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BRIDGELAND STABILITY CONDITIONS ON THREEFOLDS I:
BOGOMOLOV-GIESEKER TYPE INEQUALITIES

AREND BAYER, EMANUELE MACRI, AND YUKINOBU TODA

ABSTRACT. We construct new t-structures on the derived categorylodiat sheaves on
smooth projective threefolds. We conjecture that they Bridgeland stability conditions
near the large volume limit. We show that this conjecturegisiealent to a Bogomolov-
Gieseker type inequality for the third Chern character ofaie stable complexes. We
also conjecture a stronger inequality, and prove it in theea projective space, and for
various examples.

Finally, we prove a version of the classical Bogomolov-@les inequality, not involv-
ing the third Chern character, for stable complexes.
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1. INTRODUCTION

In this paper, we give a conjectural construction of Bridgel stability conditions on the
derived category of any projective threefotd The construction depends on a conjectural
Bogomolov-Gieseker type inequality for objects in the dedicategory that are stable with
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respect to “tilt-stability”, which is an auxiliary staliji condition for two-term complexes
onX.

1.1. The existence problem.Spaces of Bridgeland stability conditions have turned out
to be extremely interesting. However, we do not know a siegkemple of a Bridgeland
stability condition on a projective Calabi-Yau threefolghich is likely to be the most
interesting case. The main obstacle is the failure to stleddllowing question:

Problem 1.1.1.Given a projective threefold’, find a heart4 ¢ DP(X) of a bounded t-
structure, and a group homomaorphism (called central chafges (D" (X)) — C defined
over(@Q, such that

(1) 0£AFEeA = Z(E)e{re’: r>00<¢<1}.

We will restrict our attention to central charg&sthat are “numerical”, i.e.Z factors
via the Chern character map: K(D(X)) — Numg(X) to the groupNumg(X) of
cycles up to numerical equivalence, tensoredby

Condition [1) is a highly non-trivial positivity propert{zor example, it cannot possible
be satisfied whenX is projective of dimensio> 2, and A = Coh X is the heart of
the standard t-structure (cf. [Tod09a, Lemma 2.7]). Furttee construction of stability
conditions for surfaces (see [Bri08, ABL0O7]) needs the Bugtmv-Gieseker inequality
for slope-stable bundles and the Hodge Index theorem. Thbkade of [BM11] imply
an even closer relationship: knowing the set of possiblearigal central charges for
which skyscraper sheaves of poikts:) are stable is essential®guivalento knowing the
set of Chern characters of slope-semistable bundles fopalayization ofX .

Motivated by the construction of-stability in string theory (see e.q. [Asg05]), and by
the case of curves and surfaces, one can be even more pré&iigen an ample class
w € NSg(X) and a “B-field” B € NSy (X ), we define a central chargg, 5 by

@) Zup(E)=-— /X e~B-i% ch(E)

2 w3

— (- chl(E) + %chf(E)) +i (wchf(E) 5 Chég(E)) :

wherech” denotes the twisted Chern characfef (E) = e~ 7 ch(E).

Conjecture 1.1.2. There exists a heartl,, 5 C DP(X) of a bounded t-structure, such that
the pair(Z,,, A, is a stability condition orD"(X) for which skyscraper sheavésr) of
pointsz € X are stable.

1The assumption thaf is defined overQ is necessary, in practice, to prove the existence of Harder-
Narasimhan filtrations for the induced notionZfstability on.A.
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Forw = mwy andm > 0, these would be stability conditions near the “large-vadum
limit”. As indicated above, the corresponding conjectiwge&kmnown whendim X < 2.
In fact whendim X = 1, we can take4, 5 to be Coh X. Whendim X = 2, we need
to tilt (cf. Section[2.8) the abelian categotiph X to construct4,,. We will recall its
construction in Propositidn 3.1.3. On the other hand, wéh/\few exceptions (varieties
for which D®(X) admits a complete exceptional collection), the above @buie is still
open in higher dimension.

1.2. Our approach. Givenw, B as above, we construct a candidatg ; for Conjecture
[1.1.2 as a double tilt of'oh X :

o We first use classical slope-stability ¢foh X to definel3, 5 as atilt of Coh X
with respect to a torsion pair.

¢ We define an analogue of slope-stability 85z, and then similarly defingl,, 5
as atilt of B, g.

We now give a sketch of our construction; the details will beg in Section B. Consider
the classical slope-stability with respect to the polditwaw, twisted by B: here the

slope of a sheaF is given byu, 5(F) = “:;if((f)) Let7, s C Coh X be the category
generated, via extensions, by slope-semistable sheawtspaf.,, 5 > 0 (where torsion
sheaves are considered slope-semistable of glgpe = +o0); and similarly, letF, 5

the subcategory generated by slope-semistable sheavéspefis, 5 < 0. Following

Bridgeland’s construction for K3 surfaces in [Bri08], wefide B, 3 C DP(X) by
Bw,B = <~7:w,B[1]> 7;,B>

where|1] denotes the shift and ) the extension-closure; see Section 2.3 for alternative
descriptions of the tilted heart.
We then define the following slope-function 84 5:

) SZunlE) _ wehf(E) =2 ()
Vi = = :
i’ w?ch? (E) w2ch? (E)

We show that this produces a notion of slope-stabilityson;, which we calltilt-stability.
Using tilt-stability, we can define a torsion pdif ;, 7/, 5 in the category3,, z exactly as

in the case of slope-stability féfoh X above. Tilting at this torsion pair produces a heart
A B.

We also give a second construction of the same heart in $ddtictarting from a
categoryCoh” of perverse coherent sheaves, and using polynomial syabdnditions
rather than slope-stability. It is less concrete, but isnently well-behaved with respect
to the derived dualizing functdRHom(__, Ox). In Section 5.1, we show that the two
constructions agree.
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1.3. Conjectures and Results.We propose the following conjecture.

Conjecture[3.2.6. Suppose thak is a smooth projective threefold ov€r Then the pair
(Z..5,A..p) is a stability condition oD (X).

At this moment we are not able to show the above conjecturenihes a Calabi-Yau
threefold. As a first evidence for the conjecture, we prove:

Theorem[8.2.1.Conjecturd 3.2]6 holds fak = P3, B = 0 andw® < 3v/3.

Our method also works for other threefolds with completesptional collections.

By construction ofA,, 5, it is immediate thatZ, z(E) > 0 forany £ € A, 5. Thus,
to show that conditiori (1) holds, we only need to consideectsjwithZ, 5(E) € R, and
have to show that in fact,, z(£) < 0 in this case. As in the case of surfaces, this comes
down to a Bogomolov-Gieseker type inequality for tilt-deabbjects inB,, :

Conjecture[3.2.7. For any tilt-stable objecE € B, 5 satisfyingv, z(F) = 0, i.e.,

(.U3

3 chP(E) = wch?(E),

we have the following inequality:

2

chB(E) < % chB(E).

In fact, with Corollary{5.2.4 we show that Conjectlire 3.2l &onjecturé 3.217 are
equivalent. The essential ingredient is Proposition 5.@2ich shows that the abelian
categoryA,, 5 is Noetherian.

Such a strong Bogomolov-Gieseker type inequalitydey is not available for slope-
semistable sheaves; in fact even B, the best possible results are much worse (see,
for example, [Sch80] for explicit examples). Thus TheofegiBshows that such slope-
semistable sheaves become unstable with respect tcatilitst.

In fact, we suggest an even stronger inequality:

Conjecture 1.3.1. Any tilt-stable objecty € B, g with v, 5(E) = 0 satisfies

2
3) chB(E) < ‘1"—8 chB(E).
Just as in the case of the classical Bogomolov-Giesekeuaiigfor slope-stability, we
have equality whew and B are scalar multiples of the class of an ample line burgle
andE = L®" is a tensor power of.. We prove this conjecture in the following situations:

Section[8.2: For any complex of?* whenB = 0 andw?® < 3v/3.
Section[7.1: Restrictions of torsion-free sheaves to an ample divisop@rtional tow.
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Section[7.4: Slope-semistable vector bundl&swith vanishing discriminanf\(F) = 0
andc¢; (F) proportional tow. (Such sheaves are also stable with respect to tilt-
stability.)

Example[7.2.4: Sheaves of the forx (1) ® I for a curveC on a hypersurfac& c P,
in which case the inequality is related to Castelnuovo’ssitzal bound for the
genus of curves of fixed degree.

If true, the inequality[(8) would be quite strong. For exaeypt would give strong
Hodge type inequalities for tilt-stable line bundles whiea Néron-Severi group has rank
> 1. Moreover, in a forthcoming paper [BBMT11] we show that Ganijird 1.311 implies
a Reider-type theorem for threefolds, and a statement tts\Faujita’s conjecture on very
ampleness of adjoint line bundles (including, for examplgijta’s conjecture for Calabi-
Yau threefolds). The approach is based on ideas and quegtiphB11].

As a first step towards proving an inequality g in the general case, it seems worth-
while to generalize the classical Bogomolov-Giesekerdqy, chy, ch, from sheaves to
complexes. Indeed, it is an ingredient in any proof of inditjea for ch; of slope-stable
sheaves; seé [Lan(9a] for a survey of such inequalities.orEine 7.3.ll and its Corol-
laries give various forms of inequalities for tilt-stablensplexes similar to Bogomolov-
Gieseker; for example:

Corollary 7.3.4. Suppose thak is a smooth projective threefold withekon-Severi group
NS(X) of rank one. Then any tilt-semistable objéce B, 5 satisfies

w(ch; (E)? — 21k(E) chy(E)) > 0.

Stability conditions at the large-volume limit had beervomasly constructed in [Bay09]
and [Tod09a] as “polynomial” or “limit” stability conditio. As an additional confirmation
that the heart4,, 5 seems to give the right construction, we prove:

Proposition 1.3.2(Lemmal6.2.]1 and Lemnmia 6.2.2Jhe limit of 4,,,, 5 for m — +o0
agrees with the heart of polynomial or limit stability conidns at the large-volume limit.

We also prove a compatibility of stability for large and stability at the limit, see
Proposition 6.2]3.

1.4. Relation to existing work. Our construction oB,,  is directly adopted from Bridge-
land’s construction of stability conditions on K3 surfacegBri08]. To prove thaty,,
defines a slope function, we use the Bogomolov-Giesekeualéyg and the Hodge Index
Theorem just as in the case of general projective surfaeagetl by Arcara, Bertram and
Lieblich in [ABLO7]. Our notion of tilt-stability on3,, 5 is very similar to the notion of
“ usyi.-Stability” by Arcara and Bertram, see [AB11].

In Sectior 8.2, we rely on the construction of “algebraidaigy conditions” for vari-
eties with complete exceptional collections (cf. [MacO4fowever, even in the case of
IP3, our construction includes stability conditions that an¢ aigebraic.
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For largew, our conjectural stability condition&Z,, 5, A, 5) should live in a neigh-
borhood of the large volume limit. Evidently, our approashmotivated by the string
theory construction of-stability at the large-volume limit, see e.q. [Dou02, ADB2? 01,
AspO5]. In particular, our central chardé (2) is borroweshirthe mathematical physics
literature [ADO2, equation (2.9)], with the modificatiorathour formula omits quantum
corrections and a factor aftd X. This change partly is motivated by the surface case,
where one obtains stability conditions feveryample class in this way.

We also refer to [DRY06] for a conjectural approactstdficientrather thamecessary
Bogomolov-Gieseker type inequalities on Calabi-Yau tfuleks.

