heritability [2]. Thus even individual loci that contribute

substantially to trait variation by dint of harbouring a number of

functional alleles may be missed unless they contain at least one

allele of sufficient effect and frequency to be identified in a GWAS.

To circumvent the drawbacks of single-SNP association analyses

requires approaches that are more efficient at capturing the

variance of individual rare causative alleles and are capable of

accumulating the variance over all alleles at a locus. Appropriate

linkage based analyses have some advantages over association

analyses for detection of multiple rare variants at a locus because

they integrate variance contributed by founder gametes within a

pedigree, making no assumption about the association of

individual gametes with particular causative alleles. However,

pedigree-based linkage analyses lack power to detect true effects in

the small nuclear families that typify a human population [3],

although power to detect effects in extended pedigrees is

substantially greater [4].

In this study we develop and demonstrate an approach to the

analysis of genome-wide SNP data that integrates multiple allelic

effects providing power to detect some loci that would be missed

by standard analyses. This combines the ability of linkage analysis

to integrate over all allelic effects at a locus with the ability of SNP

based association analyses to capture variance across the whole

population. To do this we use genome-wide SNP data to estimate
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the genetic relationships between all pairs of individuals in the

population, both at the level of the whole genome and for each

region within the genome. We then employ these relationships to

estimate the trait variance contributed both by the genome as a

whole (the genomic heritability) and by short regions of the

genome (the regional heritability). The genomic heritability

provides an estimate of the overall heritability but also controls

for population structure. Studies by us and others have demon-

strated that using the pedigree or genomic relationship matrix in a

mixed model to estimate single SNP effects in pedigree structured

data proves a powerful and unbiased analysis [5–7]. Thus

inclusion of the genomic relationship means that the regional

heritability is unbiased by overall population structure and hence

provides a metric that indicates local genomic regions contributing

to trait variation. To demonstrate this approach we have analysed

simulated and real data from Southern European and Northern

European populations based on exemplar traits – serum uric acid

concentration and height. A mixed statistical model framework

utilising restricted-maximum likelihood was used to estimate the

heritability associated with each region of consecutive SNPs in the

genome. The estimated heritability integrates genetic variation in

that region and hence captures variance associated with the

combination of common and rare variants segregating in the

region. The analyses demonstrated that estimates from the

regional heritability approach were very similar to those of single

marker association analysis when two alleles segregate in a region.

However when a cluster of functional variants segregate in a

region the regional heritability approach captured more of the

genetic variance segregating in the population, locating loci that

would otherwise remain undetected.

Results

Analyses of simulated data
Our studies of overall genomic and regional genomic heritabil-

ities are based on real data on serum uric acid concentration and

height from a combined population of around 3000 individuals

with marker data from circa 275000 autosomal SNPs. To explore

the power of the regional approach compared to the standard

single SNP GWAS we analysed the real data for each of a

moderate heritability (uric acid) and a high heritability (height)

trait in which an additional 2.5% additive genetic variance was

simulated for each genomic region in turn. The additional

variance was generated by simulating phenotypic effects associated

with 1, 5, or 10 genotyped SNPs of either higher or lower MAF.

The simulated data were analysed with the single SNP GWAS

approach or via the regional heritability approach with windows of

50 adjacent markers. Power was estimated by comparison with the

appropriate genome-wide significance threshold and is shown in

Figure 1. For the standard single SNP GWAS (dashed lines) power

to detect the simulated effects was highest when the regional effect

was generated by a single SNP and fell substantially when 5 or 10

SNPs generated the variance. The power of standard single SNP

GWAS was also greater when regional genetic variance was

generated by the higher MAF SNP(s) and also greater for the

lower heritability trait. In contrast, the most notable feature of the

regional heritability approach (solid lines) was that its power was

little affected by the number of SNPs that generated the regional

genetic variance, actually increasing slightly when generated by

more lower MAF SNPs. Also, the power of the regional heritability

analyses was virtually unaffected by the level of the overall trait

heritability, although power was reduced when the regional

variance was generated by lower MAF SNPs. Overall, the only

two situations in which genome-wide power to detect an effect was

slightly greater with the single SNP GWAS was when the variance

in a moderate heritability trait was generated by a single SNP of

either higher or lower MAF. In all the remaining 22 combinations

of parameters, power was greater for the regional heritability

approach, with the difference always being substantial when trait

variance was generated by multiple segregating alleles.

Analyses of real population data on serum uric acid
concentration and height

Figure 2 shows the estimated regional, genomic and total

heritabilities and corresponding values for the likelihood ratio test

(LRT) of the regional heritability across the genome for the real

data on uric acid concentration and height in the combined

analysis of population samples from Croatia and Italy (N = 3039).

