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Abstract 

The synthesis of six bimetallic dimethyl aluminum anilido-aldimine complexes, active for the ring opening 

polymerization of rac-lactide, is reported. An efficient synthetic route to these ligands utilizing isolated 

lithium amide salts allows for the synthesis of novel cyclohexylamide-substituted ligands, as well as 

improving the yields of diisopropylphenylamino-substituted ligands, with both ethyl and propyl backbones. 

Less sterically encumbered methylamide-substituted ligands were prepared through the condensation of ortho-

methylaminobenzaldehyde with the appropriate diamine. A monometallic intermediate species, L(AlMe2), 

was isolated and crystallographically characterized, illustrating the preference these ligands display for 

bis(bidentate) coordination. L(AlMe2)2 complexes 8-13 are efficient mediators of the ring opening 

polymerization of rac-lactide, with solution polymerizations displaying first-order rate constants, molecular 

weights very close to the theoretical values and polydispersity indexes as low as 1.07. 

 

1. Introduction 

A recent adaptation of the classic phenoxyimine ligand framework has been the N-only donor ligands coined 

the anilido-aldimines. Replacing the anionic alkoxide donor with an amido functionality has offered different 

steric and electronic tunability in these systems, however their application and scope remain largely 

underdeveloped. Ligand frameworks include bidentate [1-3], tridentate [4-7] and bis(bidentate) [8-11] 

systems, as shown in Figure 1. 

 

Figure 1. Anilido-aldimine ligands and complexes. 
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These ligands have been applied to some specialty applications. Dialkylaluminum complexes supported by 

bidentate ligands exhibit tunable fluorescence in solution and solid state [2], while rare-earth yttrium, 

scandium and lutetium complexes supported by tridentate ligands were tested as catalysts for the ring-opening 

polymerization of ε-caprolactone and L-lactide, exhibiting high activity but only moderate control [4-5]. 

Magnesium and zinc complexes incorporating tridentate ligands were more effective, polymerizing both ε-

caprolactone and L-lactide with polydispersities (PDIs) of 1.1-1.2 [6]. Bis(bidentate) complexes of zinc, 

mimicking the β-diketiminato complexes developed by Coates et al. [12], have been used successfully to 

control the copolymerization of epoxides and carbon dioxide [8-9]. Similar bis(bidentate) aluminum and zinc 

complexes are active catalysts for the living ring opening polymerization of ε-caprolactone [11].
 

Our interest in this ligand set arises from their close relationship to the salen ligand. Aluminum salen 

complexes were first reported by Spassky et al. and promoted a moderate isotactic bias for the polymerization 

of lactide (Pm = 0.68) [13]. Increased steric bulk improved the isospecificity of the polymerization, with Pm 

values as high as 0.88 when a 2,4-di(tert-butyl)phenol was used [14]. The steric bulk proximal to the active 

site has been suggested to be the determining factor in promoting chain-end control of polymer tacticity [14-

15]. Continued efforts to improve the design of lactide polymerization catalysts is an essential area for growth 

in polymer science as systems with improved activity or stereocontrol are crucial in developing commercially 

relevant, sustainable and degradable alternatives to petroleum-derived polymeric materials. In this vein, it was 

envisaged that moving the bulky R’ substituents from the ortho-substituted aromatic rings of the salen ligand 

to the amido donor of an anilido-aldimine framework would improve isospecificity (Figure 2).
 

 

 

Figure 2. Proximity of substituent R’ to the metal centre in salen and anilido-aldimine type ligand 

frameworks. 

 

2. Materials and Methods 

2.1 General experimental procedures. All chemicals and solvents were obtained from Sigma Aldrich in the 

highest available purity unless otherwise stated. Purasorb D,L-lactide and L-lactide (PURAC Biomaterials) 

were sublimed under vacuum three times prior to use. 2,6-diisopropylaniline (90%), benzyl alcohol (99%) and 

cyclohexylamine were dried over calcium hydride and distilled under a nitrogen atmosphere prior to use. 



Page 3 of 18 

N,N’-bis[(2-fluorophenyl)methylene-1,2-ethanediamine [11], N,N’-bis[(2-fluorophenyl)methylene-1,3-

propanediamine [10] and ortho-methylaminobenzaldehyde [16] were prepared via previously published 

procedures. Dry, reagent grade pentane, tetrahydrofuran and toluene were collected from an Innovative 

Technologies solvent purification system, consisting of columns containing alumina and a copper catalyst. 

Acetonitrile was dried over calcium hydride and freshly distilled as needed. All solvents were degassed by 

three consecutive freeze-pump-thaw cycles prior to use. Air-sensitive syntheses were performed in an MBraun 

Labmaster glovebox equipped with a -35°C freezer and [O2] and [H2O] analyzers or under a nitrogen 

atmosphere on a dual manifold Schlenk line utilizing standard Schlenk techniques. 
1
H and 

13
C NMR spectra 

were collected on a 300 MHz Bruker Avance Spectrometer. GPC analyses were performed on a PolymerLabs 

GPC50 system equipped with two Jordi Gel DVB mixed bed columns (300mm × 7.8mm) and a refractive 

index detector. Samples were dissolved and eluted in HPLC grade THF at a flow rate of 1 mL min
-1

 at 50°C. 