1.5. Acknowledgements.We would like to thank Dan Abramovich, Tom Bridgeland,
Tommaso de Fernex, Daniel Huybrechts, Marti Lahoz, Adtianger, Alexander Pol-
ishchuk, Hokuto Uehara for useful discussions and commé&wsare especially grateful
to Aaron Bertram and Gueorgui Todorov for many discussianBogomolov-Gieseker
type inequalities. We also would like to thank the refereetli@ detailed reading of the
manuscript. A. B. is partially supported by NSF grants DMERD356/DMS-1001056
and DMS-1101377. He is also grateful to the Isaac Newtoritutetand its program on
“Moduli Spaces”, during which this paper was finished. E. Mpartially supported by
NSF grant DMS-1001482/DMS-1160466, and by the Hausdornfit€dor Mathematics,
Bonn, and SFB/TR 45. Y. T. is supported by World Premier imidional Research Center
Initiative (WP initiative), MEXT, Japan, and Grant-in Afdr Scientific Research grant
(22684002), partly (S-19104002), from the Ministry of Edtion, Culture, Sports, Sci-
ence and Technology, Japan.

1.6. Notation and Convention. We work over the complex numbers. For a set of objects
S in a triangulated categor®, we denote by.S) the additive category generated Byia
extensions. IfX is smooth and projective variety, we will denotelbythe local dualizing
functor on its derived categoiy® (X ) given by

D(_) = (_)'[1] := RHom(_, Ox[1]).

Given a coherent shedf, we write dim F for the dimension of its support. We write
Coh=*X = {F: dimF < d} c CohX for the subcategory of sheaves supported in
dimension< d, andCoh=%"! X ¢ Coh X for the subcategory of sheaves that have no
subsheaf supported in dimensignd. Given a bounded t-structure @v(X) with heart
A and an objecEl € D(X), we Writer;t(E), j € Z, for the cohomology objects with
respect tad. WhenA = Coh(X), we simply writeH’ (E).

For a complex number € C, we denote its real and imaginary part iy and 3z,
respectively. We writen > 0 to mean “forall sufficiently largem”.

We write Num(X') for the group of cyclesA(X) up to numerical equivalence, and
NS(X) = NS(X,Z) = Num'(X) for the Néron-Severi group of divisors up to numerical
equivalence. We also wrifumg (X ), NSg(X), Numg(X), etc. forNum(X) ® Q, etc.
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We will use the terms “slope-stability” and., z-stability”, as well as “tilt-stability”
and ‘v, p-stability” interchangeably when the choicewfB is clear in context.

2. BACKGROUND ON STABILITY CONDITIONS

2.1. Motivation. The notion of stability condition on triangulated categsrhas been
introduced by Bridgeland [Bri07], motivated by Douglas’enk onII-stability [Dou02].
We briefly recall the definition:

Definition 2.1.1. A (full numerical) stability conditioron D"(X) is a pair(Z, A), where
A C DP(X) is the heart of a bounded t-structure and K (D*(X)) — C a group homo-
morphism, satisfying the following properties:

(a) Z satisfies the positivity property of equatian (1).

(b) For the induced notion of stability ad, every non-zerd? € A has a Harder-
Narasimhan filtration in semistable objects4dn

(c) Z factors via the Chern charactér: K(D"(X)) — Numg(X).

(d) (A, Z) satisfies the “support property”.

The support property property will be discussed in the negtisn. The seftab(.X)
of stability conditions is a finite-dimensional complex rifald. In the case wher& is
a Calabi-Yau threefold, it is expected to contain the syrikghler moduli space. More
precisely, it should contain atut D®(X)-invariant subspacé/ that is isomorphic to the
Teichmiiller space of complex structures on the mirkgrthe quotient\// Aut DP(X)
gets identified with the moduli space of complex structuresXo Thus the notion of
stability conditions orD”(X') adds a very geometric picture to Kontsevich’s homological
mirror symmetry[Kon95].

The spaceStab(X) has been explicitly studied in several situations. Foraneg,
see [Bri07, MacQ7, Oka06] fatim X = 1, and [Bri08,,HMSO08] for K3 surfaces. The
spaceStab(X) can also described whek is a local Calabi-Yau variety, e.g. the total
space of the canonical bundle of a surface. For instanc¢Bséé, BM11,1UU10, Tod08,
Tod09b]. The case of non-projective complex tori has beediat in [MeiO7].

However, there is no known example of a stability conditionaoprojective Calabi-
Yau threefold, nor any candidaté, .4) expected to be a stability condition. One of the
issues is that we have few methods or ideas to constructshefaat bounded t-structures
A c DP(X) for which the positivity condition (1) could be satisfied.

In principle, one should expect Bridgeland stability cdimfis for any dimension. Con-
sider the following central charge, whekeis a projective variety of any dimension:
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(4) Z.p(E)= —/Xe_i“’ ch?(E)

(=1 5 B : (=17 51 .8
= ; 2)) w Chd_zj(E)—l—Z <Z mw chd_zj_l(E)>,

Jj=0

Conjecture 2.1.2. There exists a heartl, 5 C D"(X) of a bounded t-structure such that
(Z.,.5, Au. ) are a Bridgeland stability condition.

One could apply our method iteratively to constrdct s as a(n—1)-fold tilt of Coh X'.
However, this would involve proving a Bogomolov-Giesekgrd inequality at every step.

2.2. Support property. We require our stability conditions?, .A) to satisfy the follow-
ing additional technical condition:
Support property: There is a constanf’ > 0 such that for anyZ-semistable object

E € A, we have

Ich(E)|| < C|Z(E)],

where||x|| is a fixed norm olNumg (X).
The support property for numerical stability conditiongiivalent (cf.[BM11, Proposi-
tion B.4]) to the notion of a “full” stability condition int)duced in([Bri08]; in particular:
Theorem 2.2.1([Bri07), [KSO8]). There is a natural topology ofitab(X') such that the
map

Stab(X) — Hom(Numg(X), C), (Z,A) — Z,

is a local homeomorphism.

The support property is also essential to ensure that thare/ell-behaved wall-crossing
phenomenon for stability of objects under deformation efstability condition:

Proposition 2.2.2.GivenE € D(X), the setofZ, A) € Stab(X) forwhichE is (Z, A)-
stable is an open subset 8fab(.X). Further, there exists a chamber decomposition of
Stab(X) by a locally finite set of walls, such that in the open part agfrg\chamber, the
Harder-Narasimhan filtration of is constant.

This statement is proved by the methods of [Bri08, Section 9]

2.3. Tilting. Our strategy for the construction of,, 5 on threefolds is to take a double
tilt starting fromCoh X or the category of perverse coherent sheave& on

Definition 2.3.1 ([HRO9€]). Let A be the heart of a bounded t-structure on a triangu-
lated categoryD. A pair of subcategorie§T, F) is called atorsion pairif the following
conditions hold:
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(@) Foranyl’ € T andF € F, we haveHom(7', F') = 0.
(b) For anyE € A, there is an exact sequenge—~ 7' — E — F — 0in A, with
T eTandF € F.

Given a torsion pai(7, F) as above, itsilt A" is the subcategory dp defined by
Al = (F[1],T) c D.

If D = DP(A), then we can identifyd’ with the subcategory of two-term complexes
B~ EO with kerd € F andcokd € 7. The following statements are all well-known:

Proposition 2.3.2. (a) The categoryA’ defined above is the heart of a bounded t-
structure onD.

(b) Whenever the hear’ of a bounded t-structure oP satisfiesA™ C (A, A[1]),
thenT = AN AT, F = AN Af[—1] is a torsion pair inA, and A" is obtained as
the tilt of A at (7, F).

(c) Given two torsion pairg7;, F;) and (72, F2) in A, denote the corresponding
tilts by AI and Al, respectively. If/; c 7;, then there is a torsion paif =
(Fi[1],T3), F = F,N T in Al, and A} is obtained as the tilt oft| at this torsion
pair.

The first statement is [HRO96, Proposition 2.1]. For the sd¢ceee e.g. [Pol07, Lemma
1.1.2], and the third statement follows directly from thea=d.

3. FIRST CONSTRUCTION

Let X be a smooth projective threefold ov€r In this section, we give the first con-
struction of the heattl,, 5 of a bounded t-structure d°(X) as a double tilt starting from
Coh X, and state our main conjecture.

3.1. Tilt of Coh X. First we start with the case of arbitrary dimension. Déte an-
dimensional smooth projective variety ow@r and takeB € NSy (X) and an ample class
w € NSg(X). We use the twisted Chern charaatef = ch -e~”. Notice that, in particu-
lar, we have the following explicit expressions:

chf = chy = 1k

ch? = ch; — B chy
B2
Ch2B = Ch2 —-B Ch1 +7 Cho .
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The twisted slope:,, 5 on Coh X is defined as follows. IE € Coh X is a torsion sheaf,
we sety, p(E) = +o00. Otherwise we set
Wt ch? (E)
chy (E)
The above slope function satisfies the weak see-saw properfyfor any exact sequence

0 F —FE— E/F — 0inCoh X with F, E/F # 0, one of the following conditions
holds,

Hw,B <E> =

o, B(F) < poo B(E) < pyp(E/F),
Nw,B(F) > Nw,B(E> > Nw,B(E/F>-
(To prove this, observe thatéh] (F) = 0, thenF is a torsion sheaf with™ ' ch? (F) =
w" t(ch(F)) > 0, and similarly forE/F.)
We defineu,, z-stability onCoh X in the following way:E € Coh X is y,, z-(Semi)stable
if, forany 0 # F C F, we have
(5) Nw,B(F) < (S)Nw,B(E/F>-

Remark 3.1.1. Classically,E € Coh X is defined to bg:,, z-(semi)stable if£ is torsion
free and we have the inequalijty, 5(F') < (<)u., 5(E) for any subshedf # F' C E with
E/F torsion free. Our definition coincides with the classicdim#gon if £ has positive
rank. An inequality similar to(5) is used to define weak digbconditions in [Tod10,
Section 2].

It is well-known that theu,, z-stability has the Harder-Narasimhan property, i.e.,gher
is a filtration

0=EyCE, C---CEy=EFE,
such that eaclt; = E;/E;_; is ., g-semistable withu, 5(F;) > ., 5(Fi+1) for all i. We
set
Ho, Bimin(E) = po,5(Fn),
Heo, Bmax(E) = i, 5(F1).
Let (7.5, F. ) be the torsion pair oloh X defined by
Ton ={E € Coh X : iy pmin(E) > 0}
Fop=4{EFE € Coh X : y pmax(E) <0}.
Definition 3.1.2. We define the abelian catega$y, 5 to be the tilt ofCoh X with respect

to (7.5, Fu.5), Nnamely
Bu.s = (Fu,Bll], To,B)-
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Let Z,, 5 be a stability function given by (4). By [ABL07], we have thaldwing result
(the case of K3 surfaces was proved earlief in [Bri08]).

Proposition 3.1.3([ABLO7| Bri08]). If dim X = 2, then(Z, 5, B, 5) is a stability con-
dition onDP(X).
The key fact in the proof of the above proposition is the f@ileg constraint on numer-

ical classes of slope-semistable sheaves, knowBog®molov-Gieseker inequalifgee
[Rei78,Bog78, Gie79] and [HL10, Section 3.4]).

Theorem 3.1.4(Bogomolov, Gieseker)Let X be an-dimensional smooth projective va-
riety overC and letw be an ample divisor oX. For any torsion freeu,, z-semistable
sheafF, we have the following inequality:

w"?(chy (E)? — 2chf (E) chy (E)) > 0.

3.2. Tilt of B, 5. From now on, we focus on the cadan X = 3; as stated in equation
(@), the central charge is then given by
2 w3

Z, 5(B) = <—ch§(E) + % chf(E)) t (w chy (E) - = chg?(E)) .

The abelian categor,, 5 satisfies the following property:

Lemma 3.2.1.For any non-zero objedt’ € 3, 5, one of the following conditions holds:
(@) w?ch?(E) > 0.
(b) w? chP(E) = 0 andSZ,, 5(E) > 0.
(c) w?chP(E) = 327, 5(F) = 0and—RZ, 5(E) > 0.