For uric acid concentration (Figure 2a) the total heritability

averaged 29.3060.15% across the genome and was less variable

than the average regional (0.1460.27%) and residual genomic

(29.1660.35%) heritabilities. The estimated correlation between

the regional and the residual genomic heritabilities was 20.905

across all windows, indicating that a non-zero regional heritability

drains genetic variance from the residual genomic heritability,

whilst the overall heritability remains relatively constant. For

serum uric acid concentration (Table 1), we show the results for

the eight top regions with regional heritabilities estimated as .1%.

We identified one region significant at the genome-wide level

(p,0.05) with LRT more than 17.1 (which is the Bonferroni-

corrected genome-wide significance threshold; window number 21

on chromosome 4). Four other regions were significant at a

suggestive level, with a LRT of more than 11.4 for uric acid.

Regional heritabilities varied from 1.22 to 4.93% for these regions.

The highest regional heritability of 4.93% corresponded to the

largest LRT 97.0 (window 21 on chromosome 4). For that

window, the residual genomic heritability was 22.2% compared to

the average of 29.2% across the genome.

For height (Figure 2b, Table 2), the total genetic heritability was

averaged 83.160.09%, with more variable regional (0.1460.25)

and residual genomic (82.960.26) heritabilities. The ten most

significant regions have regional heritabilities estimated as .1%

and two regions reached the suggestive significance level

(LRT.11.4), but no region reached the genome-wide significance

level.

We explored the overall estimated variance explained by the

regions significant at the suggestive level. For uric acid concen-

tration the sum of the five suggestively-significant regional

heritabilities when each was estimated singly as a separate region

(Table 1) was 12.48%. This sum included only the single highest

value where adjacent windows reached the suggestive level. To

assess the effect of non-independence between regions we fitted a

model including all five regional genomic relationship matrices

simultaneously and estimated a total variance explained of

11.72%. Thus an estimated 40% of the total genetic variance in

uric acid concentration of 29% was explained by these 5 regions

together. For height, the contribution of the two suggestive regions

to the total variance is 4.3%, representing approximately 5% of

the total genetic variance estimated at 83.1%.

Comparison of regional estimates and GWAS results from
real data

Standard single SNP GWAS of the real data were performed

using GenABEL. In the analysis of combined data from Croatia

and Italy, for uric acid concentration 14 SNPs were significant

(-Log10P.6.7) at the genome-wide level after Bonferroni correc-

tion with all of these SNPs coming from window 21 on

Regional Heritability Estimation
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chromosome 4. There were no SNPs significant at the genome-

wide level for height for these data. In order to explore the extent

to which the regional heritability could explain more variance than

that associated with individual SNPs in the real data we estimated

the regional heritability in data from Croatia and Italy in a model

in which one or more SNPs have been included as covariates. This

allows estimation of the regional heritability not explained by the

significant SNPs or by SNPs in LD with them. We explored this

approach for the three windows with the largest LRT for uric acid

concentration (chromosome 4, windows 21 and 301 and

chromosome 5, window 277). For each window we identified the

three most significant individual SNPs from the single SNP GWAS

and used these as covariates in the analysis. The estimated regional

heritabilities for these three regions fitting either 0 or 1 or 3 most

significant SNPs are shown in Figure 3. For chromosome 4,

window 21, fitting the single most significant SNP reduced the

regional heritability estimate from 4.93% to 0.4% - a reduction of

over 90% in the estimate. For the other two regions fitting the

most significant single SNP reduced the estimated regional

heritability by only 11% and 21% for the two regions, respectively.

Fitting jointly all three SNPs reduced the estimated regional

heritabilities by 30% and by 20%, for these latter two regions

respectively. Thus in the first of these three regions single SNP

analysis captures much of the variance explained by the regional

heritability approach, but for the latter two regions the regional

heritability approach captures variance not readily captured by the

SNPs individually.

Use of 100 SNP windows to estimate regional heritabilities

integrates information over approximately 1 Mb regions (Table 1)

and limits issues associated with multiple testing. However smaller

windows can be used to improve mapping resolution and throw

light on the genetic architecture in an associated region. Figure 4a

shows a comparison of the results for 10, 20 and 100 SNP windows

for the two most significant regions for uric acid concentration in

the combined data from Croatia and Italy. For both regions the

use of shorter windows improves the apparent resolution without

reducing the magnitude of the test statistic. Consistent with our

earlier results, for the chromosome 4, window 21 results, the most

significant individual SNPs from the GWAS analysis have slightly

higher test statistics (accompanied by a higher level of multiple

testing) than that from the regional heritability approach but the

average of 10 adjacent SNPs from the GWAS is substantially

worse than the 10 SNP regional heritability window. The result

from window 277 on chromosome 5 (Figure 4b) contrasts with this

in that no single SNPs have comparable test statistics with the

regional heritability approach and the average of 10 adjacent

single SNPs is somewhat lower. This again illustrates the improved

capture of genetic information from the regional heritability

approach.