Molecular weights were measured and corrected relative to styrene standards [17]. Elemental analyses were 

conducted by Guelph Analytical Laboratories. Crystals of 7 and 9 were grown by precipitation from an 

acetonitrile solution at -35°C. Single crystals were coated in Paratone-N oil, mounted using a polyimide 

MicroMount and frozen in the cold nitrogen stream of the goniometer. A hemisphere of data was collected on 

a Bruker AXS P4/SMART 1000 diffractometer using ω and θ scans with a scan width of 0.3° and 30 s 

exposure times. The detector distance was 5 cm. The data were reduced (SAINT) [18] and corrected for 

absorption (SADABS) [19]. The structure was solved by direct methods and refined by full-matrix least 

squares on F
2
(SHELXTL) [20] with graphics processed using ORTEP [21]. For 7, the crystal was a multiple 

twin and the major component determined. One of the atom positions was disordered and the site occupancies 

determined using an isotropic model at 0.5 (N(3), N(3’)) and fixed in subsequent refinement cycles. 

 

2.2 Synthesis 

2.2.1 Ligand Synthesis 

Synthesis of N,N’–bis[(2-(2,6-diisopropylphenylamino)benzylidene)]-1,2-ethanediamine (1). 3.50 g (19.7 

mmol) of 2,6-diisopropylaniline (177.29 g mol
-1

) was dissolved in 12 mL of tetrahydrofuran. To this stirred 

solution was added 12.4 mL (19.7 mmol) of n-butyllithium (1.6 M solution in hexanes) dropwise. Evolution 

of heat and gas was observed. Reaction contents were allowed to stir at room temperature for 12 h, at which 

point an off-white solid was observed. This precipitate was collected by vacuum filtration and utilized without 

further purification. Yield: 3.25 g (90%). 3.25 g (17.7 mmol) of lithium 2,6-diisopropylanilide (183.22 g mol
-

1
) was added to 40 mL of THF to create a reaction slurry. This mixture was placed in an addition funnel and 

stored prior to use. Concurrently, 2.19 g (8.1 mmol) of N,N’-bis[(2-fluorophenyl)methylene-1,2-

ethanediamine was dissolved in 5 mL of THF in a 125 mL Erlenmeyer flask and cooled to -35°C. The 

LiC12H18N slurry was then added dropwise to this stirred and chilled solution resulting in the formation of a 
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deep red solution. The reaction was sealed under nitrogen and allowed to stir at room temperature for 12 

hours. Under an open atmosphere, 20 mL of N2-sparged deionized water was added dropwise to the reaction 

mixture forming an orange suspension. The mixture was poured into a separatory funnel and extracted 3 times 

with hexanes (100 mL). The organic phase was collected and dried in vacuo to yield a yellow oil which was 

recrystallized from acetonitrile to afford a white product. C40H50N4 (586.40 g mol
-1

) Yield: 3.56 g (75%). 

Anal. Calcd for C40H50N4: C, 81.87 H, 8.59; N, 9.55. Found: C, 81.74; H, 8.99; N, 9.35. 
1
H NMR (300 MHz, 

CDCl3, 25°C) δ: 10.47 (s, 2H, NH), 8.39 (s, 2H, HC=N), 7.33-7.20 (m, 4H Ar-H), 7.10 (m, 2H, Ar-H), 7.03 

(m, 2H, Ar-H), 6.55 (m, 4H, Ar-H), 6.16 (m, 2H, Ar-H), 3.90 (s, 4H, CH2CH2), 3.07 (s, 4H, CH3CHCH3), 

1.27 (dd, 24H, CH3, 5.8 Hz, 3.6 Hz). 
13

C NMR (75 MHz, CDCl3, 25°C) δ: 161.0, 142.3, 138.8, 132.1, 131.3, 

127.7, 125.8, 124.4, 123.1, 119.1, 115.7, 62.3, 28.5, 23.5, 23.3. 

Synthesis of N,N’–bis[(2-(2,6-diisopropylphenylamino)benzylidene)]-1,3-propanediamine (2). Ligand 

precursor 2 was prepared analogously to 1 with 3.50 g (19.7 mmol) of 2,6-diisopropylaniline (177.29 g mol
-1

), 

12.4 mL (19.7 mmol) of n-butyllithium (1.6 M solution in hexanes) and 2.32 g (8.1 mmol) of N,N’-bis[(2-

fluorophenyl)methylene-1,3-propanediamine. C41H52N4 (600.88 g mol
-1

) Yield: 3.94 g (81%). Anal. Calcd for 

C41H52N4: C, 81.95 H, 8.72; N, 9.32. Found: C, 81.75; H, 8.90; N, 9.35.  
1
H NMR (300 MHz, CDCl3, 25°C) δ: 

10.42 (s, 2H, NH), 8.42 (s, 2H, HC=N), 7.33 (m, 2H Ar-H), 7.17 (m, 2H, Ar-H), 7.00 (m, 2H, Ar-H), 6.58 (m, 

4H, Ar-H), 6.24 (m, 2H, Ar-H), 3.90 (m, 4H, CH2CH2CH2), 3.07 (m, 4H, CH3CHCH3), 2.22, (p, 2H, 

CH2CH2CH2, 6.8 Hz, 13.7 Hz), 1.27 (dd, 24H, CH3, 5.9 Hz, 3.7 Hz). 
13

C NMR (75 MHz, CDCl3, 25°C) δ: 

162.3, 144.7, 138.6, 132.3, 131.3, 128.3, 125.4, 124.6, 123.6, 119.4, 116.1, 62.5, 32.6, 28.9, 23.8, 23.5. 

Synthesis of N,N’–bis[(2-(cyclohexylamino)benzylidene)]-1,2-ethanediamine (3). Ligand precursor 3 was 

prepared analogously to 1 with 5.50 g (55.5 mmol) of cyclohexylamine (99.17 g mol
-1

), 34.7 mL (55.5 mmol) 

of n-butyllithium (1.6 M solution in hexanes) and 3.21 g (11.8 mmol) of N,N’-bis[(2-fluorophenyl)methylene-

1,2-ethanediamine. The crude red oil (3.50 g, 80% purity) was loaded on a packed alumina column (25 g) 

pretreated with 50 mL of 1% (v,v) solution of triethylamine (NEt3) and hexane. The product was eluted with 

hexanes (300 mL) to afford an analytically pure yellow oil. C28H38N4 (430.31 g mol
-1

) Yield: 2.04 g (40%). 