Proof. By the construction oB,, 5, we havev? ch? (E) > 0. Suppose that? ch} (E) =
0. Then H°(E) € Coh='X and H~'(E) is u, g-semistable torsion free sheaf with
to.5(E) = 0. By the Hodge Index Theorem and the Bogomolov-Giesekeruialét,
we have

0> wehi’(H™(E))? > 2wchy (H(B)) chy (H ' (E)),

which impliesw ch? (H~'(E)) < 0. Sincechg (E) < 0 andwchy(H°(E)) > 0, we
obtain the inequalit@ Z,, 5(E) > 0. Finally suppose that? ch{ (F) = 37, p(F) = 0.
Then the above argument shows that! (E) = 0 andE = H°(E) has zero-dimensional
support; hence the inequalityRZ,, 5(£) > 0 holds. O

Remark 3.2.2. The above lemma implies that the vectar ch?, 2.5, —RZ, ) for
objects of3,, 5 behaves like the vectdrh,, chy, chy) for coherent sheaves on a surface.
The subcategory of € B, 5 satisfyingw? ch?(E) = 0 is an analogue of the subcategory
of torsion sheaves; we can also describe it as the exteckisnre

(6) (Coh=' X, F[1]for all 1, p-stableF with y, z(F) = 0).
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In caseB = 0, the above category contains the heart of the category ddP®6 bound
states constructed in [Tod10].

We define a slope,, s onB,, 5 as follows. IfE € B, 5 satisfiesv? ch’f(E) =0, we set
vy 5(E) = 4+00. Otherwise we set

SZup(E)  wchi(E) — jw’chf(E)
w2chP(E) w? chB(E)

By Lemmal3.2.11, the slope, s also satisfies the weak see-saw property. Therefore an
analogue of slope stability aB,, 5 is defined in the following way:

(7) Vw,B(E) =

Definition 3.2.3. An objectE € B, 5 is v, z-(Semi)stable if, for any non-zero proper
subobjectt’ C E in B, 5, we have the inequality

Vio,g(F) < (<)pw,s(E/F).
Similarly to 1, z-stability, we have the following result.

Lemma 3.2.4. The Harder-Narasimhan property holds with respectg;-stability, i.e.,
forany £ € B, i, there is a filtration inB,, g

(8) O=FECE C---CEN=F,
such that eaclt’; = E;/E;_, is v, g-semistable withv,, 5(F;) > v, p(Fi+1) for all <.

Proof. First we note thaB,,  is a noetherian abelian category. This is essentially grove
in [BriO8] when X is a K3 surface, and almost the same proof works in the genasa!.
Indeed, we only need to modify the argumentof [Bfi08, Prof] ih the following way.

In the notation of[Bri08, Prop. 7.1], the sheavéq(L;) turned out to be the finite length
sheaves in the K3 surface case. In our 3-fold situation, tieaesH?(L;) are at most
one dimensional, so may not be of finite length. However,esthe codimensions of the
supports off°(L;) are at least two, we obtain a chain

HY(Ey) C HY(Ey) C - CQ™,

in the notation of[[Bri08, Prop. 7.1]. Instead of bounding tength of H°(L;), we can

terminate the above chain @sh(X) is noetherian. This proves th&f, 5 is noetherian.
SinceB andw are rational, we can then apply the same arguments as in [BRIDD.

B.2] to show the Harder-Narasimhan property. O
For an object® € B,, 5 with Harder-Narasimhan filtration(8) we set

Vw,B;min(E) = Vw,B(FN)a
Vw,B;max(E) = Vw,B(Fl)a
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and the torsion paif7,, 5, 7., ) on B, 5 is defined by

7;/73 = {E c Bw,B : Vw,B;min(E) > 0}
‘FL/U,B = {E € Bw,B : Vw,B;max(E) S O} .

Definition 3.2.5. We define the abelian catega#, 5 to be the tilt of B, 5 with respect
to (75,5, Fo, ), Namely

Aw,B = < L,BMJZ,B)-

By the construction of4,, z, it is obvious that3Z, z(£) > 0, forall E € A, 5. We
propose the following conjecture.

Conjecture 3.2.6.The pair(Z, 5, A, 5) is a stability condition orD"(X).

The above conjecture in particular implies that, for any;-semistable objedt € B,
with v, 5(E) = 0, we haveRZ,, 5(E) > 0. More precisely, Conjectufe 3.2.6 immediately
implies the following conjecture.

Conjecture 3.2.7.For anyv,, zp-semistable objedt’ € B,, 5 satisfying

(.U3

& o (E) = wehy'(E),
we have

w2

chP(E) < E3 ch?(E).
In Section 5.2 we will show that the two conjectures are eajeivt, by showing that

A, 5 is Noetherian.

3.3. Support property for tilt-stability. To show that there is a well-behaved notion of
wall-crossing for tilt-stability of objectss € D"(X), we need some form of bounded-
ness of potentially destabilizing subobjects. This bouméss follows from a form of
the “support property” discussed in Sectlon|2.2. To set tipisdefine a central charge
Z.,5: K(DP(X)) — C corresponding to the slope function z:

Z,p(E) = %wz chP(E) + iS22, 5(E).
Remark 3.3.1. By (6), we haveZ,, 5(E) € {re™ : r > 0,—3 < ¢ < 1} for every non-
zeroE € B, p except ifE is a zero-dimensional torsion sheaf. As, for such objehts, t
slope induced by’  agrees with/, 5, an objectk(z) # E € B, p is tilt-stable if and
only if Hom(k(z), E) = 0 and there are no destabilizing subobjects with respezt, tp.
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Lemma 3.3.2.Fix a norm||-|| on Numg(X ). There exists a constatt > 0 such that, for
every tilt-stable objecEl € D"(X), E # k(z)[n], we have

(9) leh(B)|| < C|Z. 5(E)|

Proof. We give a sketch of the argument; the complete proof is_in IPodBections
3.6 & 3.7]. Using the same methods as in the proof of the suppaperty for sur-
face, given in[[BM11, Section 4], we will showl(9) only for tieemi-norm||ch|’ :=
| (chg, w? chy, w chy, chs)||, which will be enough for all applications (in particularsec-
tion[7.3). The full statement can then be deduced from Tmet8.1.

For any torsion-free slope-stable sh&afdefinez,, 5(F), y..5(F) € R by

Z5(F)

rtk F
Using the classical Bogomolov-Gieseker inequality andHieelge inequality as in the
proof of Lemma 3.2]1, one shows that

w®  wchy(F) w®  wchP(F)? wd 222

10 wp=——f——2 < T 4Tt o
W0 wr=—g Ty Em ST T oz S 6 T

We define a functioty,,;;, of w, B by

Smin(w, B) = inf{|z +if,(x)| : v € R}

The functionS,,;, is continuous, and by (10) it satisfies

Zu5(F)

r(F)
Using exactly the same arguments as in [BM11, Lemma 4.5] lomie dleduces the claim
for objects where eithef/°(E) or H~!(E) have positive rank. Using the openness of the
ample cone, the claim also follows for torsion sheaves. O

We could also formulate tilt-stability completely in thefioalism of weak stability con-
ditions introduced in[[Tod10]. Then the support propertyulddbe satisfied for every sta-
ble object, including:(z). Since we are not interested in deforming the slope of skysar
sheaves of points, the above Lemma is sufficient for our mago

Corollary 3.3.3. Denote by C NSg(X) x NSg(X) the set of pair§w, B) wherew is
ample. The notion of tilt-stability can be extended to alirpdw, B) € U. For every
object, the set ofw, B) € U for which E is tilt-stable is an open subset bf. Further,
there is a chamber decomposition(of given by a locally finite set of walls, such that the
Harder-Narasimhan filtration o’ is constant on every chamber.

Lw,B + 1Yw,B =

= fw(x)

0 < Smin(w, B) < inf{ —it| : t € Ry, F torsion-free slope-stable sh%af

Proof. The first claim follows from Bridgeland’s deformation refsudcalled in Theorem
2.2.1. Asin Proposition 2.2.2, it follows that there is arviteer decomposition for stability
with respect taZ,, 5. Combined with Remark 3.3.1, this implies the claim. O
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4., SECOND CONSTRUCTION

The second construction of the heal 5 starts from perverse coherent sheaves rather
than sheaves, and uses polynomial stability conditiofrerahan slope-stability. We will
compare the two constructions in Section 5.1.

4.1. Polynomial stability conditions. The notion of polynomial stability condition has
been introduced in [Bay09]. We refer lmc. cit. for all basic definitions. We will repeat-
edly construct polynomial stability conditions by using following proposition/definition

- which is stated slightly differently in [Bay09], but theqaf is the same.

Proposition and Definition 4.1.1.LetD be a triangulated category. Giving a polynomial
stability condition onD is equivalent to giving a heart of a bounded t-structute- D,
and a central chargeZ : K (D) — C|m]| such that
(a) Foreveryd # E € A, and for some fixed € R, the leading coefficient of (F)
is contained in the semi-closed half plane

R>O . em(a,a—i—l].

(b) Harder-Narasimhan filtrations exist for the stabilitgradition on.A induced by
Z.

We say thatZ is astability functionwith respect to the intervah, a + 1] if it satisfies
condition (&). In this case, we can define a “polynomial pHiasetion” for everyE € A:
it is a continuous function germ(E): (R U 400, +00) — R defined by

1
¢(E)(m) = —arg Z(E)(m)
for sufficiently largem, such that
lim ¢(E)(m) € (a,a+ 1].

m——+00

For two such functions, ¢’ we sayp = ¢’ if ¢(m) > ¢'(m) for m > 0. This defines a
notion of stability for objects ind, by comparing its polynomial phase function with that
of its subobjects, and conditidnl (b) of Definition 4]1.1 refo HN-filtrations with respect
to this notion of stability.

For a polynomial stability conditioiZ, P), theslicing P gives the set of semistable
objects for every polynomial phase functianswWe let? be the induced®-valued slicing
given by R

P(¢) = {P(¢(m)) : ¢(+00) = ¢}).
More concretely, in the setting of Proposition 411.1, andfe (a, a+ 1], the subcategory

~

P(¢) C Ais extension-closure generated Bysemistable object& with

lim L arg Z(E)(m) = o.

m—-+oo T
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The key input of polynomial stability conditions is thatMivag constructed a polynomial
(Z,P) from a heart4 as above, we get new t-structures by settitig= P((b, b + 1]) for
anyb € R. The categoryd’ could also be described as (the shift of) a tiltof

We will repeatedly use the following lemma, which is estsiséid in the proof of [Tod09a,
Theorem 2.29]. We refer t0 [Bri07, Section 4] for the notidrgoasi-abelian categories.

Lemma 4.1.2.Let T, F be atorsion pair in4, and Z a polynomial stability function for
A. Write ¢(E) for the polynomial phase functions induced®yn 4. Assume that

(@ fT eT,F e F,theng(T') >~ ¢(F).

(b) HN-filtrations exist forZ on the quasi-abelian categoriés, F.

Then HN-filtrations exist fo on A.

In this situation, an objedt € A is Z-stable if and only ifE € T or £ € F, and itis
Z-stable in the respective quasi-abelian category witheetsjp strict inclusions.

Finally, we recall the notion of “dual stability condition¥We say that the polynomial
stability conditiong Z’, P’) and(Z, P) are dual to each other ®(¢) = D(P(—¢)), and
if Z'(D(E)) is the complex conjugate d&f(£). Recall that we included a shift by one in
the definitionD(E) = EV[1] of our dualizing functor. Hence if skyscrapher sheaies
are stable with respect @ of phase 1, then the corresponding statement holdg’for

D(k(z)) = k(z)[-2] € P(=1) = P'(1).