We then explored the overlap between regions detected in the

regional heritability analysis of data from Croatia and Italy and

single associated SNPs detected in large meta-analyses. One of the

largest meta-analyses yet published is that for height, which based

on data from more than 183000 individuals identified 180 loci [8].

Figure 1. Power of GWAS and Regional Genomic Relationship Mapping in simulated data. Data were simulated based on real data by
random selection of 1, 5 or 10 genotyped SNPs at either high or low MAF from a region of 50 SNPs. In each case the total simulated effects of the
SNPs in a region contributed 2.5% to the heritability. The background trait heritability was either moderate at circa 30% as for serum uric acid
concentration or high at circa 80% as for height. Power is the number of significant tests at the Bonferroni corrected threshold for either a GWAS of
275 k markers or a regional heritability analysis circa 11000 overlapping 50 SNP windows. Lines of the same colour represent results from the same
simulated data produced by regional heritability analysis (solid) or by single marker analysis (dashed).
doi:10.1371/journal.pone.0046501.g001

Regional Heritability Estimation
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Figure 2. Results from genome-wide analyses of two traits. Plots show the likelihood ratio test (LRT) and regional, genomic and total
heritabilities across the genome from analyses of data from Croatian and Italian populations: a) serum uric acid concentration and b) height. Vertical
axis is the LRT and heritability (%) and horizontal axis is window number across the genome. RG h2, WG h2 and total h2 are regional heritability,
residual whole genome heritability and total (sum of genomic and regional) heritability, respectively.
doi:10.1371/journal.pone.0046501.g002

Regional Heritability Estimation
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Of the ten regions we report in Table 2, four contain one of the

180 reported loci. The ten regions in Table 2 span 8.3 Mb, thus

assuming a genome of 3 Gb the probability of 4 SNPs out of 180

falling into this 8.3 MB by chance can be estimated to be 0.0017,

thus these regions are significantly enriched for SNPs detected in

the meta-analyses. We also compared the reported 180 SNPs and

the most significant 10 SNPs from a standard single SNP GWAS

in our data, allowing a 0.5 Mb window each side of each of these

10 most significant SNPs. Only one locus from the 180 loci [8] was

located within the total span of 10 Mb around the 10 most

significant SNPs, which is not significantly more than would be

expected by chance. No meta-analysis of comparable scale has yet

been published for uric acid concentration, but a recent large-scale

analysis identified 11 loci associated with gout and/or serum uric

acid levels, most of which had been identified in previous analyses

[9]. In our analysis of uric acid concentration, the top eight regions

identified each explaining more than 1% of the variance

overlapped with only one of the loci identified in the meta-

analysis. Although even this level of overlap is unlikely to occur by

chance (p = 0.032), the most significant region contains the

SLC2A9 locus which contains SNPs significant in our single

SNP GWAS of these data. It is also interesting to note that only

the SLC2A9 region in the meta analysis is estimated to explain

.1% of the trait variance (at 3.5% overall), the other detected

associations explain between 0.1 and 0.6% of the trait variance.

Such small effects would be unlikely on their own to be detectable

in our regional heritability analysis of modest size unless other

alleles segregating in the same regions boosted the regional

variance substantially.

Finally we compared the results of regional heritability analysis

of serum uric acid concentration of the small sample from Orkney

with standard single SNP GWAS analysis of the same data and

loci identified in previous analyses [9]. The results of the two

analyses are shown in Figure 5. The standard single-marker

GWAS analysis using GenABEL [21] identified one SNP

significant at the genome-wide level of significance (-log10P.7.3)

located at the SLC2A9 locus on chromosome 4, two further SNPs

were significant at the suggestive level (-log10P.6.0) at the same

locus. The total genomic heritability was slightly high than in the

Southern European populations at 40%. The regional heritability

analysis identified three regions above the genome-wide threshold

(LRT.17.1, equivalent to -log10P.4.75). Two of these were

overlapping regions at the SCL2A9 locus, the third on chromo-

some 11 (71548134–72664686 bp) does not correspond to any

reported associated loci or obvious candidate loci. Two further

regions were significant at the suggestive level (LRT.11.4; -

log10P.3.44). That on chromosome 1 (179941514–

180860387 bp) does not correspond to any known associated loci.

However, the higher of these two suggestive regions on

chromosome 11 (63640603–65051406 bp) spans the SLC22A11

and SLC22A12 loci that have been previously identified as

associated with serum uric acid concentration [9]. The estimated

variance explained by this latter region in our analysis is 6.7%,

whereas the sum of the variance explained by the SNPs in

SLC22A11 and SLC22A12 as estimated in the meta-analysis was

0.32% [9] again suggesting that the regional heritability analysis

may capture additional variance not detected by single marker

analyses.