Anal. Calcd for C28H38N4: C, 78.10 H, 8.89; N, 13.01. Found: C, 78.04; H, 9.01; N, 12.95.  
1
H NMR (300 

MHz, CDCl3, 25°C) δ: 9.44 (br s, 2H, NH), 8.37 (s, 2H HC=N), 8.00 (m, 2H, Ar-H), 7.39 (m, 2H, Ar-H) 6.70 

(m, 2H, Ar-H) 6.57 (m, 2H, Ar-H) 3.48 (s, 4H, CH2CH2) 2.56 (m, 2H, NHCHC5H10), 2.00-1.05 (m, 20H, 

2(C5H10)). 
13

C NMR (75 MHz, CDCl3, 25°C) δ: 162.0, 149.6, 133.8, 133.4, 117.3, 114.6, 113.8, 61.9, 61.2, 

33.4, 26.7, 25.1. 

Synthesis of N,N’–bis[(2-(cyclohexylamino)benzylidene)]-1,3-propanediamine (4). Ligand precursor 4 

was prepared analogously to 1 with 5.50 g (55.5 mmol) of cyclohexylamine (99.17 g mol
-1

), 34.7 mL (55.5 

mmol) of n-butyllithium (1.6 M solution in hexanes) and 3.38 g (11.8 mmol) of N,N’-bis[(2-

fluorophenyl)methylene-1,3-propanediamine. The crude red oil (3.00 g, 70% purity) was loaded on a packed 

alumina column (25 g) pretreated with 50 mL of 1% (v,v) solution of triethylamine (NEt3) and hexane. The 
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product was eluted with hexanes (300 mL) to afford an analytically pure yellow oil. C29H40N4 (444.33 g mol
-1

) 

Yield: 1.57 g (31%). Anal. Calcd for C29H40N4: C, 78.33 H, 9.07; N, 12.60. Found: C, 78.41; H, 9.10; N, 

12.49. 
1
H NMR (300 MHz, CDCl3, 25°C) δ: 9.41 (s, 2H, NH) 8.34 (s, 2H, HC=N) 7.98 (m, 2H, Ar-H) 7.18 

(m, 2H, Ar-H) 6.67 (m, 2H, Ar-H) 6.56 (m, 2H, Ar-H) 3.11 (m, 4H, CH2CH2CH2) 2.55 (m, 2H, NHCHC5H10), 

2.07-1.14 (m, 22H, CH2CH2CH2 and (C5H10)2). 
13

C NMR (75 MHz, CDCl3, 25°C) δ: 161.7, 149.8, 134.5, 

133.2, 117.7, 114.2, 113.6, 62.3, 61.6, 33.1, 33.0, 26.5, 25.4. 

Synthesis of N,N’–bis[(2-(methylamino)benzylidene)]-1,2-ethanediamine (5). A solution of o-

aminobenzaldehyde (3.22 g, 24 mmol) in MeOH (50 mL) was stirred at ambient temperature as 1,2-

diaminoethane (0.72 g, 12 mmol) was added dropwise. The yellow solution was heated to reflux for 1.5 h and 

then stirred at room temperature overnight. The off-white precipitate was collected and recrystallized from 

MeOH/CHCl3 to yield a white solid, 2.04 g, 58%. Anal. Calcd for C18H22N4: C, 73.44; H, 7.53; N, 19.03. 

Found: C, 73.55; H, 7.64; N, 18.96. 
1
H NMR (300 MHz, CDCl3): δ 8.91 (br s, 2H, NH), 8.37 (s, 2H HC=N), 

7.28 (m, 2H, Ar-H), 7.21 (m, 2H, Ar-H), 6.63 (m, 4H, Ar-H), 3.86 (s, 4H, CH2CH2) 2.84 (d, 6H, 
2
JNH = 5, 

CH3) ppm. 
13

C NMR (75 MHz, CDCl3): δ 165.4 (HC=N), 150.3, 117.1 (Ar Cq), 133.9, 131.5, 114.2, 109.5 (Ar 

C-H), 62.4  (CH2), 29.2 (CH3) ppm.  

Synthesis of N,N’–bis[(2-(methylamino)benzylidene)]-1,3-propanediamine (6). Prepared as for 5 using o-

aminobenzaldehyde (2.00 g, 15 mmol) and 1,3-diaminopropane (0.55 g, 7 mmol) to yield 1.51 g, 66%. Anal. 

Calcd for C19H24N4: C, 73.99; H, 7.84; N, 18.17. Found: C, 74.05; H, 8.00; N, 18.25. 
1
H NMR (300 MHz, 

CDCl3): δ 8.97 (br s, 2H, NH), 8.36 (s, 2H HC=N), 7.28 (m, 2H, Ar-H), 7.20 (m, 2H, Ar-H), 6.66 (m, 4H, Ar-

H), 3.67 (t, 4H, 
3
JHH = 7, CH2CH2CH2) 2.94 (d, 6H, 

2
JNH = 5, CH3), 2.08 (pentet, 2H, 

3
JHH = 7, CH2CH2CH2) 

ppm. 
13

C NMR (75 MHz, CDCl3): δ 164.8 (HC=N), 150.4, 117.3 (Ar Cq), 133.9, 131.5, 114.4, 109.7 (Ar C-

H), 59.5, 33.1 (CH2), 29.5 (CH3) ppm.  