4.2. Perverse stability. The starting point is a polynomial stability condition oretbat-
egory of perverse coherent sheaves:

Definition 4.2.1. We define the category of perverse coherent she@wksto be
Coh? = (Coh=? X[1], Coh=" X),
and the central chargé:” : K(X) — C[m] to be

2 3
(11)  Z2P(E) := — chf(E) + miw chy (E) + m” <% chP(E) — 2% ch?(E)) .

Our strategy, also indicated in Figure 1, is as follows: fivetshow tha(Z;”B, Coh?)
gives a polynomial stability condition whose heart cormeggs to the upper half plane.
The central charge is dominated by #g andch?-terms; in other words, this stability
condition is a refinement of slope-stability. In the nexpsige rescale the contribution of
ch? to have the same weight of?; as this only changes the imaginary part of the central
charge, this is done after switching to the Btt-® of Coh”, which is the heart correspond-
ing to the right half-plane. The resulting stability is abgsrelated to tilt-stability.

In the final (and conjectural step), we rescale the contobubf ch?; since that only
changes the real part of the central charge, we first swittihettilt 4~-Z that corresponds
to the upper half plane.
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wehy (E) - m —
2(E) wchy(E) - m?

Coh?

w3cho(E) - m? w3cho(E) - m?

(A) (Zp, Col?) (8) (Z8,B)

FIGURE 1. The auxiliary polynomial stability conditions

To show(Zy»P, Coh?) is a stability condition, we follow the method 6f [Tod09a,eth
rem 2.29]; more precisely, we will use the following resabsut a torsion pair iRoh?:

Lemma 4.2.2([Tod09a, Lemma 2.16, Lemma 2.17 and Lemma 2.1%}ere exists a
torsion pair (A7, A7 ,) in Coh” defined as follows:

Al = (F[1],k(z) : Fis pure two-dimensional; € X),
Afy ={E € Coh? : Hom(A7, E) = 0}.

Each of the quasi-abelian categorigl§' and A7 , is of finite length with respect to strict

inclusions and strict epimorphisms.
Additionally, they satisfip(AY) = A [—2] andD( ’1’/2) = ]f/z[—l]-

Proposition 4.2.3. Z;;*B is a stability function foiCoh”, and HN-filtrations exist.

Proof. If H~!(E) for an objectt € Aﬁ’/z does not vanish, thed ~!(F) is purely three-
dimensional; hencé has negative rank, and the leading termZg‘fB(E) has positive
imaginary part. Similarly, ifH~!(E) = 0, then H°(F) is purely one-dimensional, and
the same conclusion holds. On the other hand, for an olfjeet A} the leading term
evidently has a negative real coefficient.

This shows thatZy»? is a stability function orCoh” with respect to the intervaD, 1],
and at the same time thalélﬁ’,Af/z) satisfies the conditioma(a) in Lemrha 4]1.2. Since
A7 and A7, are of finite length, the existence of HN-filtrations for eaxftthem is also
satisfied, and the conclusion follows from Lemma 4.1.2. o

Let P;“B be the induced slicing with values in “polynomial phase tiots”, andP;”B
the inducedR-valued slicing as defined above.
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Proposition 4.2.4. The stability conditior(Z;;vB, P;J’B) is dual to the stability condition
(Z~ B, PeP).

Proof. The Chern characters éf andDD(FE) differ by a sign inchy andch,, and agree
for ch; andchs; the same holds fath(E)e? andch(D(E))e~ 2. Thus

(12) 2y P(D(E)) = Z,“ P(D(E)) = Zy(B).

Furthermore, in the proof of Propositibn 412.3, we idenifi’ with 73;’3(1) andAj
with 73;’3((0, 1)). Combined with the last statement of Lemma4.2.2, this iegphat

D(Py P (1) = Py~ P(=1), D(PyP((0,1)) = Py ?((~1,0)).

As theD turns strict inclusions in these quasi-abelian categamigsstrict epimorphisms,
and vice versa, equation {12) also implies thats Z4-"-stable if and only ifD(E) is
z2~P-stable. O

4.3. Surface-like stability. We use polynomial stability conditiofZ;”, P+"”) to define
the heart3~?.

Definition 4.3.1. Let B«# := P5((—~1, 11) and

1 1
7P = — chB(E) + m? <§w2 chP(E) +i (w ch?(E) — 6@03 chgg(E))) .

In other words3-5[1] i the tilt of Coh” at the torsion paiP+?((, 1]), P22 ((0, 1]).

1

Proposition 4.3.2. Zg’B is a stability function fo3*-” with respect to the intervl,

and HN-filtrations exist.

To prove Proposition 4.3.2 we need a more detailed undelistguof the cohomology
sheaves for objects i~ (a more precise result will be Lemrma’]1.2):

Lemma 4.3.3.The cohomology sheaves of di‘g/B-stabIe objecty € B«'B either vanish,
or satisfy the following conditions:

(@) H'(F) is a zero-dimensional torsion sheaf.

(b) H~'(E) is a slope-stable torsion-free sheaf of slgpes < 0.

(c) H°(E) is either a slope-semistable torsion-free sheaf of slepg > 0, or a
torsion sheaf. Moreover, if°( E) has a zero-dimensional subsheaf, tién' (E)
is also non-zero.

Proof. This follows from the following statements abcﬁip*B -stable object#’ € Coh?”:

e If H°(E) has one-dimensional support, thenc 73;;’3((0, %]).



STABILITY CONDITIONS AND BOGOMOLOV-GIESEKER TYPE INEQUALTIES 19

o If H-1(E) # 0, then eithel € 73;;“3(1) andH ~!(FE) is a purely two-dimensional
sheaf, ot ~!(E) is slope-semistable. Its slopg 5 satisfiesu, 5 < 0if and only
if £ePw5((0,1)).
Indeed, there is a surjectidi — H°(E) in Coh”, which destabilize€’ unless the first
claim holds. To show the second claim, first assumeiat £) € Coh=?is purely three-
dimensional but not slope-semistable, anddett H~!(F) be a destabilizing subsheaf.
Then the compositiorl[1] — H~*(E)[1] — FE is an inclusion inCoh” that destabilizes
E. The same argument deals with the case witerg( ) is not purely three-dimensional.
This shows directlyrfa) andl(b). To prove (c), we only needlsesve that, ifff°(E) has
a torsion subsheaf of dimension zero, then this destabilizenlessH ~!(E) is also non-
zero. O
Proof. (Proposition4.312) To prove thaty” is a stability function first note that
§RZ;;’B = §RZ;*B, and that if the leading coefficient (ﬁ‘;vB(E) has positive real part,

then the same holds fdfy;”(E). In particular, if E € P22((—1,1)), thenZ%?(E) has

leading coefficient with positive real part, andzp’B (E) satisfies the required property.

In the remaining case we have € 73;;73(%). If H-'(E) # 0, then it is a slope-
semistable sheaf of slopg, 5 = 0. From the Bogomolov-Gieseker inequality it follows
thatw - ch?(H~'(E)) < 0. Additionally, for anyE € Coh? with chf (E) = ch? (E) = 0,
we have that-chZ (E) > 0. It follows that the leading coefficient ¢f; " (E) is a positive
imaginary number.

To prove the existence of HN-filtrations, first note that tbesion pair given by/ =
PoB(L), F = PoP((—1,1)) satisfies condition{(a) of Lemria4.]L.2. Due to the ratiopalit
of w and oft, the imaginary part ofzg’B is discrete, and thL@;”B(% has finite length.

)
By the following Lemma, the quasi-abelian categdty= 73;;73((—%, 3)) is also of finite

length, and thus our claim follows from Lemma 411.2. O
Lemma 4.3.4.The quasi-abelian catego@;ﬁ((—%, 1)) has finite length.

Proof. As above, we denote this category By By Propositiori 4.2]4, the dudi(F)
is of the same form a# itself (with B replaced by- B); thus, it is enough to check that
there are no infinite chains. — FE3; — FE, — [, of strict subobjects inF. By the
rationality ofw ands, we may assume that the real part of th&-coefficient of Zy;” (E;)
is constant. But then the imaginary part of thé-coefficient must also be constant, as

the quotient); of E,,, — E; could otherwise not lie ilﬁ‘f’B((—l 1)). In particular,

272
72"(Q,) is a constant polynomial.

From the proof above of the fact thﬁg’B is a stability function it follows that this is
only possible ifZ;ij(Qj) already was a constant polynomial, which means ¢hat the
shift 7'[—1] of a zero-dimensional skyscraper sheaf. Hence the long exhomology
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sequence induces a sequence of inclusiifér; 1) — H'(FE;) of zero-dimensional
torsion sheaves, which must terminate. O
For later use, we also show a partial converse to Lefnmal 4.3.3:

Lemma 4.3.5.1f T is a torsion sheaf of dimension zero, thEp-1] € B~5. Moreover, if
E € B*B, then the exact triangle

(13) Q— E— H(E)-1
gives an exact sequenceli#?, whereQ is the extension
H Y E)1] = Q — H(E).

Proof. Let T' be a torsion sheaf of dimension zero. TH&Rr-1] belongs ta3+# since it
is stable of phase with respect toZ;ij.

By Lemmal4.3.B, by looking at the long exact sequence for th®mology sheaves,
an objectM € B“? is a subobject of'[—1] if and only if M[1] is a torsion sheaf of
dimension zero and/[1] < T in Coh(X): for an exact sequence 185

0—-M—T[-1] - N —0,

we have

0— H*N)— HY(M) - T — H'(N) -0,
andH~'(N) = H°(M), which is impossible unless

H'(N)=H°(N)=H (M) =HM) =0.
To show that[(I13) gives an exact sequencBir? it is enough to observe that, if the non-
zero mapE — H'(FE)[—1] is not surjective ir3~-Z, then, by what we just proved, it must
factorize through a torsion subsheafféf( E), which is clearly a contradiction. O

We write (Z;", Py’”) for the induced polynomial stability condition, a@g’B for the
corresponding@R-valued slicing.

Proposition 4.3.6. The stability condition{ Z;;”, P;'”) is dual to the stability condition
(25", Pg77).

Proof. Observe that, by the construction8f-?, we have
Sw,B 1 Pw, 1
Py (ii) = Ppub (ii) :
pos (L1 V) _pun((_L1
7 ((33)) -7 ((53))
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Also by Lemmd 4.2]4, we have
<51 ~onf 1
2(50(3)) -7 (),
Sw,B _1 1 _ pw,B _1 1
25 ((53) -7 ((52)

Then the claim follows with the same arguments as Propo&#ia.4. O

4.4. The threefold heart.

Definition 4.4.1. We define4“-? to be the heart
AP = PgP((0,1])

of the slicingP”.

Note that sincés“ 2 = Py ((—1, 1)), one could also defind*? as the tilt of 37 at
the torsion paifl” = 73;5’3((0, ), F= 73;3((—%, 0]).
Let Z, 5 be the central charge defined by (2). By construction, theyinzay part of

Zw B and#Z{QB agree; thus we automatically have
$Z,5(E) >0, E€ AP,

To show thatZ,, 5 is a stability function on4“-#, we would have to show that objects
E € AP with 37, 5(E) = 0 satisfyRZ,, (F) < 0; equivalently, if & € B is Z3"-
stable of phase 0, théRZ,, (E) > 0. In the next section, we will prove that* equals
A, 5, and so this claim is equivalent to Conjecture 3.2.7.

Remark 4.4.2.Let £ ¢ B~ be aZg’B-stabIe object of phase 0, which is not isomorphic
to k(x)[—1]. ThenE is quasi-isomorphic to a two-term compléx ' — E° of vector
bundles. Indeed, &gz)[—1] is stable of the same phase, we héven(E, k(z)[n]) = 0

for n < —1 and (using Serre duality) for > 2; then the claim follows by [BM02,
Corollary 5.6].