Table 1. Regional heritability using single and multiple regional relationship matrices (100 SNPs) for serum uric acid.

Chromosome
Window
number

SNP and position
(bp) start end LRT1 Single2h2

Multiple
min h23

Multiple
max h24 Average h25

4 21 rs1282 rs4333176
8630658 10084378

97 4.93 4.44 4.58 4.53

5 277 rs248450 rs154111
150556960 151421588

16.4 1.75 1.68 1.92 1.80

4 301 rs8752 rs3733398
175649052 176792579

15 2.81 2.81 2.82 2.82

10 150 rs3740447 rs7900882
71977107 72550518

13.6 1.77 1.45 1.58 1.53

2 351 rs13404250 rs4666767
187824441 189475126

11.8 1.22 0.92 1.1 1.04

10 177 rs4933317 rs2642610
86006146 87051093

11.2 1.51 1.54 1.79 1.63

4 264 rs954368 rs17375199
154991226 156013670

11 1.33 0.9 1.07 1.01

1 329 rs3747636 rs12145634
202670282 203665187

9.4 1.49 1.2 1.48 1.39

Sum of regional h2 16.81 14.94 16.34 15.72

Genomic h2 13.58

Total h2 29.30

(LRT from window 21 on chromosome 4 and window 277 on chromosome 5 were significant (P,0.05) at the genomic level the remaining 6 windows were significant at
the suggestive level).
1Likelihood ratio test for regional heritability .0;
2Estimated regional heritability in model with that single region and genomic effects;
3Minimum heritability for that region from models with sets of 5 regional effects and genomic effect;
4Maximum heritability for that region from models with sets of 5 regional effects and genomic effect;
5Average heritability for that region over models with sets of 5 regional effects and genomic effect.
Positions are from the assembly build NCBI36/hg18.
doi:10.1371/journal.pone.0046501.t001

Regional Heritability Estimation
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Permutation
To test the null hypothesis that the regional variance

component was zero we used the standard assumption that the

asymptotic distribution of the likelihood ratio test will be

distributed as 1/2x2(0)+1/2x2(1). This distribution arises when

the true regional variance component is zero with half the

estimates across regions being greater than zero and half bounded

to zero by the estimation procedure [10,11]. We explored the

actual distribution of the test statistic using permutation. Figure 6

shows the resulting Q-Q plot of the observed regional tests against

those expected assuming the test statistic distribution of 1/

2x2(0)+1/2x2(1). The observed distribution of –log10 p values is

parallel to, but slightly below that expected. This suggests that the

use of the significance threshold based on an expectation that the

test statistics follow this distribution will be slightly more stringent

than anticipated, in consequence reducing the power of the test of

the regional heritability slightly. On this basis using permutation to

set the threshold for the regional heritability analysis would

increase power to detect effects compare to the results shown here.

Discussion

In this study we introduce an approach to the analysis of

complex trait data from a GWAS study that is capable of localising

some of the variation that has escaped detection by standard

GWAS analyses. By utilising both whole genome and regional

relationship matrices derived from high-density SNP data, it is

possible to estimate the variance attributable to short regions of the

genome. In estimating between gamete variance within a region,

the approach has the ability to integrate the variance over all

variants segregating in the region. It thus provides an estimate of

variance attributable to a region that might be due to several or

many segregating alleles at a single locus and/or the joint effect of

closely located loci.

We have applied this approach to two separate traits, serum uric

acid concentration and height, recorded in over 3000 individuals

from Croatia and Italy and 854 from Orkney.. In the analyses of

serum uric acid concentration from Croatia and Italy, the

approach fully captures the variance attributable to the known

effects of SLC2A9 on chromosome 4. With four other regions

significant at the suggestive level, the total trait variance explained

is around 12%, or approximately 40% of the total genetic

variance, although these estimates are likely to be inflated by

selection of the most significant windows and hence the ‘‘winner’s

curse’’ [12]. For height, in these data, we identify 10 windows

which individually explain between 1.01 and 2.29% of the trait

variance (Table 2). The joint estimate of the variance is around

19% of the total genetic variance, again probably inflated by the

‘‘winner’s curse’’. The 10 regions identified are significantly

enriched for SNPs associated with height identified in the meta-

analysis of GWAS data [8]. This is in contrast to windows flanking

the 10 most significant SNPs identified in standard single-SNP

analysis of our data. The analyses of serum uric acid concentration

in the small data set from Orkney also pick out the region

associated with SLC2A9. Of the other three regions significant at

Table 2. Regional heritability using single and multiple regional relationship matrices (100 SNPs) for Height.