 

2.2.2. Aluminum complex synthesis 

Synthesis of [1]AlMe2 (7). AlMe3 (3.0 mL, 1.0 M in toluene, 2.1 mmol) was added dropwise to a solution of 

1 (1.76 g, 3.0 mmol) in 20 mL of toluene at −78°C. The reaction mixture was held at this temperature for 1 h 

and then allowed to warm to room temperature and transferred via cannula into an ampoule. The ampoule was 

sealed under nitrogen and stirred at 80°C for 12 h, forming a clear yellow solution. Removal of solvent in 

vacuo produced a yellow paste that was recrystallized from acetonitrile to afford 5 in moderate yield. 

C42H55AlN4 (642.89 g mol
-1

) Yield: 1.20 g, 62%. 
1
H NMR (300 MHz, CDCl3, 25°C) δ: 10.29 (br, 1H, NH), 

8.47 (s, 1H, CH=NAr), 8.10 (s, 1H, CH=NAr), 7.30-6.01 (m, 14H, Ar-H), 3.96 (s, 2H, NCH2), 3.65 (s, 2H, 

NCH2), 3.45 (m, 2H, CHCH3), 3.32 (m, 2H, CHCH3), 1.54 (d, 12H, CH3CH), 1.25 (d, 12H, CH3CH), −0.84 (s, 

6H, AlCH3).
 13

C NMR (75 MHz, CHCl3, 25°C) δ: 165.7, 157.0, 142.5, 137.0, 136.1, 133.9, 131.8, 129.1, 

128.9, 128.7, 128.5, 126.3, 126.1, 116.0, 115.5, 115.0, 114.7, 69.4, 67.2, 28.7, 28.5, 23.6, 23.3, -8.3.  
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Synthesis of [1](AlMe2)2 (8). 1.00 g (1.71 mmol) of 1 was dissolved in 3 mL of toluene, in a glass ampoule 

equipped with magnetic stir bar. To this stirred solution was added 1.71 mL of trimethylaluminum (TMA, 2.0 

M solution in heptane), dropwise with stirring. Heat and evolution of gas was observed. The glass ampoule 

was sealed, removed from glovebox and allowed to stir at 110°C for 24 h. The volatiles were removed under 

reduced pressure to reveal an impure orange solid. Washing with pentane gave the aluminum complex in high 

yield. C44H60NAl2N4 (698.44 g mol
-1

) Yield: 0.89 g (75%). Anal. Calcd for C44H60Al2N4: C, 75.61; H, 8.65; N, 

8.02. Found: C, 75.60; H, 8.47; N, 8.04. 
1
H NMR (300 MHz, C6D6, 25°C) δ: 7.67 (s, 2H, HC=N), 7.37-7.06 

(m, 8H, Ar-H), 6.82 (d, 2H, Ar-H, 9.0 Hz), 6.34 (t, 2H, Ar-H, 7.0 Hz) 3.90 (s, 4H, CH2CH2), 3.48 (m, 4H, 

CH3CHCH3), 1.48 (d, 12H, CH3, 7.0 Hz), 1.18 (d, 12H, CH3, 7.0 Hz), -0.33 (s, 12H, Al-CH3).  
13

C NMR (75 

MHz, C6D6, 25°C) δ: 161.0, 142.3, 138.8, 132.1, 131.3, 127.7, 125.8, 124.4, 123.1, 119.1, 115.7, 62.3, 28.5, 

23.6, 23.3, -9.1. 

Synthesis of [2](AlMe2)2 (9). Prepared as for 8, using 1.00 g (1.66 mmol) of 2 and 1.66 mL of TMA in 3mL 

of toluene. C45H62Al2N4 (712.46 g mol
-1

) Yield: 0.97 g (82%). Anal. Calcd for C45H62Al2N4: C, 75.81; H, 8.77; 

N, 7.86. Found: C, 75.61; H, 8.51; N, 7.75. 
1
H NMR (300 MHz, C6D6, 25°C) δ: 7.57 (s, 2H, HC=N), 7.35-

7.10 (m, 8H, Ar-H), 6.94 (d, 2H, Ar-H, 9 Hz), 6.43 (t, 2H, Ar-H, 7.0 Hz), 3.90 (m, 4H, CH2CH2CH2), 3.50 (m, 

2H, CH2CH2CH2), 3.17 (m, 4H, CH3CHCH3), 1.48 (d, 12H, CH3, 7.0 Hz), 1.18(d, 12H, CH3, 7.0 Hz), -0.34 (s, 

12H, Al-CH3). 
13

C NMR (75 MHz, C6D6, 25°C) δ: 162.3, 144.7, 138.6, 132.3, 131.3, 128.3, 125.4, 124.6, 

123.6, 119.4, 116.1, 62.5, 32.6, 28.9, 23.8, 23.5, -9.1. 

Synthesis of [3](AlMe2)2 (10). Prepared as for 8 using 1.00 g (2.32 mmol) of 3 and 2.32 mL of TMA in 3 mL 

of toluene. C32H48Al2N4 (542.71 g mol
-1

) Yield: 0.82 g (65%). Anal. Calcd for C32H48Al2N4: C, 70.82; H, 8.91; 

N, 10.32. Found: C, 71.00; H, 8.69; N, 10.50.  
1
H NMR (300 MHz, C6D6, 25°C) δ: 7.57 (s, 2H, HC=N), 7.22-

7.14 (m, 4H, Ar-H), 6.84 (d, 2H, Ar-H, 8 Hz), 6.42 (t, 2H, Ar-H, 7 Hz), 3.48 (s, 4H, CH2CH2) 2.56 (m, 2H, 

NHCHC5H10) 2.00-1.05 (m, 20H, (C5H10)2), -0.17 (s, 12H, Al-CH3). 
13

C NMR (75 MHz, C6D6, 25°C) δ: 

162.0, 149.6, 133.8, 133.4, 117.3, 114.6, 113.8, 61.9, 61.2, 33.4, 26.7, 25.1, -5.1. 