Remark 4.4.3.1f the stability condition A~-?, Z«-P) exists, then itis dual tad~ 5, Z«~B);
the proof is the same as for Proposition 4.3.6.
5. COMPARISON AND NOETHERIAN PROPERTY

5.1. Comparing the two constructions. The goal of this section is to prove the following
result:

Proposition 5.1.1.We haveA,, 5 = A“'Z.
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The proof consists of a detailed analysis of the varioussstethe two constructions.

Step 1. (Coh” versusCoh X) By definition, Coh?” is the tilt of Coh X with respect to the
torsion pair

To = Coh™' X

Fo = Coh™ X.

Step 2. (B+'% versusB, ) By Lemmal4.3.B and Lemnia4.8.5, the skyscraper sheaves
k(z)[—1] € B~P and, for allE € B~5, H'(E) is torsion of dimensiof. Define a torsion
pair in B~'F by
T ={EeB>” : H(F)=0}
Fi={EeB’ : E~H'(E)[-1]}.
Notice that, by its own definitiorF; [1] = Coh=’ X consists of zero-dimensional sheaves.

The fact that this is a torsion pair follows immediately fraiemma4.3.b. Le3; be the
tilt with respect to this torsion pair, i.e.,

Bl = <-F1[1]77—1>
Lemma 5.1.2.We have3; = B, g.

Proof. We only need to show that, 5 C B,. Let M € B, 5. By construction of
B, 5, both of its cohomology sheavég’ (M) and H ' (M)[1] belong toB,, 5. By further
using their Harder-Narasimhan filtrations with respecttg;-stability, it is sufficient to
consider the following cases:

(@) M =T is atorsion sheaf.

(b) M =T is a torsion-free slope-stable sheaf with slppe;(I") > 0,

(c) M = T'[1] is the shift of a torsion-free slope-stable shEafith slopey, 5(I") <
0,

For caserfa), we can assuriias pure and so we can distinguish three sub-cases, ac-
cording to the dimension of the supportlaf
dim(T") = 0: In this case]'[—1] € F ¢ B~# andl" € B, by construction of3;.

dim(T") = 1: The limit phase with respect t62* is . Assume, for a contradiction, that

I'¢ 73;*3((0, 11). Then there exists an exact sequenc€dh”
A—-T—=B

whereA is Z;;JvB-semistable with limit phasép(A) > % Passing to cohomology,
we have

0— H'(B)— H(A) =T — HB) - 0.
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Sincedim(H'(B)) > 2 anddim(H"(A4)) < 1, we haveH !(B) = 0. Hence
A = H°(A) must be pure of dimensidnand its limit phas@p(A) is preciselys,
a contradiction.
dim(T") = 2: The limit phase of’[1] € Coh” with respecttaZs# is1. If A — T'[1] - B
is an exact sequence {toh?”, then the long exact cohomology sequence shows
that B[—1] is a sheaf, and in fact that it is a sheaf with 2-dimensionppsut.
Thus any quotient af'[1] also has limit phasg, and sd’[1] € 73;“’3(1). But then
I' e B»BNCoh X C B;.
In case[(b) we hav&[1] € Col” = P5((0,1]). Assume thal[1] ¢ P<5((1,1]).
Then there exists an exact sequenc€ah”

A—-T[l]— B

\r/]vhereB is Zs-P-semistable and has limit phaég(B) <
ave

1. Passing to cohomology, we
0= HYA) =TS HY(B) - H(A) = 0.
HenceB =~ H~'(B)[1]. By Lemma43BH '(B) is torsion-free and.,, z-semistable
with slopey, 5(H~'(B)) < 0. Butthenp = 0 and H~}(B) = H°(A) = 0.
This contradiction proves th&f1] € P+5((3,1]). Hence' € P« #((—3,0]) C B,
and clearly it is contained ifi; C B;.
Finally we treat case(c). Consider the exact sequenCelifi

(14) A—-T[l]—- B

with A € 73;’73((5, 1])andB € 73;’3((0, 1]). Passing to cohomology, we have

0— HYA) TS HY(B) - H(A) - 0.

If H~'(A) is non-zero, then its slope satisfigs 5(H*(A4)) < u,5(l') < 0. Since
HO(A) is a torsion sheaf of dimension 1, we havep,(A) = ¢,(H'(A)) < 3, which
is a contradiction; hencel = H°(A). If H°(A) has dimension, its limit phase is
¢,(H°(A)) = %, which is again a contradiction. Heng := H°(A) is a 0-dimensional
torsion sheaf. Thus the exact sequence (14) becomes

To — I'[1] — A[1],

whereA is a sheaf; in particulai\[1] € 73;;’3((0, 1]) € B% is contained in the torsion-
part of B<? and thusA[1] € B;. We already proved th&f, € B; in part (@), and thus we
also havd[1] € B;. O

Step 3. (A“# versusA, ) It will be enough to show thatl,, 5 C A“#. Of course, the
key point will be that the slope of the2-coefficient onj;’B is, up to normalization, given
by Vw,B-
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By Step 2 and Lemma 4.3.5, there is a torsion p@ir 72) in B, s whereT; = Fi[1] =
Coh=’ X consists of zero-dimensional skyscraper sheaves;fhen B, zNB% is given
as the right-orthogonal

Fo={FE € B,p: Hom(k(z),E) =0, forallz € X}

Evidently 7, ¢ A+“¥". Recall thaty, p(k(z)) = +oo. Hence ifE C B, p is tilt-
semistable, then either, 5(£) = +oo and the short exact sequerife— E — E’
with 7" € T, andE’ € F, hasE’ also tilt-semistable withy,, 5(E’) = +o0, or E itself is
already inF,. It follows that it is sufficent to show for every tilt-stabdbject £ € F;:
@) If v, 5(E) <0, thenE € PgP((—1,0]).
(b) If v, 5(E) > 0, thenE € Py?((0,1])
Indeed, by definition A% = P%”((0,1]), and thus the claim implieg] ;, ¢ A“” and
! w,B
Bl CA%Z.
Consider such av. By Step 2, we havé&y € 7, C B~5. Consider any short exact
sequence

A—-FE B

in B~P that destabilize# with respect toZg’B. Consider the short exact sequerte-

A — A/T given by the torsion paif7;, ;) in B~'Z. If T is non-trivial, then the limiting
phases ofZ;”(T)) and Z;” (A) agree (a7 " (A/T) is a constant polynomial). On the
other hand, consider the induced short exact sequence

T E — E/T

AsT, E € T, and as7T; C B“? is closed under quotients, this is also a short exact
sequence i, 5. By the tilt-stability of £ we havey,, 5(T") < v, 5(E). This is a contra-
diction unless” = 0.

Hence eithet is stable with respect t&;”, or its Harder-Narasimhan filtration has
just two step®) — E; — E, with E; € F;, = Coh="[-1] being the shift of a zero-
dimensional skyscraper sheaf.

In case(m), the limiting phase @f(E)(m) satisfiesh(E)(+o0) = ¢(Ey/Ey)(+00) €
(—3,0]; together with¢(k(z)[—1]) = 0 this shows our claim. In the other caé (b),
we haveg(E)(+o0) € (0,3]. In particular,¢(E) = ¢(E)) = ¢(k(z)[-1]) = 0, a
contradiction unles&; = 0. ThusE is Z&”-stable withE € P2 ((0, 1D

This finishes the proof of Proposition 5.1.1. We also havefalewing more precise
result, which will be used in [BBMT11]:

Proposition 5.1.3. (@) AssumeF € B,z N B~7? satisfies eithew,, (E) > 0 or
Hom(k(x)[~1], E) = 0. ThenE is v, g-semistable if and only if it isZ;"-
semistable.
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(b) Assumer € B, s satisfies/, g.max(F) < +00. ThenD(E) fits into an exact tri-
angleE — D(E) — Ty[—1] for an objectE € B, _ 5 and a zero-dimensional tor-
sion sheafl;. Further, E is v, g-semistable if and only i’ is v, _ z-semistable.

Proof. The first claim follows from the proof of Step 3. For the secatam, first note
thatv,, p.max (F) < +oo impliesHom(k(x), E) = 0 and thust € B, zNB“E. Combined
with the first part, this gives the even stronger stateneat Py'” ((—1, 1)). Proposition

4.3.6 then implie®(E) € P25 ((-1,1)) c B+~B, and Lemm&5.112 implies the exis-

y T 203
tence of an exact triangle as stated above.

If £ is noty, g-stable, then it has a destabilizing quotiéht> B with v, p.max(B) <
+o0. Applying the same construction #® produces an injectio — E in B, _5. As
vep(E) = —uw,_B(E) etc., this will destabilizeZ with respect ta/,, 5. SOFE unstable
impliesE unstable, and the converse follows similarly. O

5.2. Noetherian property. The goal of this section is to show that the heart of our t-
structure is Noetherian.

Lemma 5.2.1. There is a torsion pait7*, 71 in A,, 5 whose torsion part is given by
EeT' < SZ,p(FE)=0.

The category7 is an abelian category of finite length which is closed4p 5 under

subobjects and quotients.

Proof. Using the second constructiof? = 73;;’3((0, 1]), we can define a torsion pair
T' = P2P(1) and FOV = P2P((0,1)). Evidently E € T* if and only if the leading
coefficient ont“;’B(E) is real, which happens if and only 4, 5(E) is real.

To prove the second assertion, notice thais by definition a subcategory of the quasi-
abelian categorP;;”((1, 2)). By construction of Z5”, P5?), we havePy®((1,2)) =
P=B((1,3)), and the latter is of finite length by Lemma4l3.4. O

p
Proposition 5.2.2. The abelian category,, s is Noetherian.

Proof. Suppose that there is an infinite sequence of surjectiods, in

We are going to show that the above sequence terminates Sisred B are rational and
SZ,5(E) > 0foranyE € A, g, we may assume that

(16) %Zw,B<E1> - %Zw,B<Ei>7
for all i. Consider the exact sequence

0—-L;,—-FE —E —0



26 AREND BAYER, EMANUELE MACR, AND YUKINOBU TODA

in A, 5. By equation[(I6) we haveZ, 5(L;) = 0 and soL; € T'. Thus everyL; is a
subobiject of the torsion pdft of £;. ReplacingF; by T"and E; by the quotient’/ L;, we
get an infinite sequence (15) wiffy € 7. This sequence terminates by the second part
of Lemmd5.2.11. O

Remark 5.2.3.If (Z, 5,.A, ) is a stability condition, them4,, 5 must be Noetherian
as shown in[[AP06, Proposition 10.1]. Hence PropositionZbgves some evidence for
Conjecturé 3.2]6.

Corollary 5.2.4. Conjecturé_3.2]6 and Conjecture 3.2.7 are equivalent.

Proof. It is obvious that Conjectufe 3.2.6 implies Conjecture ®.Suppose that Con-
jecture[3.217 is true. Thed, 5 is a stability function on4,, 5. SinceA,, 5 is Noetherian
by Propositiori 5.2]2, we can apply [BM11, Prop. B.2] to cone that(Z,, 5, A, 5) has
the Harder-Narasimhan property. O

6. LARGE VOLUME LIMIT

In this section we show that if the stability conditiané,, 5, Z,, ) exist, then their limit
asw goes to infinity is exactly given by the notion of “polynomgthbility condition at
the large-volume limit” of[[Bay09, Section 4] or “limit stdlby” of [Tod09a]. The precise
statement is given in Propositibn 6.2.3.