Chromosome
Window
number

SNP and position
(bp) start end LRT1 Single h22

Multiple
min h23

Multiple
max h44 Average h25

19 27
rs1035458 rs7255203
12377150 13633030

14.4 2.28 2.22 2.38 2.29

15 31
rs1520954 rs12905733
35497445 36526590

13.2 1.96 1.84 2.06 1.94

3 222
rs9882269 rs12495327
115645413 116804048

11.2 1.12 0.97 1.03 1.01

9 160
rs10868320 rs868823
87357661 88409601

11.2 2.11 1.99 2.2 2.11

17 97
rs972872 rs9894487
51926412 52725682

10.6 1.48 1.36 1.53 1.45

12 61
rs11047882 rs1471506
25232444 26201501

9.8 1.59 1.17 1.63 1.40

16 111
rs7204751 rs987885
71637184 72250937

9.6 1.42 1.23 1.38 1.31

11 35
rs10765970 rs11022778
12568425 13347436

9.4 1.42 1.38 1.53 1.46

2 152
rs11126095 rs962856
66809407 67447307

9.2 1.24 1.07 1.3 1.15

15 155
rs745104 rs1002941
98316888 99060213

9.2 1.4 1.31 1.31 1.31

Sum of regional h2 16.02 14.54 16.35 15.43

Genomic h2 67.67

Total h2 83.1

(LRT from all windows were significant at suggestive level).
1Likelihood ratio test for regional heritability .0;
2Estimated regional heritability in model with that single region and genomic effects;
3Minimum heritability for that region from models with sets of 5 regional effects and genomic effect;
4Maximum heritability for that region from models with sets of 5 regional effects and genomic effect;
5Average heritability for that region over models with sets of 5 regional effects and genomic effect.
doi:10.1371/journal.pone.0046501.t002

Regional Heritability Estimation
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the suggestive level or above one contains two loci previously

identified by a meta-analysis as associated with the trait. The

estimated variance explained by this latter region is substantially

greater than that estimated in the previous meta-analysis. This

estimate might be inflated by the ‘‘winner’s curse’’ but it could also

indicate additional variance due to a rare allele or alleles that are a

potential characteristic of such population isolates.

As a further insight on relative power of our approach to detect

effects of a given size, we can consider the comparison with the

standard SNP by SNP analysis. The two analyses use to some

extent different sources of information and their relative values will

depend upon the true genetic architecture of the trait. Thus, if a

single SNP is in complete association with the causative variant

(i.e. r2 = 1) then the standard single-SNP based association analysis

should be the most powerful analytical approach but, when

association with any single SNP is incomplete and there may be

several causative alleles, some of which are potentially rare, an

approach such as the one used here may be advantageous.

Consider our analyses of the three most significant regions

affecting uric acid concentration. For window 21 on chromosome

4 we found that including a single SNP in the regional heritability

analyses almost completely abolished the regional heritability and

associated LRT. This suggests that the causative variant (or

perhaps haplotype) is strongly associated with this single SNP with

limited additional variance in this region. In contrast, in the other

two regions we explored no single SNPs had previously been

identified and fitting the single most significant SNP had only a

limited effect on the estimated regional heritability and associated

LRT. This suggests that these regions contain one or more

causative variants that cannot be explained by association with a

single SNP but can be detected by the composite measure that the

regional heritability estimate represents. In the most significant

region chromosome 4, window 21, the SLC2A9 locus is well

established as the likely candidate [13]. The significant region for

serum uric acid levels in chromosome 5 harbours SLC36A2, an

amino acid (glycine- proline)/proton transporter expressed in the

kidney, specifically in the S1 segment of the most proximal part of

the convoluted tubule adjacent to glomerulus [14], which is a

plausible biological candidate. Replication of this regional effect

would suggest the segregation of one or more alleles in this

population that are not readily detected by single marker GWAS

analyses.

The conclusions about the relative performance of methods

based on the analyses of real data are supported by those derived

from the simulated data. We show that even in the most

favourable situation for a single-SNP based GWAS when trait

variation is generated by a single biallelic locus, the GWAS and

regional heritability approaches have similar power. The power to

detect effects by a single-SNP GWAS drops when there is more

than a single locus in a region contributing the same total

variation, but this is not the case for the regional heritability

approach. Hence the regional heritability approach has a

substantial advantage in power over the single-SNP GWAS when

several loci in a region contribute trait variation. We simulate trait

associated loci using actual genotyped SNPs which are then not

used in the analysis. This then generates linkage disequilibrium

representative of the population and by using each window across

Figure 3. Regional heritabilities for uric acid concentration for three most significant windows. Heritabilities are estimated in a model
with both regional and genomic genetic effects using all 100 SNPs in the window to derive regional relationships and fitting 0, 1 or 3 SNPs with the
highest –Log10 P value from the GWAS in that window as covariates in the analysis.
doi:10.1371/journal.pone.0046501.g003
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the genome we sample the whole range of relevant genetic

architectures.