Synthesis of [4](AlMe2)2 (11). Prepared as for 8 using 1.00 g (2.25 mmol) of 4 and 2.25 mL of TMA in 3mL 

of toluene. C33H50Al2N4 (556.74 g mol
-1

) Yield: 0.85 g (68%). Anal. Calcd for C33H50Al2N4: C, 71.19; H, 9.05; 

N, 10.06. Found: C, 71.25; H, 9.20; N, 9.96. 
1
H NMR (300 MHz, C6D6, 25°C) δ: 7.57 (s, 2H, HC=N), 7.22-

7.14 (m, 4H, Ar-H), 6.84 (d, 2H, Ar-H, 8 Hz), 6.42 (t, 2H, Ar-H, 7 Hz), 3.48 (m, 4H, CH2CH2CH2), 3.22 (m, 

2H, CH2CH2CH2), 2.56 (m, 2H, NHCHC5H10) 2.00-1.05 (m, 20H, 2(C5H10)), -0.17 (s, 12H, Al-CH3).
 13

C 

NMR (75 MHz, C6D6, 25°C) δ: 161.7, 149.8, 134.5, 133.2, 117.7, 114.2, 113.6, 62.3, 61.6, 33.1, 33.0, 26.5, 

25.4, -10.4. 

Synthesis of [5](AlMe2)2 (12). 0.50 g (2 mmol) of 5 was dissolved in 15 mL of toluene, in a glass ampoule 

equipped with magnetic stir bar. 1.18 g of trimethylaluminum (TMA, 2.0 M solution in heptane) was added 

dropwise, with stirring. Heat and evolution of gas was observed. The glass ampoule was sealed, removed from 
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glovebox and allowed to stir at 110°C for 24 h. The volatiles were removed under reduced pressure to yield an 

orange residue which was washed with pentane, filtered and dried under vacuum to give a yellow precipitate. 

Yield: 0.41 g, 69%. Anal. Calcd for C22H32Al2N4: C, 65.01; H, 7.93; N, 13.78. Found: C, 65.30; H, 8.04; N, 

13.95.
1
H NMR (300 MHz, CDCl3) δ: 7.86 (s, 2H, HC=N), 7.33-7.28 (m, 2H, Ar-H), 6.95 (dd, 2H, 

3
JHH = 8, 

4
JHH = 2, Ar-H), 6.72 (d, 2H, 

3
JHH = 8, Ar-H), 6.39 (m, 2H, Ar-H), 3.81 (s, 4H, CH2CH2), 2.91 (s, 6H, N-CH3), 

-0.70 (s, 12H, Al-CH3) ppm.  
13

C NMR (75 MHz, CDCl3) δ: 171.7 (HC=N), 157.7, 115.2 (Ar Cq), 137.4, 

137.0, 113.4, 113.2 (Ar C-H), 56.7 (CH2), 33.1 (NCH3), -9.0 (Al-CH3) ppm.  

Synthesis of [6](AlMe2)2 (13). Prepared as for 12 using 0.30 g (1 mmol) of 6 and 0.67 g (2 mmol) of TMA in 

10 mL of toluene. Yield 0.19 g, 41%. Anal. Calcd for C23H34Al2N4: C, 65.69; H, 8.15; N, 13.32. Found: C, 

65.73; H, 8.24; N, 13.46. 
1
H NMR (300 MHz, CDCl3) δ: 7.96 (s, 2H, HC=N), 7.37-7.31 (m, 2H, Ar-H), 7.08 

(dd, 2H, 
3
JHH = 8, 

4
JHH = 2, Ar-H,), 6.72 (d, 2H, 

3
JHH = 9, Ar-H), 6.47 (m, 2H, Ar-H), 3.60 (t, 4H, 

3
JHH = 8, 

CH2CH2CH2), 2.88 (s, 6H, N-CH3), 2.20 (pentet, 2H, 
3
JHH = 8, CH2CH2CH2), -0.75 (s, 12H, Al-CH3) ppm.  

13
C 

NMR (75 MHz, CDCl3) δ: 170.4 (HC=N), 157.6, 120.5 (Ar Cq), 137.2, 136.8, 115.3, 113.2 (Ar C-H), 55.2, 

31.1 (CH2), 33.1 (NCH3), -9.2 (Al-CH3) ppm.  

 

2.3 Lactide Polymerization 

0.020 g of the desired precatalyst (8-13), 2.00 molar equivalents of benzyl alcohol and 200 molar equivalents 

of rac-lactide were added to an oven-dried ampoule charged with a magnetic stir bar and 3 mL of toluene 

when appropriate. The ampoule was sealed and heated to 120°C (bulk polymerization) or 70°C (solution 

polymerization) with stirring for the desired period of time. The ampoule was cooled to room temperature and 

the resulting viscous mixture was dissolved in a 10:1 v:v dichloromethane:methanol solution. Once fully 

dissolved, the solution was left to stir at ambient temperature for 30 min and then precipitated by dropwise 

addition of the solution into 100 mL of cold methanol. The resulting white precipitate was filtered and dried in 

vacuo to constant weight. Samples were analyzed by 
1
H{

1
H} NMR spectroscopy and gel-permeation 

chromatography. 