6.1. Stability condition at the large volume limit. Let Z, 5: K(X) — C[m] be a
polynomial valued central charge, given by

Zoow,B(E)(m) = me,B(E)'

(Note that the only difference 85" of equation[(Ill) is given by thér )’ (£)-term, which

has weightn? rather thann?.) Let Coh? be the category of perverse coherent sheaves,
given in Definitio 4.2.]1. Recall that, as in Section 4.2,Bsy09] the paif Z..., 5, Coh?)
defines a polynomial stability condition doP(X). Let QF be the associated slicing de-
pending on polynomial phase functions. The central chargg  is a stability function

on Coh?” with respect to the intervdll /4,5/4) (see [Tod09a, Lemma 2.20]), hence we
haveColh? = OF((1/4,5/4)).

Definition 6.1.1. We defineC? := QP((0, 1]).

We give a precise description of the abelian categdryNote that there is an analogue
of slope stability onCoh=* X. Namely, for an object: € Coh=* X, we setji,, z(E) =
+o00if E € Coh™' X, and otherwise we set

wch?(E)

(17) foB(E) = TP (E)
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Coh? B..s

{Cohgfo [1]Icoh§§0 1] Icoh;jo [1]}[60}1;; [1]IcohélICothOICoh;;ICohjSO Icoh;;}

cr Coh X

FIGURE 2. Relating the various t-structures

Thefi,, z-stability onCoh=? X is defined in a similar way tp,, 3-stability. We define the
torsion pair(7?, F7) on Coh(X) to be

TP = {E € Coh™ X : [iy pmin(E) > 0}
F?={F € Coh X : Hom(T?,E) =0}.
Lemma 6.1.2. The abelian categorg? is the tilt of Coh X with respect tq 77, F?),
CP = (FP[1],TP).

Proof. It is enough to show that the RHS is contained is the LHS. Totkise it is
enough to check that
(@) Any 7, p-stable sheafs € Coh=* X with i, 3(E) > 0 (resp.ji, 3(F) < 0)
satisfiestl € CP (resp.E[1] € CP).
(b) Any torsion free sheall € Coh X satisfiesE[1] € CP.
Let (A7, A7 ,) be the torsion pair offoh?”, defined in Lemma4.2.2. Itis shown in[Tod09a,
Lemma 2.27] that an objeét € Coh? is Z..,, p-semistable ifand only i € A? fori = 1
or1/2and itisZ.., z-semistable in the quasi-abelian categafy
Suppose thab € Coh=? X is[i,, z-stable withji,, z(E) > 0. If E has two-dimensional
support, thenE[1] € A} and it is Z,, g-Stable inA}. Since<3Z,.. 5(E[1]) < 0 for
m > 0, we haveE[1] € QP(> 1), henceE € CP. If E is pure of dimension one, then
E e Aj,, C CP;andif E = k(z) is the skyscraper sheaf of a pointe X, then it is
Z~w,p-Stable of phase 1. A similar argument shows that,if;(£) < 0, thenE[1] € C”.
Next, take a torsion free shed#f € Coh X. ThenE[l] € A7,, and its Harder-
Narasimhan factors with respect to the polynomial stabilinction Z.., 5 are contained
in A7 ,. Since any object ipA] , has limit phase /2, we haveE[1] € C”. m]
The diagram in Figuré]2 schematically shows the relationevdsen the different t-
structures. Each heart in the figure is the extension-obosithe corresponding blocks.

6.2. Comparison of A,, 5 and C”.

Lemma 6.2.1. For an objectE € D"(X), suppose thatl € A,,, 5 for m > 0. Then
E ecr.
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Proof. Note that we havé8, 5 = B, 5 for m € R.,. We denote by{j;(_) thei-th
cohomology functor with respect to the t-structligz. Also, for simplicity, we write
! T and An, g asT,,, F), and A, respectively. Suppose that € D"(X)

mw,B?

satisfiestl € A,, for m > 0. This implies that
(18) HZ'(E) e F, and  HR(E)eT,,
for m > 0. We have the following exact sequencedins:

0— Ei[1] = Hg'(E) — Ey — 0,

0 — E3[1] — Hp(E) = E; — 0,

for E; € Coh X. By the construction oB,, 5, we havel, E5 € F,, p andE,, By € T, p.
Since(7,,, F,,) is a torsion pair orB,, 5, (18) implies that&, [1] € F, andE, € T, for
m > 0. In particular we have,,, z(E£1[1]) < 0 andv,,, g(£,) > 0 for m > 0, which
imply that

1
—6m3w3 chP(E;) + mw chy (E;) > 0,

fori = 1,4 andm > 0. This implies thath} (E,) = ch] (E,) = 0, henceE; = 0 andE,
is a torsion sheaf.

From what we have proved above, the objEdt concentrated ofr-1, 0]. SinceEs €
FP,itis enough to check that

Ey, e FP and E,eT?,

to concludeE € CP. Let Eyy,, C E, be the torsion part of;, and ' C Es 4, be the
I, p-Semistable factor oF i, with i, 5 maximum. Then" € F, for m > 0, asF'is
a subobject off ;' (E) in B, 3, thereforev,,, 5(F) < 0 for m > 0. This implies that
F'is a pure two-dimensional sheaf with, z(F') < 0, henceE, € F? follows. Similarly
for a i1, p-semistable factoF, — F’ such thafi, 5 is minimum, we have” € 7 for
m > 0, henceu,, 5(F’) > 0 andE, € T? follows. O

Lemma 6.2.2.For an objectE € C?, we havel € A, g for m > 0.
Proof. Let us take an objedt € C? and an exact sequence@h
0— HYE)1] = E— H°(E) — 0.
The sheaff ~!( F) fits into the short exact sequence of sheaves

0—=T — HYE) =T, =0,
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with 7y € 7, s andT;, € F, 5. By the above two sequences, we obtain the exact sequences
in CP

(19) 0—-"T[1]—FE—U-—D0,
(20) 0— T[] = U — H(E) — 0,

for someU € C?. SinceT; € B, g andU € B, s by the sequencé (R0), the sequerice (19)
implies

HY(E) =T, and  HQ(E)="U.
In order to conclude” € A,,, 5 for m > 0, itis enough to show that
Vmw,B;min(Tl) S 0 and Vmw,B;min(U) > 07

for m > 0. We only show that,,,., .min(U) > 0. The inequalityv,,, g.min(11) < 0iS
similarly proved, and we omit the proof.
LetU™ € B, 5 be they,,, z-semistable factor di such that

Vmw,B;min(U) = Vmw,B(Um)-
We have the exact sequencein s
0=-U™=U—-U™—0,
and the long exact sequence of coherent sheaves
0— HYU™) =Ty — HHU™)
— HY(U™) — HY(E) — H(U™) — 0.

Since HY(E) € TP, the sheafH’(U™) also satisfied?®(U™) € T*. This implies the
inequality

(22) Vo, (HY(U™)) > 0, m > 0.

(21)

Next we see that,,, 5(H~'(U™)[1]) is positive form > 0. The sequenc€(21) gives rise
to two short exact sequences of coherent sheaves

0—K—H*YU™) = K =0,

0— K — HU™) = K" — 0.
Note that there is a surjectidhh — K, henceu,, g.min(K) is bounded below, i.e., there
is a constant which does not depend on such thatu,, g.min(X) > c. Also sinceK” is
a subsheaf of/°(F), it is a torsion sheaf and its first Chern class is boundedebbhis

fact, together witmw,B;min(HO(U’m)) > 0, easily implies thaj, p.min(X’) is bounded
below. Thereforgu,, p.min(H1(U™)) is also bounded below.
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Let Ay, - - -, Ay be the set ofi, z-semistable factors @7 ' (U™). From what we have
proved above, there is a constant 0, which does not depend on such that

0> pro,5(A1) >+ > pwp(An) > —c.

By replacingc if necessary, the Hodge Index Theorem and the Bogomologekes in-
equality imply the following bound:
chg (4,)

ChlB <A2>2
— 5, = C.
2chB(A)?

Sw-

Hence we have
ch? H-Y(U,,)

23) B H(U,)

<ec

Now we have
o« -1 m B rr—1 m
\smeéB(H (™)) _ lmsws _meh2BH (U )7
hP(H-(Um) 6 ch H-1(Um)
which is positive forn > 0 by (23). This implies the inequality

(24) Vneo.s(H™H(U™)[1]) > 0, m > 0.

By the inequalitied (22) and (R4), we obtaip,, 5(U™) > 0 for m > 0. O
Let us denote,,, = (Z,.., 5, Amw ). We have the following proposition.

Proposition 6.2.3. Suppose that,, are stability conditions. If an objedt € D"(X) is
om-Semistable forn > 0, then E' is semistable with respect to the polynomial stability
condition(Z.cw, 5, CP).

Proof. We may assume thdt € A, g for m > 0. By Lemmd®6.2.11, we havé € C?.
Suppose thak’' is not semistable w.r.tZ,, 5. Then there is an exact sequencé€in

(25) 0—FE —FE—E"—0,

such thatwrg Z,,,, 5(E') > arg Z,.., s(E") for m > 0. However, by Lemma 6.2.2, the
sequencel(25) is also an exact sequencd,in s, for m > 0. This implies that[(Z5)
destabilizesw w.r.t. o,,, for m > 0, which is a contradiction. O

7. BOGOMOLOVW-GIESEKER TYPE INEQUALITIES

In this section we discuss bounds on the set of numericas&tasfy,, z-semistable
objects inB,, 5.
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7.1. Torsion sheaves.We consider Conjectufe_3.2.6 in the case of torsion shed@s.
simplicity, we assume that

Pic(X) = Z[Ox (H)],

for an ample divisor?. We denotel = H? € Z-, andw = oH for a € Q. We take a
smooth divisor

S e |mH|,
for m € Z-, and consider semistable sheavesSoMNotice that
Coh S C B, 5,

is an abelian subcategory, and #Bre Coh S, we havey, g(E) = 11, 5(E), wherefi, g

is as defined in equation (17). Hencerife Coh S is v, p-(semi)stable i3, 5, then it is

alsoji,, z-(semi)stable irCoh S. Let us discuss Conjecture 3.2.6 for object€’ish S.
Let £ € Coh(S) be aji, z-semistable sheaf with

ch®(E) = (r,1,5) € H°(S) @ H*(S) ® H*(S),

wherech” on S is nothing butch -e—?ls. Leti: S — X denote the inclusion. By the
Grothendieck Riemann-Roch formula, we have

chB (i, E) = <o,r5, S R R S s)
2 6”7 2
€ H'(X)® H*(X)® HY(X) ® H%(X).

The conditionv,, 5(i.F) = 0 is equivalent ta..l = rS5?/2; hence we have
1
ch?(i.E) = (O,T’S, 0,s — —7’53) :
12
On the other hand, the Bogomolov-Gieseker inequélity 2rs implies the inequality

1 1
(26) s < grS?’ = gdrm?’.

Therefore we have
1 1
RZ,p(i.E) = —s+ ETS?) + §a27’H25
rdm 9 9

If m > 2v/3a, we cannot conclude th&kZ, 5(i.E) is positive. This implies that,, z-
stability and the Bogomolov-Gieseker inequality mre not sufficient to conclude Con-
jecture[3.2.6, and we need to investigate;-stability in more detail.
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Suppose, for instance, that there existig, g&-semistable torsion free shefifon X such
that /'|s = E. For example, whe¥ = Og(mH/2) for an even numbein, we can take
F = Ox(mH/2). We have

2 2

fos(F) = %md >0, pos(F(=8)) = —%md <0.

Then the sequence
F—FE— F(-5)[1]

is an exact sequence B, s. If E isv,, p-semistable, we have, z(F') < 0. Therefore we
have

1
(27) s < érdmoz2.

Note that, whern is big, (27) is a stronger inequality thdn [26). Usihgl (2Ktéad of
(26), we obtain

d
RZ,, 5(i.E) > %(w2 +m?) > 0.

