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The Uruguayan engineer Eladio Dieste developed an

innovative construction method for wide-span roof

structures. Known as Gaussian vaults, their double-

curved geometry is based on the catenary resulting in

mainly axial compressive forces. Whereas most thin

wide-span roofs have been built using concrete, Dieste

used brick, and unlike traditional masonry vaults, they

are only one brick-layer in thickness. Typically the vaults

have a low rise, the span-to-rise ratio is normally 8–10

and buckling is the likely mode of failure. Dieste used the

curved surface of the vaults to resist buckling and

developed design procedures to ensure their safety. In

the present paper a brief background to Dieste’s work is

presented including his methods of analysis and the

application is considered with reference to one of his

larger projects, the warehouse at the docks in

Montevideo, with a span of 45 m. Through an iterative

mathematical procedure, Dieste formulated the critical

loads of catenary arches into graphs. The method is

compared with a finite-element study, which also

considers the elastic deformations under self-weight,

asymmetric loading owing to wind and ultimate failure

owing to buckling.

1. INTRODUCTION

Throughout the 20th century engineers have been responsible

for the development of many structural forms and innovative

uses of materials that soon became noted for architectural

qualities as well as their efficient and resourceful materials and

construction technology. The Swiss engineer Robert Maillart

(1872–1940) for example early in the 20th century

demonstrated that careful and intuitive structural design could

combine economy of means with great elegance in the

construction of slender concrete arch bridges.1 Later in the

century the Italian engineer Pier Luigi Nervi (1891–1978) made

innovations in ferro-cement and construction techniques that

led to many long-span structures with a fine filigree quality,

such as the Palazzo dello Sport in Rome.2 Eduardo Torroja

(1895–1961) created many innovative structures, perhaps most

notably the asymmetric barrel vaults of Fronton Recoletos,3

but he also worked in the dissemination of shell design by

forming the Institute for Shell and Spatial Structures. In his

influential book Philosophy of Structure4 he discussed the role

of structure in architecture, based on his belief that the visual

and architectural qualities of structures should never be

ignored in design.

The Uruguayan engineer Eladio Dieste (1917–2000) is a less

well-known figure, but is nevertheless deserving of equal

recognition. Dieste graduated in engineering from the

University of Montevideo in 1943 with an ambition: ‘I am very

passionate about the possibility of understanding reality by

means of a physical-mathematical language’.5 At this time in

Uruguay, although still defined as a developing country, there

was a strong intellectual and cultural community. Dieste was

clearly influenced by this and sought to apply his engineering

skills to meet the needs of his country. Throughout his work,

he looked for solutions that suited the limited economic

resources of Uruguay and he constantly tried to ‘contemplate

each problem independently, keeping in mind the conditions of

our circumstances and environment’.6

Although many of the techniques and innovations in shell

construction and prestressed concrete pioneered by European

engineers were finding their way to South America, Dieste

turned to a traditional material, brickwork and developed new

forms of construction that satisfied the needs of modern

building: accuracy, efficiency in materials, prefabrication,

reliability in performance and analytical rigour. More than this,

he sought for a form of architectural expression that would

counter the perception in the use of brick as a ‘poor man’s’

substitute for concrete. In his own words, ‘For architecture to

be truly constructed the materials should not be used without a

deep respect for their essence and consequently their

possibilities.’7 Dieste saw brick as a material that could be used

in overtly modern forms that belied its traditional origins.

Dieste also had a strong belief in the relationship between

structure and architecture and its expression, this belief being

legible throughout his work and his writings: ‘The resistant

virtues of structures that we make depend on their form; it is

through their form that they are stable and not because of an

accumulation of materials. There is nothing more noble and

elegant from an intellectual viewpoint than this; resistance

through form.’7

Dieste’s structures are interesting from a range of perspectives:

for the purely technical; as an exploration of a structural

philosophy; for the beauty of their architectural expression;

and for their often ingenious construction techniques. Dieste’s

innovations include single- and double-curvature vaults,

known respectively as free-standing barrel vaults and Gaussian

vaults. His firm, Dieste y Montañez, designed and constructed

many such structures across South America, over 1.5 million
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square metres of building. The present paper is concerned with

the most sophisticated of his innovations, the Gaussian vault, a

very thin shallow vault of a catenary cross-section, with a

typical span-to-rise ratio of 10. The thinness of the vault over

relatively long spans renders the vault sensitive to buckling.

The development of these structural forms is discussed, and in

particular the analytical method Dieste developed for

calculating their buckling resistance. Dieste’s method is

compared with a finite-element (FE) study of one of his most

notable projects, the J. Herrera y Obes Warehouse in

Montevideo (1977–79).5,8 The FE study also considers

additional aspects not covered in Dieste’s analysis such as

asymmetric windload and deformation.

2. THE DEVELOPMENT OF THE GEOMETRY OF THE

VAULTS

Like most engineers of the period Dieste was familiar with

reinforced concrete shell construction, on which he worked

early in his career. His interest in brick developed from his

collaboration with the Spanish Architect Antonio Bonet on the

design of a private house (Casa Berlinghieri) where he replaced

the intended concrete shell with a thin brick vault. From this

point onwards Dieste studied the contemporary application of

structural brickwork leading to the development of a range of

thin brick vaulting systems. These construction systems were

derived from structural principles associated with the geometry

of the catenary.