 

3. Results and Discussion 

Six potentially tetradentate anilido-aldimine ligands were targeted in this study, containing 2,6-

diisopropylphenyl, cyclohexyl or methyl substituents on the amine donors and ethyl or propyl chains bridging 

the imine functionalities. Proligands 1-4 were synthesized by modifying previously reported procedures [10-

11], with the fluorinated precursors first prepared via the acid-catalyzed condensation of 2-

fluorobenzaldehyde and the appropriate diamine. Controlled addition of lithium 2,6-diisopropylphenylamide 

or lithium cyclohexylamide to the fluorinated precursor at −35°C promoted a metathesis reaction, forming the 
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desired products in good yield. Of note, isolation of the lithium amido intermediates was important to 

maximize ligand yields. This route was unsuccessful for the synthesis of N-methyl substituted ligands, as the 

reaction of the fluorinated precursors with lithium methylamide yielded a complex mixture of products which 

could not be separated. Proligands 5 and 6 were successfully prepared through modification of a literature 

procedure [16], through the condensation of ortho-methylaminobenzaldehyde with the appropriate diamine. 

The general reaction scheme for ligand synthesis is outlined in Scheme 1. 

 

 

Scheme 1. Synthesis of substituted anilido-aldimine ligands 1-6.  

 

Purification of 1-4 was challenging, as the solubility of both the ligand and fluorinated precursor precluded a 

rapid filtration and washing methodology. Slow recrystallization of 1 and 2 from acetonitrile afforded these 

desired ligands in good yields, while cyclohexyl derivatives 3 and 4 were purified on alumina columns 

pretreated with a 1% v/v solution of triethylamine (NEt3) in hexanes to limit ligand binding to the alumina. 

Ligands 5 and 6 were more straightforward to purify and were recrystallized from a methanol/chloroform 

mixture. 
1
H and 

13
C NMR spectroscopy confirmed product formation and purity, particularly noted by the 

presence of the NH peak at δ 10.4 ppm (1, 2), δ 9.4 ppm (3, 4) and δ 8.9 ppm (5, 6). In the case of 1-4, an 

upfield shift of the imine signals from  8.6 ppm in the fluorinated precursors to ~ δ 8.4 ppm in the anilido-

aldimine proligands was also observed, whereas the appearance of the imine resonances at δ 8.4 ppm 

confirmed the formation of 5 and 6. 
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Aluminum complexes supported by these ligands were prepared via protonolysis of the proligand and 

trimethylaluminum (TMA). Initial experiments focused on a 1:1 ratio of 1:TMA. This reaction gave a mixture 

of products at high (110°C) and ambient temperatures. Careful interpretation of the 
1
H NMR spectrum of 

crude reaction products suggested that the major product was a bimetallic complex, (L)(AlMe2)2. Other 

products included free ligand and an unknown aluminum-containing species. Lowering the reaction 

temperature to −78°C allowed for isolation of the monometallic compound after recrystallization from 

acetonitrile. NMR and X-ray crystallographic characterization showed that [1]AlMe2, 7, had formed: the 

ligand prefers a bidentate coordination mode, with a free pendant arm. A similar structure was prepared 

purposefully as an intermediate in the preparation of heterobimetallic complexes [22]. The molecular structure 

for 7 is shown in Figure 3 while relevant bond lengths, angles and crystallographic parameters are given in 

Tables 1 and 2. Repeated attempts to grow crystals which would yield a higher quality molecular structure 

were unsuccessful. 

 

 

 

 

 

Figure 3. ORTEP drawing (spheroids at 50% probability) of [1]AlMe2, 7. Hydrogen atoms omitted for clarity. 
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Table 1. Selected bond lengths and angles for 7 ([1]AlMe2). 

Atoms Length (Å) Atoms Angle (°) 

Al(1)-N(1) 1.9292(18) N(1)-Al(1)-C(1) 110.23(8) 

Al(1)-N(2) 1.8881(18) N(1)-Al(1)-C(2) 104.12(10) 

A1(1)-C(1) 1.958(3) N(2)-Al(1)-C(1) 115.16(10) 

A1(1)-C(2) 1.967(3) N(2)-Al(1)-C(2) 117.58(10) 

N(1)-C(21) 1.295(3) N(2)-Al(1)-N(1) 94.38(8) 

N(1)-C(22) 1.468(3) C(1)-Al(1)-C(2) 112.82(13) 

N(2)-C(3) 1.449(2) C(3)-N(2)-Al(1) 115.25(12) 

N(2)-C(15) 1.369(3) C(15)-N(2)-Al(1) 127.07(13) 

N(3)-C(23) 1.52(4) C(15)-N(2)-C(3) 117.65(16) 

N(3)-C(24) 1.15(3) C(21)-N(1)-Al(1) 123.84(15) 

N(4)-C(25) 1.430(3) C(21)-N(1)-C(22) 118.50(18) 

N(4)-C(37) 1.378(3) C(22)-N(1)-Al(1) 117.25(14) 

C(16)-C(21) 1.429(3) C(24)-N(3)-C(23) 123.0(3) 

C(22)-C(23) 1.506(4) C(24)-(N3’)-C(23) 113.0(2) 

  C(37)-N(4)-C(25) 122.54(17) 

 

Table 2. Crystallographic data and details for 7 ([1]AlMe2).
 