We have shown that the regional heritability is moderately

correlated with the average test statistic from a standard

association analysis of the individual SNP within the region, thus

the approach is using some of the same information. However, by

using information from all SNPs in a region, information is

incorporated from across wider relationships, including all those

for which pedigree relationships are not recorded because the most

recent common ancestor occurs before available records. Use of

such information has the effect of increasing family sizes beyond

those recorded and hence increasing power to detect regional

effects. In addition, the larger number of meioses that separates

more distant relationships potentially provides more precise

localisation of effects than that obtained in traditional pedigree-

based linkage analysis.

As with all analyses, the power to detect a significant regional

heritability will be strongly influenced by sample size. With our

sample the empirical results suggest that regions which are

estimated to explain a little over 1% of the variance can be

detected at the suggestive level, whereas regions estimated to

explain around 2% of the trait variance may be significant at the

genome wide level. This is borne out by the simulation studies

where we demonstrate up to 70% power to detect effects

contributing 2.5% of the trait variance. We would expect the

LRT test statistic to scale approximately linearly with both sample

size (for a given structure of the sample) and variance explained

[15,16]. Thus if the sample size was to be quadrupled to 12 000

individuals in a similar structure, regional heritabilities of around

0.5% estimated effect might be expected to be significant at the

genome-wide level. A second relevant factor to consider is the

population structure itself. The samples analysed here derive from

Figure 5. Comparison of single marker analysis and regional heritability analyses of serum uric acid concentration in a population
from Orkney. -log P values are plotted against position in the genome. Points represent individual markers and circles results from regional
heritability analysis with 100 marker windows. Genome-wide significance thresholds are represented by dashed lines (red for single marker analysis,
blue for regional heritability analysis). Alternating shades represent the separate chromosomes. Results surpassing the genome-wide significance
threshold are solid red for single marker analysis and solid blue for regional heritability analysis.
doi:10.1371/journal.pone.0046501.g005

Figure 4. Comparisons of regional heritability and GWAS results for two most significant windows for uric acid concentration.
Comparisons shown on –log10 P basis by conversion of likelihood ratio test (LRT) statistic assuming is distribution is a mixture of half x1

2 and half zero.
Lines indicate results for regional heritability for three window sizes (100 SNP = green; 20 SNP = red; 10 SNP = blue). Crosses show results for individual
SNPs in GWAS with grey line showing moving average of 10 adjacent SNPs. a) Results for chromosome 4, window 21 (SLC2A9 region). Additional
dashed green line is result for 100 SNP window with relationships estimated omitting 14 most significant individual SNPs (in red). b) Results for
chromosome 5, window 277. Additional dashed green line is result for 100 SNP window with relationships estimated omitting 3 most significant
individual SNPs (indicated by red crosses).
doi:10.1371/journal.pone.0046501.g004
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population isolates, which, although not inbred, are more closely

related than would be individuals sampled from a large panmictic

population. The approach used here where the main analysis uses

100 SNP windows is likely to be more powerful in populations

such as the ones we have used where haplotypes of such a size are

likely to be conserved intact between even distantly relatives. In

less related populations, shorter windows may better capture the

more distant relationships. Such populations would have the

advantage that the whole genomic relationship matrix will be less

correlated with regional relationship matrices, which should make

regional effects easier to disentangle from those of the whole

genome. On the other hand the greater number of analyses

increases computational load and the multiple testing penalty in

setting a genome wide significance threshold. The optimum

balance of close and distant relationships and the size of the

window in relation to the population structure for dissection of

regional genomic effects from those of the whole genome remains

to be determined, and will partly be dependent on population

structure and genetic architecture.

Estimation of the variance associated with regions of the

genome has been explored a number of times, initially using

combined information on markers and pedigree [17] and more

recently using dense marker data in the absence of pedigree

information [2,18]. Our approach is related to those of Hayes et al.

[18] and Yang et al. [2], but we show here how we can extract

meaningful regional results based on relationships estimated with

as few as 10 adjacent markers. It is also interesting to note that the

total genomic heritabilities estimated here are close to those

reported for pedigree based analyses of the same traits in contrast

to the lower estimated heritability for height from Yang et al. [2].

This is likely to be due to the fact that we explicitly make use of

both close and distant genetic relationships and hence exploit

within pedigree associations in addition to the population level LD

exploited in the more distant relationships used by Yang et al. [2].