By considering at the same time the two inequalities (26) @), we obtain the in-
equality of Conjecture1.3.1 in this case:

Proposition 7.1.1.Let X be a smooth projective threefold wilttic(X) = Z[Ox (H)]. Let
S € |mH| be a smooth divisot;: S — X. LetE € Coh(S) be such that:

e i, is v, p-semistable withy, z(i, E) = 0, and

e there exists a torsion-free, z-semistable shedf € Coh(X) with F|s = E.
Then

2
(28) chB(i,E) < %; chB(i.E).

Proof. First of all, when3m? < 4a?2, we use[(26), and we have
rm3d _ ra’md  w?

1
chP(i,E) = s — ﬁngd < 54 < TRET ch? (i, E).

Similarly, when3m? > 42, we usel(2l7), and (28) is proved. O

7.2. Semistable objects in3,, 5. Here we fixB € NS (X) and use the twisted Chern
characteth” (E) = ch(FE)-e~ 5. For an ample divisar € NSq(X), let® c B, 5 denote
the set of object® € B, 5 satisfying one of the following conditions:

(@) H~Y(E) = 0andH(E) is a pure sheaf of dimension 2 that is slope-semistable
with respect tawv.
(b) HY(E) = 0andH°(E) is a sheaf of dimensiod 1.



STABILITY CONDITIONS AND BOGOMOLOV-GIESEKER TYPE INEQUALTIES 33

(c) H'(E) is a torsion-free slope-semistable sheaf d&ht{£) € Coh='X. If
pos(H HE)) < 0, we have

(29) Hom(Coh=! X, ) = 0.
Lemma 7.2.1.1f an objectE € B, g IS V)., p-Semistable forn > 0 thenE € ©.

Proof. The proof is given by the same argument as in [Bay09, Lemmnja 4.2 O
The set of object® is also obtained as, z-semistable object& with smallw? chf(E).
Because of the rationality d¢ andw, we can take € Q- to be

(30) ¢ :=min {w’ch{(E)>0: E€B,p}.

Lemma 7.2.2.For an objectF € B, gz, suppose that? chf(E) < c¢. ThenE is v, -
semistable if and only i/ € ©.

Proof. The assumption implies that ch”?(E) = 0 or ¢, and the first case is obvious.
So assume? ch? (E) = c. Given any short exact sequence

(31) A E B

in B,, 5, we always have eithes? ch’(A) = 0 or w? ch (B) = 0. In the former case, we
haver,, 5(A) = +oo > v, g(E) # oo and thusE is unstable. In the latter case, we have
ve5(E) =400 > 1, p(F), and thus the short exact sequerice (31) cannot destabilize

So E is stable if and only if there is no subobjett— E with w?ch?(A) =0, i.e Ais
contained in the subcategory described in (6). This comdig invariant under replacing
w by a scalar multiplenw for m € R. In particular, ifE is v, p-semistable, then it is
Vmw p-S€Mistable forn > 0, andE € © by Lemmd7.211.

Conversely, assumE € D has a subobjectt with w?ch?(A4) = 0. If H~'(A) # 0,
then it has slope., 5(H~*(A)) = 0. Also, H'(E) is non-trivial, and thusZ satisfies
condition (t) in the definition o®. Asw?ch?(E) > 0, we haveu,, (H(F)) < 0; but
H~'(A)is a subobject of/ ! (E), in contradiction to the slope-semistability bt

On the other hand, iff~'(A) = 0, thenA € Coh=' X, in contradiction to[(29). O

In particular, Conjecturle 1.3.1 includes the following jeature fory,, 5-stable sheaves:

Conjecture 7.2.3.Let X be a smooth projective threefold and takew € NSq(X) with
w ample. LetE be ayu, s-stable sheaf satisfying? ch (F) = ¢, wherec is defined by
(30). Suppose thakt’ satisfies
(32) wgchi(E) _ 1

w3chy (E) 6
Then we have
ch?(E) < 1

(33) W2chB(B) T 18
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Example 7.2.4.In the situation of Conjectufe 7.2.3, suppose fhiat X) is generated by
an ample line bundlé on X with D = L. Settingw = tL fort € Q-, andB = 0, we
havec = Dt?. Fora curveC C X of degreel = L.C, let I be the ideal sheaf @f. Then
the objectt = L ® I¢ is ju, o-stable withw? ch{(E) = ¢, and satisfies(32) if < £ and

#_1_4d
6 2 D
Then the Conjecture states that
D ?D D d
h3(E) = — —d —ch <~ == __
chy(B) = 5 —d—cha(Oc) < 7= = T = 3
or, equivalently,
2
(34) — ¢ch3(Oc) < 34

For instance, ifX c P*is a hypersurface of degrée, Hirzebruch-Riemann-Roch relates
ch3(Oc¢) to the arithmetic genug of C' by

1~ 9= X(0c) = ehy(Oc) + 54— D).

Thus the inequality[(34) becomes< ¢D — 1d + 1. Sinced < 2, this follows from
Castelnuovo’s classical inequaligy< 1(d — 1)(d — 2), which does hold in our situation:
it has been shown for for singular curv@sc P2 in [0S85] and([Har94]; and sinag c X
is contained in a smooth hypersurfacePif) the curveC will map isomorphically intd??
under a generic projection.

On the other hand, already wheh c PY*3 is a complete intersection of codimension

N, the inequality[(34) seems stronger than known Castelnimagualities: it becomes

Dy +---+ Dy N+3 2
< - d+—-d+1
7= 2 d=—5—drgd+
for any curve of genug and degreel < %Dl - Dy --- Dy on a complete intersection of
degreg Dy, ..., Dy). The statement would be similar to the case of space curiresdy

a surface of given degree, treated e.gl in [Har80].

7.3. Bogomolov-Gieseker type inequality withoutchs. In this section we establish a
Bogomolov-Gieseker type inequality for, z-semistable objects if8,, 5 which does not
involve chs. Fora,b € R, we setf,,: NSg(X) — Rtobe

fap(®) = aw® - 12w + b(zw?)?.
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Recall that the discriminamk(E) € A3 (X) of an objectt € D"(X) is defined by

A(E) = chy(E)* — 2chy(E) chy(E)
= chP(E)? — 2chf(E) chl(E).
We have the following result.
Theorem 7.3.1.For a smooth projective threefold andw € NSg(X), takea € R>_;
andb € R such thatf, , satisfies the following conditions:

(@) fap(z) >0, foranyx € NSu(X).
(b) far16(z) > 0, for any effective class € NSg(X).

Then, for any,, z-semistable objedt’ € B, 5, we have the following inequality:
(35) w* - WA(E) + fap(ch?(E)) > 0.

Proof. We prove the inequality (35) by induction as ch”(E). Observe that the
Bogomolov-Gieseker inequality and the condition (a) im{8%) for torsion free slope-
semistable sheaves. Also, conditibh (b) implies the inkiyu@5) for torsion sheaves.
Therefore [3b) holds for any objed ¢ ©; hence it also holds if&,? ch?(E) < ¢, by
Lemmd7.2.P.

Assume tha{(35) holds for all, z-semistable” € B, p with w? ch? (F) < w?ch?(E).
By the previous argument, we may assume fiigt ©. Then, by Lemma7.2.1, the object
E is noty,,,, g-semistable for sufficiently large.. Hence we can take,, € R-, to be

mo = sup{m € Roy: EiS v, p-Semistableg.
By Corollary[3.3.3, there is a filtration ifi,, 5
O=FEyCE,C---CEy=F,

such that the following holds.

e F, is a Harder-Narasimhan filtration &f with respect ta/(,,, ;). s-stability for
0 < ¢ < 1. In particular, subquotients; = E;/F;_; satisfy

(36) Vimo+e)w,B(F1) > Vimgteyw,B(F2) >+ ++ > Vimgte)w,B(FN)-
e The subquotients; arev,,,., z-semistable with
(37) Vimnow,B(F1) = Umgw B(F2) = -+ = Unow.B(FN).
We seta;, b; andc; as follows:
oSSR wdP(R) (R

S B o\ B ov 6T S B oy
w? chy'(F) w? chy (F) w? chy(F)
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Note that we have? ch? (F;) < w?ch?(E); henceF; satisfies the inequality (85) by the
inductive assumption. The inequalify (35) fbris written as

(38) (a+ 1w’ - we? —2ab; +b > 0.
By settingc = m2/6 > 0, the equality[(37) implies
(39) —cay + by = —cay +by=--- = —cay + by.
Combined with[(3B), we obtain the inequalities
(40) a; < ag < ---<apn-.
Then [39) and (40) imply the following inequalities:
(41) by < by < --- < by.
We can calculate as
W WA(E) + fup(chP(E))

=ww ((Z Chf(ﬂ)) -2 (Z Chg(ﬂ)) (Z cth(E-)))

+aw3-w<§:ch3 (F) ) +b<Zw ch?(F, )

—Zw - WA(F) + fap(chi(F}))

+2 Zw chi (F) - w? ch{ (Fy) ((a + 1)w® - weie; — agb; — ab; +b) .
1<J

The first term of the last equation is non-negative by the etide assumption. As for the
second term, note that (38) implies

bz—%(a%—l) (we + we3) + ab; + azb;.
Therefore we have
(a+ 1)w? - weie; — agbj — ajb; + b
1
(42) 2 (Cl,j — ai)(bj — bz) — 5(& + ].)CU?’ . W(Ci — Cj)2.

Note that sinces?(c; — ¢;) = 0, the Hodge Index Theorem impliesc; — ¢;)* < 0.
Combined witha > —1, (40) and[(4ll), we conclude that (42) 0. By induction, we
obtain the desired inequality (35). O
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Corollary 7.3.2. Let X be a smooth projective threefold and takew € NS (X) withw
ample. Then, for any,, z-semistable object € B,, 5, we have
AL(E) = (w?chP(E))? — 2w3 ch§(E) - wchy (E) > 0.

Proof. We takea = —1 andb = 1 in Theoreni7.3]1. The conditiom (a) is satisfied by
the Hodge Index Theorem, ard (b) is obvious. Therefore theltréollows from Theo-
remZ.3.1. O

Corollary 7.3.3. Under the previous assumptions, there is a constant R-,, which
depends onlyw| € P(NSg(X)), such that any,, z-semistable object’ € B,, 5 satisfies
the following inequality:
w? - WA(E) + C,(w? chP(E))* > 0.
Proof. We seta = 0 and want to find» = C,, > 0 such that the conditionsi(a) arid (b)

are satisfied. The condition (a) is obviously satisfied for @ 0, so it is enough to deal
with (D): it requires that for any effective divis@, we have

(43) w? - D*w + C(Dw?)? > 0
holds for any effective divisoD.

Fix a norm||x|| on H%(X,R). Then there is a constart, such that

w? - wD? < A,||D|]?
foreveryD € H?(X,R). On the other hand, due to the openness of the ample cone, ther
is a constan3,, such that
w?D > B,||D||
for every effective divisor clasp. SettingC,, := g—g, we obtain[(4B) as required. O
Corollary 7.3.4. Let X be a smooth projective threefold such th&t(X') has rank one.
Then for anyy,, z-semistable object € B,, 5, we have
wA(E) > 0.
Proof. If NS(X) is of rank one, then we can take= b = 0 in Theoreni 7.3]1. 0

7.4. Stability of vector bundles with trivial discriminant. As an application of Corol-
lary[7.3.2, we have the following result which generaliz&B11, Prop. 3.6].

Proposition 7.4.1.Let E be ay,, g-stable vector bundle oX with A,,(E) = 0. ThenE
IS v, p-stable.