Empirical Formula C42H55AlN4 Formula weight 642.88 

Crystal system Monoclinic Space group P21/c 

a, b, c (Å)  13.496(2), 13.913(3), 20.820(5) 

α, β, γ (°)                           90, 99.431(2), 90 

V, Å
3
 3856.7(13) Total reflections 25597 

Z 4 Unique reflections 8584 

Dcalc, mg m
-3

 1.107 Parameters 437 

Wavelength, Å 0.71073 R1
a
 0.1010 

T, K 173(1) wR2
b
 0.1701 

θ range (°) 1.53 to 27.50° Goodness-of-fit 1.052 
a
R1 = Σ (Fo-Fc)/Σ Fo 

b
wR2 = (Σw(Fo

2
-Fc

2
)

2
/Σ(wFo

4
)

1/2 

 

As expected, the Al(1)-N(2) bond is shorter than the Al(1)-N(1) bond, confirming the stronger amido-

aluminum bond. The imine bond length is short, although significantly elongated by ~0.15 Å when compared 

to the unbound imine fragment. Bond angles reveal that chelation of the ligand to the aluminum centre causes 

a pinching of the ligand framework and a narrowing of the bond angles. This results in a distorted tetrahedral 

geometry around the aluminum, exemplified by the small N(2)-Al(1)-N(1) bite angle of 94.38(8)°. 
1
H NMR 

spectroscopy confirms both the monometallic nature of the complex and the pendant arm in solution. Further 

attempts with 1 and 2-6 to isolate a tetradentate aluminum complex [L]AlMe by controlling reaction 

temperatures, times and concentrations were unsuccessful. 

Exclusive formation of the bimetallic complexes [L](AlMe2)2 (8-13) is readily achieved by altering the 

reagent ratio to 1:2 ligand:TMA, greatly improving reaction yields. The complexes are shown in Figure 4. 

Complex 8 has been previously reported and crystallographically characterized [11]. For complex 9, crystals 

were grown from a saturated acetonitrile solution and analyzed by single crystal X-ray crystallography. The 
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molecular structure for 9 is shown in Figure 5 while relevant bond lengths, angles and crystallographic 

parameters are given in Tables 3 and 4. The symmetry observed in the crystal structure ensures the two 

aluminum centres, and thus catalytically active sites, are equivalent. The bidentate coordination of the anilido-

aldimine ligand is maintained, linked by the flexible aliphatic chain to give the bimetallic product. The bond 

lengths and angles around the metal centres in 9 are nearly unchanged from the monometallic structure 7 and 

are also similar to related and previously published complexes [10-11]. 

 

 

Figure 4. Bimetallic aluminum complexes 8-13. 

 

 

 

 

Figure 5. ORTEP drawing (spheroids at 50% probability) of [2](AlMe2)2, 9. Hydrogen atoms omitted for 

clarity. 
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Table 3. Bond lengths and angles for 9 ([2](AlMe2)2). 

Bond Length (Å) Bond Length (Å) 

N(1)-Al(1) 1.8918(14) N(1)-Al(1)-N(2) 95.15(2) 

N(2)-Al(1) 1.9482(15) N(1)-Al(1)-C(1) 114.35(8) 

Al(l)-C(1) 1.963(2) N(1)-Al(1)-C(2) 115.45(8) 

Al(1)-C(2) 1.965(2) N(2)-Al(1)-C(1) 112.55(9) 

N(2)-C(21) 1.293(2) N(2)-Al(1)-C(2) 104.90(8) 

N(1)-C(15) 1.365(2) C(1)-Al(1)-C(2) 112.70(11) 

N(1)-C(3) 1.445(2) C(15)-N(1)-Al(1) 127.65(11) 

N(2)-C(22) 1.481(2) C(3)-N(1)-Al(1) 113.89(11) 

C(22)-C(23) 1.512(3) C(21)-N(2)-Al(1) 123.78(12) 

C(16)-C(21) 1.436(2) C(22)-N(2)-Al(1) 117.76(13) 

 

Table 4. Crystallographic data for 9, [2](AlMe2)2. 

Empirical Formula C45H62Al2N4 Formula weight 712.95 

Crystal system Orthorhombic Space group Pbcn 

a, b, c (Å)  15.7648(16), 17.2749(17), 15.2425(15) 

α, β, γ (°)                           90, 90, 90 

V, Å
3
 4151.1(7) Total reflections 27336 

Z 4 Unique reflections 4742 

Dcalc, mg m
-3

 1.141 Parameters 355 

Wavelength, Å 0.71073 R1
a
 0.0676 

T, K 173(1) Rw
b
 0.1339 

θ range (°)   1.75 to 27.50 Goodness-of-fit 1.123 
a
R1 = Σ (Fo-Fc)/Σ Fo 

b
wR2 = (Σw(Fo

2
-Fc

2
)

2
/Σ(wFo

4
)

1/2 

 

Synthesis of the cyclohexylamido substituted complexes 10 and 11 suggest an even higher propensity to 

favour the bimetallic complex, despite their reduced steric demands. Reactions of 3 and 4 with one equivalent 

of TMA showed mixtures of products, including the bimetallic complexes, even at low temperatures. Similar 

results were obtained when using the least sterically encumbered ligands 5 and 6, with bimetallic complexes 

12 and 13 the major product under all attempted reaction conditions. Synthesis of 10-13 was improved 

through the use of 2:1 TMA:ligand ratios and high temperatures, affording the desired bimetallic complexes in 

moderate yields. Diagnostic resonances, such as the AlCH3 signal at  −0.17 ppm, and accurate integration 

supported this assignment. Reaction progress was monitored over time by observing the loss of the NH 

resonance at  9.4 ppm in the 
1
H NMR spectra. While the desired monometallic complexes could not be 

isolated, six bimetallic aluminum alkyl complexes were prepared and tested for the controlled ring-opening 

polymerization of rac-lactide. Interestingly, bimetallic catalysts have been shown to offer improved activity 

and control over lactide polymerization [23], although reduced stereocontrol would be expected from the more 

open active site. 