We note also the recent discussion on the potential contribution of

gene interactions to estimates of additive genetic variance [19]. We

anticipate that whilst our estimates of the overall genomic

heritability may be inflated by gene interactions, estimates of

regional heritability will only incorporate variance due to local

interactions within the region. These may contribute to an

improved ability to detect variance associated with the local region

over and above that we have demonstrated when regional effects

are due to only the additive effects of multiple segregating alleles.

The approach to the analysis of genome-wide SNP data that we

introduce and explore has the potential to capture some of the

heritable variance that escapes the standard SNP by SNP analysis.

The use of regional windows and estimation of variance in a mixed

model framework integrates over the gametic variance in a region

and escapes from reliance on the association between single

causative alleles and single SNP alleles. It thus has the ability to

integrate effects over several causative variants providing a joint

estimate of the combined effects of common and rare variants in a

region. The example analyses we present here suggest that regions

known to harbour effects large enough to be detected by standard

SNP by SNP analyses may yield some additional variance when

analysed by this approach. Furthermore, regions where no single

associated SNP has a large enough effect to be detected as

significant at the genome wide level may explain sufficient

variance to be detected by this approach. The analytical approach

we present here is one way in which it may be possible to pin down

some of the variance undetected by SNP-by-SNP analyses to

particular regions, pathways and loci.

Figure 6. Q-Q plot of distribution of observed against expected –log10 P values from permuted data. Observed values are calculated
assuming the LRT is distributed as 1/2x2(0)+1/2x2(1). The dotted line shows the slope of unity.
doi:10.1371/journal.pone.0046501.g006
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Methods

Ethics Statement
The Croatian cohorts were recruited from the island of Vis and

the island of Korcula respectively, both approved by the Ethical

Committee of the Medical School, University of Zagreb and the

Multi-Centre Research Ethics Committee for Scotland. The

Italian MICROS cohort was recruited from the villages in South

Tyrol and approved by the ethical committee of the Autonomous

Province of Bolzano. The ORCADES study was approved by the

NHS Orkney Research Ethics Committee and the North of

Scotland REC. All participants gave written informed consent.

Mixed model using whole genomic and regional genomic

relationship matrices. We used a mixed model including the

fixed effects of sex, population, village and age and random

additive genetic effects which were divided into two parts, regional

genomic and residual whole genomic additive genetic effects. The

whole genomic additive effect was estimated by using all SNPs to

construct the whole genomic relationship matrix. The regional

genomic additive effect was estimated from a regional genomic

relationship matrix constructed from 100 adjacent SNPs from

each region. The same whole genomic relationship matrix was

used in the analysis of all regions (i.e. the markers for the region

under analysis were not removed), any consequential correlation

generated between whole genomic and regional relationships

would be very small and would in any event reduce the likelihood

of detecting a regional effect. Genomic kinship fij between

individual i and j using identity by state (IBS) is used where:

f ij~1=n Sk gik{pkð Þ gjk{pk

� �.
pk 1{pkð Þ

where gik (gjk) is the genotype of the i-th (j-th) person at the k-th

SNP (coded 0, K, 1 for rare allele homozygote, heterozygote and

common homozygote, respectively) [20,21]. The frequency pk is

for the major allele and n is the number of SNPs. For relationship

matrices in mixed model equations, 2fij is used for the off-diagonal

elements between individuals and the diagonal elements are one

plus the inbreeding coefficient [20]. We followed a two-step

method described in George et al. [22] for the variance

component analysis using ASReml (VSN International, 2002).

The mixed model is as follows:

y~XbzZuzZvze

Var uð Þ~Gs2
u, Var vð Þ~Qsv

2, Var eð Þ~Is2
e

where the vector y represents the phenotypic values, X is the

design matrix for fixed effects, and Z is the design matrix for

random effects. The remaining vectors are, u: whole genomic

additive genetic effect, v: regional genomic additive genetic effect,

e: residual, and b: fixed effects. Adjustments for sex and regression

on age were used for height and sex and regression on age within

sex were used for uric acid. Matrices G and I are a whole genomic

relationship matrix using all SNP for whole genomic additive effect

and a unit matrix for residuals, respectively. Q is regional genomic

relationship matrix obtained using 100 SNPs for regional genomic

additive effect. Whole genomic, regional genomic and residual

variances are s2
u s v

2 and s2
e, respectively. Phenotypic variance,

s2
p, is s2

u+s v
2+s2

e. Whole genomic heritability and regional

heritability are hu
2 ( =s2

u/s2
p), and hv

2( =s2
v/s

2
p), respectively.

To confirm that fitting fixed effects for population and the whole

genomic relationship matrix account adequately for population

structure and any other stratification we also repeated the analyses

including the first 10 principal components derived from analysis

of the genotype data. This made only trivial difference to the test

statistics for regional effects (not shown).