Proof. By Propositior. 4.316 and Sectién .1, we may replacby its dual, and thus
may assume? ch? (E) < 0; in particular,E[1] € B,, 5. Assume, for a contradictior;[1]
is noty,, p-stable. Thew? ch?(FE) < 0, and there exists a destabilizing sequence

M — E[1] — NI1],
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with N a,, z-semistable sheaf such that
(44) v (N[1]) < v, 5(E[1]).
Expanding[(44), by using the assumption that £') = 0, we deduce the inequality

2w chP () B w3tk(N) w?ch? (E) B w3rk(E)
w2ch?(N)  3w2chP(N) = wirk(E)  3w?2chP(E)

Now, w? ch?(N) < 0 and Corollary 7.312 give
w?ch?(N)  wirk(N) _ W chP(E)  WPrik(E)

w3rk(N)  3w2chP(N) = w’rk(E)  3w2chP(E)
Therefore, we get the inequality

1 wg Mw,B(N) _ Mw,B<E>
55 (han(E) — (V) 2 & (P20 e,
But p, 5(E) < e s(N): Indeed, otherwise, thg,, z-stability of £ would imply that
Hom(H°(M),Q) # 0, where@ is a y,, g-stable quotient ofV with slope< p, p(E),
violating Lemma4.3]3. This gives a contradiction, sinceand ., 5(N)u, 5(FE) are
both positive. O
In particular, by Proposition 7.4.1, all (shifts of) linerulles withA,, = 0 arev,, -
stable inB,, 5. WhenNS(X) is of rank one, this is true for all line bundles ah
Proposition 7.4/1 gives also a further evidence for Conjet1.3.1 (and so for Conjec-
ture[3.2.6). More precisely, following Drézet (see €.caril9a, Sect. 3.5]), we introduce
the higher discriminantEw,i as follows:

2 1B
chj

Aw,l
Aw,2

A3 =2 (3(w’rk)® chf —3(w®rk)(w” chy’)(w ch)) + (w? ch{)?) .

Notice that these higher discriminants are invariant utelesoring by line bundles whose
numerical class is a multiple af.

Proposition 7.4.2. Let £/ be ay,, p-Stable vector bundle oX” with Zva(E) = 0. Then
A,3(E) =0.

Proof. First of all, sinceF is y,, z-stable, we have'A(E) = 0 and so(w? ch{ (E))? =
w*(wchP(E)?). Hence, by taking a finite cover and a tensor by a line bundéecan
reduce to the case’ ch?(E) = 0. Our assumptions then givech? (E) = 0 and

AL3(E) = 6(w’rk(E))? chd(E).
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We want to prove thath)(E) = 0. Again, by taking a finite cover, we can assume
that B is the numerical class of a line bundle Consider theu,-stable vector bundle
F = FE®L". Thench(F) = ch®?(E). In particular, we have

w? chy (F) = wchy(F) = 0.

By [SIm92, Thm. 2] (see also [Lan09b, Thm. 4.1] for an alg@ébpoof), ch3(F) = 0,

and sachy (F) = 0, as wanted. m
Let £ be as in the Proposition, and assudg, z(E) = 0 andw?ch?(E) > 0. Then

Conjecturé 3.2]7 is satisfied and the inequality of Conjetiu3.1 becomes an equality:

w? w?

chZ(E) — - chP(E) < chd(E) - 8 ch?(E)

1 — — _
- W (Aw,3<E> — 2Aw71(E)Aw72(E)) = 0.

8. EXAMPLES

In this section we discuss Conjectlre 3.2.6 in some exarfaessing on the case of
the projective space.

8.1. Atechnical result. Let X be a smooth projective threefold and I&tw € NSq(X)
with w ample. We consider slightly more central central chargesigi: for s € Q,
define

Zyps(—) = (— Chf(—) + sw? ch’f(—)) +1 (w Ch2B(—) _ Y chgg(—)) )
We haveZ, g = Z, B,1/2-

Proposition 8.1.1.LetC ¢ D®(X) be a heart of a bounded t-structure with the following
properties:

(a) there existy, € (0,1) andsy € Q such that
Z,,50(C) C{rexp(ngi) : 7 >0, g < b < o+ 1}.

(b) C Cc (A, B, AuBl[1]).
(c) for all z € X, we havek(x) € C and, for all proper subobject§' — k(z) in C,
%Z%B(C) > 0.
Then the pai(Z, 5 5, A, ) is a stability condition orD"(X), for all s > .

Proof. To simplify the notation, we put; = Z, 5 ; andA = A, 5. By Corollary(5.2.4
and Lemmé&5.2]1, to prove th@f,, A) is a stability condition it will be enough to prove
thatiRZ,,(T") < 0, whereT" is the abelian subcategory df, defined in LemmBa5.2.1, of
objects inA with $Z,, 5 = 0. Assume, for a contradiction, this is not the case. Then, by
Lemmab.2.1, there exists a simple objéce 7' with RZ,, (F) > 0. If RZ,,(F) = 0,
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then, fromw? ch?(F) < 0, we deduce thakZ,(F') < 0, for all s > so. Hence, we can
assume that there existse 7' with RZ,,(F) > 0.

By Proposition 2.312, assumptidn (b) implies tidas a tilt of A. Consider the torsion
pair on.A induced byC:

T:=ANC
F:=An(C[-1]).

By assumptiont(a), for all simple objedtse 7' with Z,,(E) # 0, we have

e L e TifandonlyifRZ, (E) < 0.
e [ c Fifandonlyif RZ,,(F) > 0.

Indeed, by Lemm&’5.2.1, a simple object/it has no proper subobject iA, and so it
belongs either tg or to F.

Hence,FF € F N T'. SinceF is simple,Hom(F, k(z)) = Hom(k(x), F) = 0. By
Proposition’4.316 and Remakk 414.2, up to replacingvith FV[3] (and B with —B),
we can assume th&fom(k(z), F[1]) # 0, for all z € D, whereD is a divisor in X.
Consider a non-zero morphisift k(z) — F[1] andker(f),cok(f),im(f) € C. By
assumption{(c), iker(f) # 0, then3Z,, (ker(f)) > 0. Hence 3 Z;,(im(f)) < 0, and so
SZs,(cok(f)) > 0. SinceC is a tilt of A, A is a tilt of C as well. Consider the induced
torsion pair orcC:

T =Cn(A[1])
F=CnA.

Then F[1] € T'. But 7" is closed under quotients. This givesk(f) € 7', and so
S Zs,(cok(f)) > 0, a contradiction.
Therefore, we have an exact sequencé in

0 — k(z) = F[1] = Qo[1] — 0,

for someQ),[1] € C. Since@) is then an extension df(x) by F, it also belongs to4.
Hence,Qy € AN (C[-1])) = FandZ,,(Qo) = Zs,(F) — 1. But, fory € D, y # «z,

we haveHom(k(y), Qo[1]) # 0. We can repeat the previous argument and construct a
sequence of),, € F, m € N, with

ZSO(Qm) = ZSO(Qm—l) —-l1=...= ZSO(F) —m—1

But, form > 0, Z,, (@) < 0, a contradiction t@),,, € F. O
In the next section, we will apply Proposition 8/1.1 togetwih Propositiori 7.4]1 to
give some examples in which Conjectlre 3.2.6 is verified.
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8.2. The projective space.Consider the projective spad. For simplicity, let us fix
B =0, so thatch” = ch. ldentifying Numg(PP?) with Q®* in the obvious way, we define
the central charg&s! for s € Q,t € Q- by

7 =) = (= chz(=) + schy(=)) + i (chy(=) — t1k(-)).

The central charg€,,, of equation[(R) corresponds to the choices ef %2 s = “72 up
to an overall multiplication of the imaginary part af, 5 by w™'. (The last operation is
part of the@fJg(R)-action on the set of stability conditions defined(in [Bri0@hd does
not affect the set of stable objects.)

Givent € Q, consider the abelian categod, = A, for ¢t = %2 constructed as
before—the only difference is that we only assumido be a rational number. Conjecture
[3.2.6 then reads as follows: The pdir*‘, A;) is a Bridgeland stability condition on
DP(P?) for s = 3t. Our goal is to use Propositidn 8.11.1 to prove a strengtigenin
Conjecturé 3.2]6 in this case:

Theorem 8.2.1.Lets, ¢ € Q be suchthat < ¢ < 1 and
- t—2
6(t+1)
Then the paif Z*!, A;) defines a stability condition on®(P3).

Sinces = 3t satisfies the above inequality for< ¢ < 1, this proves Conjectufe 3.2.6
for w < v/3. Moreover:

Remark 8.2.2. The strong Conjectufe 1.3.1 for givenand B = 0 holds if and only if
the pair(Z**, A;) defines a stability condition for = % ands = L. Indeed, with this
choice, a tilt-stable object& € B, with v, o(E) = 0 satisfy Z**(E) > 0 if and only
if chy(E) < sch;(E) = £ ch,(E). Sincel > 62;% for ¢ < 3, Theoreni8.2]1 actually
proves the strong Conjecture for< /3.

Notice that, for(s,t) = (1/6,1/2), we haveZ'/%1/2(Ops(1)) = 0, and so, by Lemma
[8.2.3 below, the functio&/'/2 does not define a stability condition.

To prove Theorerh 8.2.1, recall that, by a classical resuBeifinson, onD"(P?) we
have a boundetistructure with heart given by

C = <OHJ>3(—1)[3], O]ps [2], Ops(l)[l], O]ps (2»
An easy computation shows the following:

Lemma 8.2.3. Assumé < ¢t < 1/2 and
-2
6(t+1)

(45) <5<1/6.
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Then the paiog = (7!, Pg) = (Z*!,C) defines a stability condition oh"(P?). The
skyscraper sheavégz), r € P?, are o,-stable of phase 1.

Proof. (Theorem 8.2]1) Let, be a rational number satisfying the inequalitled (45). We
want to apply Proposition 8.1.1 t6°°*, A,, andC. First of all, assumptionsi(a) and (c) in
Propositior 8,111 follow directly from Lemnia8.2.3, whefg := X arg Z*(Op:(1)) €
(0,1) is the phase 0®p:(1). Hence, we only need to sholM (b). But, as an easy conse-
quence of Propositidn 7.4.1, we have that the following csjare inA;:

o Op(k), fork > 1,
[ J O]}D3 [1],
o Ops(k)[2], fork < —1.
Hence, sinc€ is the category generated by extensionghy(—1)[3], Ops[2], Ops(1)[1],
andOps(2), we have
C C (A, Ai1]),

as wanted (see Figuré 3). O

FIGURE 3. Tilting A.

Remark 8.2.4. Notice that, if 4, denotes the tilt of given by
Ay = Po((0,1]),

then, for0 < ¢t < 1/2, we have4, = ﬂt. Moreover, this shows the existence of stability
conditions onD®(P3) for all irrationalt ands satisfying inequalities (45).
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Remark 8.2.5. The proof given in this section is in principle generalizatu other three-
folds admitting a strong full exceptional collection. Anagmple is the quadric threefold
ig : @ — P Denote byS the spinor vector bundle of [KapB8], defined by an exact
sequence

0 — Opi(—1)%* = O — (ig).S — 0.
Then, for example, we have a strong full exceptional catbect

{0q(—1),5(-1),0q, 0q(1)},

whereOg(1) := Ops(1)|. Identify Pic(Q)) = Z with generator the hyperplane section
hg, and setB = —1hq. By considering the heart

C = (0q(—-1)[3], S(=1)[2], Og[1], Oq(1)),
we have, by Propositidn 8.1.1, that, 5 is a stability condition for® < —-. (Indeed,

124/3°
all line bundles belong tol, 5 up to shift by Propositioh 7.4.1 ant{ —1)[1] € A, 5 by

our choice ofB. The rest is precisely the same argument as in Thebrenj)s.2.1.
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