Polymerizations were initiated by the addition of benzyl alcohol, forming the aluminum alkoxide in situ, and 

were carried out in toluene at 70°C and in molten lactide at 120°C. Lactide:initiator:catalyst ratios of 200:2:1 
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were used under the presumption that one active, growing chain per metal centre was the steric limit for these 

systems. Results are summarized in Table 5. Polymerizations with 7 were uncontrolled and exhibited 

extremely broad, multimodal PDIs, which can be attributed to the presence of an alternate initiating site on the 

pendant ligand arm. 

 

Table 5. Polymerization data for bimetallic anilido-aldimine aluminum catalysts (8-13) with rac-lactide.
a 

Catalyst Temp (°C) Time (hr) Conv. (%) Mn,GPC
 

Mn,th PDI 

8 70 16 67 9010 9594 1.17 

9 70 16 60 9123 8592 1.25 

10 70 16 82 11244 11742 1.23 

11 70 16 65 9034 9308 1.37 

12 70 16 66 7324 9322 1.07 

13 70 16 58 6780 8701 1.07 

8 120 3 82 18626 9447 1.59 

9 120 3 85 30539 9792 1.64 

10 120 3 86 16132 9908 1.47 

11 120 3 78 26507 8986 1.49 

12 120 3 81 11834 11416 1.58 

13 120 3 91 10175 13590 1.56 
a 
Lactide:benzyl alcohol:catalyst ratio of 200:2:1 employed. GPC molecular weights measured and corrected 

relative to styrene standards [17]. 

 

Neat polymerizations of lactide mediated by 8-13 are rapid but lack control. High polydispersities and 

molecular weights are indicative of poor catalyst stability and activity at these high temperatures. However, 

the same catalysts offer good control over the ROP of rac-lactide in toluene at 70°C, reaching moderate to 

high conversions in 16 h. Attempts to extend these reactions to higher conversions led to eventual catalyst 

degradation and transesterification of the polymer. No induction period was noted, suggesting the initial 

protonolysis reaction between the aluminum alkyl species and benzyl alcohol to form the desired alkoxide 

initiator is rapid relative to propagation in each case. Cyclohexyl-substituted ethyl-bridged catalyst 10 

achieved the highest conversions under these conditions. All catalysts displayed living characteristics for these 

polymerizations, as evidenced by linear plots of Mn vs. conversion with R
2
 values higher than 0.98 and low 

polydispersities. A typical plot is shown in Figure 6. 
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Figure 6. Plot of Mn versus conversion for the solution polymerization of rac-lactide at 70°C by [3](AlMe2)2, 

10. Solid line represents theoretical molecular weights. 

 

The rates of polymerization for these reactions, kobs, were also determined. Plotting ln(Mo/Mt) versus time for 

each kinetic run further supported the living nature of these catalysts, but also revealed that little productive 

polymerization occurs after 16 h of reaction time. Rates ranged from 1.64 × 10
-5

 s
-1

 for 9 to 2.80 × 10
-5

 s
-1

 for 

10. Interestingly, the rates for the ethyl-bridged catalysts were significantly higher than their propyl-bridged 

counterparts, a trend opposite to that observed in monometallic aluminum salen systems [14]. A representative 

plot is given in Figure 7. The rates of these catalysts are significantly lower than for the fastest aluminum 

salen initiators which possess first order rate constants in the range of 10
1
 s

-1
, a six-order of magnitude 

decrease in our system [24]. 

 

 

Figure 7. Plot of ln(Mo/Mt) versus time for the solution polymerization of rac-lactide at 70°C by [3](AlMe2)2, 

10.  
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In all cases these bimetallic aluminum catalysts (8-13) were found to possess no capacity for tacticity control 

in the polymerization of rac-lactide. The selectively decoupled 
1
H NMR spectra of the resultant PLA revealed 

the presence of the five possible tetrads arising from rac-lactide, characteristic of an atactic chain. The steric 

influence of the diisopropylphenyl, cyclohexyl and methyl substituents proximal to the metal centre, coupled 

with the change in ligand electronics, hinders the formation of monometallic aluminum complexes. This 

promotes the formation of bimetallic aluminum complexes that, while active for polymerization, do not 

possess the sterically inhibited active site required to promote tacticity control. The open coordination sphere 

around the metal centre also means that the growing polymer chain is not affected by changes to the ligand 

framework, resulting in very similar ROP data for complexes 8-13. 

 

4. Conclusions 

An improved synthetic procedure for the synthesis of anilido-aldimine ligands has been reported. Use of the 

isolated lithium amide salts in the metathesis reaction significantly improves the yield of 2,6-

diisopropylphenylamino-substitued ligands, from the previously reported 40% to ca 80%. This new route has 

been used to successfully synthesize two novel ligands, with cyclohexylamino substituents. Less sterically 

encumbered ligands 5 and 6, with methylamino substituents, were prepared in good yields utilizing the 

literature method previously reported for 5. The synthesis of monometallic methyl aluminum complexes was 

unsuccessful; however, the bimetallic dimethyl aluminum complexes 8-13 were prepared in excellent yields, 

with complex 9 characterized through X-ray crystallography. Complexes 8-13 are active catalysts for the ROP 

of rac-lactide, with the initiators prepared in situ through the addition of benzyl alcohol. Bulk polymerizations 

at 120°C are rapid but show poor control, with molecular weights which are much higher than theoretical 

values and broad PDIs. Solution polymerizations at 70°C reveal excellent control over both molecular weights 

and PDIs, with the living nature of the polymerizations illustrated through linear Mn vs conversion plots. 

Rates are first-order in monomer, with rate constants of 1.64-2.80 × 10
-5

 s
-1

. Current efforts to target 

monometallic aluminum complexes of anilido-aldimines by varying the ligand’s steric influence continue. 
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