Test for significant regional variance. To test for the

presence of regional variance against the null hypothesis (no

regional variance) at a test region (window), the likelihood ratio

(LR) test statistic LRT = 22ln(L0/L1) was calculated, where L0

and L1 represent the respective likelihood values under the

hypothesis of either the absence (H0) or presence (H1) of regional

variance. A window size of 100 SNPs was used to construct a

regional relationship matrix and the window was shifted every 50

SNPs. Therefore, first, second and third regional matrix, for

example, used from 1st to 100th, 51st to 150th and 101th to 200th

SNPs. In total, 5511 windows were tested across chromosomes.

We applied a Bonferroni corrected threshold to test significant

regions.

Additionally molecular maker score (mms [23]) and SNP

genotypic values were also calculated by using the R package

GenABEL [21]. The SNP effects were estimated after adjusting for

fixed effects and genomic additive effects using whole genomic

relationship.

Permutation and simulation. To explore the distribution of

the test statistic under the null hypothesis of no regional effect (zero

regional heritability) we used permutation. To implement this we

permuted individuals against the regional relationship matrix

whilst leaving intact the actual relationship between individuals,

their phenotypes and the genomic relationship matrix. This will

generate a population in which the overall trait heritability

remains intact, but there are no real regional heritabilities.

Permutation is carried out separately for each region on the

genome (hence all regions are uncorrelated) and the subsequent

scan of the whole genome simulated the distribution of test

statistics under the null hypothesis.

We use simulation to explore the power of the approach under

different genetic models and in comparison with a standard single

SNP GWAS of the data. The genome was analysed as a series of

overlapping 50 SNP windows as in the analyses of the real data.

For every window, data were simulated based on the actual SNP

genotypes. The SNPs were allocated to one of two groups, the 25

SNPs with the highest MAF and the 25 with the lowest MAF.

One, five or ten SNPs were randomly selected from the high MAF

group and similarly 1, 5 or 10 SNPs were selected from the low

MAF group, thus six separate simulations for each of two traits

were performed for each 50 SNP region in the genome. The

selected SNPs were removed from the marker SNP set and used to

generate additional trait variance. An additive effect was added to

the actual trait value of an individual according to the genotype or

genotypes of the selected SNP(s). The effects were scaled such that

the total regional variance added was equivalent to 2.5% of the

total trait variance in all situations (i.e. the same regional variance

was added to the real data whether 1, 5, or 10 SNPs of high of low

MAF were used for the simulation). The simulated regional effects

were added to the real trait values for uric acid concentration or

height. Thus in summary we simulated 2.5% additional trait

variance generated by 1, 5, or 10 loci with high or low MAF for a

moderate heritability trait (uric acid concentration) and a high

heritability trait (height) for each of 11022 overlapping 50 SNP

windows in the genome. Each simulated set of data was analysed

either by a single marker analysis adjusting for the total genomic

relationship between individuals or using the total genomic and

regional relationships to estimate a regional heritability (methods

as described above). Models were tested against the appropriate

genome-wide significance thresholds assuming 5511 (11022/2)
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independent tests of the regional heritability or 275 k SNPs as

appropriate. The markers randomly selected to become simulated

QTL were not used in any analyses, hence the regional heritability

analyses were based on windows of 49, 45 or 40 markers (for 1, 5

and 10 simulated QTL, respectively).
Study samples and genotyping. Measurements of serum

uric acid concentration and height from unselected populations

from Croatia and South Tyrol (Italy) were combined in the first

analyses and data on serum uric acid concentration from the

ORCADES study in Orkney were used in the second analysis.

The Croatian data were from two Dalmatian islands, Vis and

Korcula, and the data from South Tyrol were from three isolated

villages located in the south of the region. The number of

phenotypic records for serum uric acid was 3039 in the first

analyses (1807 from Croatia and 1232 from South Tyrol) and 854

from Orkney in the second analysis, and was 2979 in the

combined analysis for height (1791 from Croatia and 1188 from

South Tyrol). Average age (sd) of subjects was 51.9 (16.3) and

varied from 18 to 98.

We used 282,415, 302,507 and 286,959 autosomal SNPs

(Illumina Human Hap300 for Vis, South Tyrol and Orkney and

Illumina CNV370 for Korcula) from the Croatian, South Tyrol

and Orkney data, respectively. These SNPs had passed our quality

control protocol, that discards SNPs with minor allele frequency

,0.02, out of Hardy-Weinberg equilibrium (p value,1026) or call

rate,0.98 and individuals with call rate ,0.97. In total, 275,564

autosomal SNPs were common to both the Croatian and South

Tyrol samples (comprising 3110 individuals, 1822 from Croatia

and 1288 from South Tyrol) and were used in our first analysis.

Further details on these data have been reported in previous

papers [13,24,25].
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