The catenary describes the form that a suspended cable will

adopt owing to its self-weight. It is a form-active geometry,

where all the forces are axial tension (Fig. 1). Inverting the

cable will describe the geometry of a similarly form-active arch

structure where the forces are axial compression owing to the

self-weight. Catenary geometry can be found using physical

models, seen in the work of Antoni Gaudı́, Frei Otto and Heinz

Isler among others,9 particularly for three-dimensional

surfaces. Other methods of defining a catenary include graphic

methods, see Zalewski and Allen10 or mathematical forms

using the catenary equation (equation (1)).

y ¼ T0

w0
cosh

w0x

T0
� 1:0

� �
1

where w0 is the self-weight of the cable and T0 is the force in

cable at mid-point.

Dieste constructed a large number of barrel vault structures

using the catenary cross-section. Typically such vaults have

span-to-rise ratios of 4–5 and the compressive stresses owing

to self-weight are low. Dieste took advantage of the significant

depth of these vaults to act as long-span beams often with

large cantilever spans, called free-standing barrel vaults. (Figs

2 and 3). These spans were possible only through the

development of innovative prestressing techniques, which

Dieste invented. More information on these remarkable

structures is given in Pedreschi5 and Anderson.8 The low span-

to-rise ratios keeps the stresses below the level that would

cause concerns for buckling. It also, however, limits the

practical span between abutments, otherwise excessively high

vaults would result. If the span-to-rise ratios increase then the

stresses in the vault increase (Fig. 4); even at span-to-rise ratios

of 10 the axial compressive stresses are still low. The

slenderness of the vault has also, however, increased by a

factor of 6. The problem becomes one of resisting buckling.

Reactions

Geometry of cable

y

x

Geometry of arch

Reactions

y �
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WoX
cosh � 1·0� �

Fig. 1. Geometry of the catenary

Fig. 2. Free-standing barrel vault, Salto Uruguay (V. del Amo)

Fig. 3. Free-standing barrel vault (V. del Amo)
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Fig. 4. Influence of span-to-rise ratio on the forces in a
centenary arch
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The method adopted by Dieste is to ‘resist through form’ and

hence he created an innovative doubly curved undulating

surface with maximum undulation at the mid-span of the

vault, effectively increasing the moment of inertia and hence

increasing the buckling resistance (Fig. 5). The geometry of the

Gaussian vault is defined by a series of catenary curves of

varying rises. The name ‘Gaussian’ is taken from the

mathematician Karl Gauss (1777–1855), noted for his

description of the geometry of curved surfaces. The curves

share a common springing point, defined normally by the walls

of a building. Each curve can be seen as being contained

within an imaginary vertical plane whose baseline straddles the

springing points. If this plane moves along the axis of the

building and the rise of the catenary increases then a curved

surface is defined with maximum undulation along the central

axis of the building reducing to no undulations at the

springing points. Every transverse section between the

springing points has a catenary geometry.

These structures have been used in many buildings in spans up

to 50 m. The thickness of the vault is kept to a minimum,

always only one brick or masonry unit with a topping of

30 mm coarse sand and cement. Reinforcement is placed in the

joints between the bricks and a light mesh is incorporated in

the topping. The formwork for the vault is a major element in

its own right and is only economic if used repeatedly. Typically

the vaults appear as a series of waves (Fig. 6). Depending on

the weather, the formwork can be struck as soon as 24 h after

completing the vault. In large projects the formwork for one

wave is constructed as a single element, sitting on rails, and is

moved along the building from vault to vault (Fig. 7).

Through many projects Dieste was able to develop and perfect

the techniques to design and construct the vaults. Each project

provided insights into the next (Fig. 8), and the growing

confidence and experience led to many large projects such as

the Fruit Market, Porto Alegre, Brazil. The total project is in

excess of 50 000 m2 and includes the Growers Pavilion, 290 m

long with a span of 47 m.

3. METHODS OF ANALYSIS

The critical condition for the Gaussian vault is one of buckling.

As stated earlier, Dieste was keen to exploit theoretical

methods of analysis in the design of structures and he

developed appropriate design methodologies. He presented

these procedures in two short books.11,12 The following

description of the problem of the elastic instability of Gaussian

vaults of double curvature and the calculation methods has

been prepared from a translation of the original Spanish by the

second author of the present paper. Initially the instability of

single-curvature catenary arches of constant section under

their own self-weight dead load is examined by forming the

equation of the thrust line and evaluating the critical load by

means of an iterative solution.

A catenary arch AB of a total length S ¼ 2‘ is considered (Fig.

9). The arch is considered to buckle following the dotted line

and the critical load qcr will be evaluated. At a generic point D

at a length
�!
CD ¼ x from the apex C, y is the ordinate of the

thrust line, r is the curvature and j is the hoop angle (varies

Size of caternary
curves of varying
rise

Vertical plane
moving along
spring points

Fig. 5. Geometry of Gaussian vault

Fig. 6. Gaussian vault under construction (Dieste Archive)

Fig. 7. Formwork for Gaussian vault

Fig. 8. Gaussian vaults, Porto Alegre, Brazil (Dieste Archive)
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from 0 at the apex to j0 at the springing of the vault) and it is

assumed that y � ‘.

If the axial force at D is N, the equivalent moment owing to

the offset y is then M ¼ +Ny. If rc is the radius of curvature at

the apex and q the distributed load per unit length of the arch,

then the thrust, H ¼ rcq. In a catenary

N cosj ¼ H , N ¼ rc
cosj

q2

From the geometry of the arch,

x ¼ �!
CD ¼ rc

sinj
cosj

and

x2 þ r2c
r2c

¼ 1

cos 2j

therefore

rc
cosj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2c

p

and consequently

N ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2c

p
3

The radius of curvature of the undeformed arch r0 at point D is

r0 ¼
rc

cos 2j
¼ x2 þ r2c

rc
4

The simplified equation of the thrust line for a curved beam

can be expressed as

y

r20
þ y 0 ¼ � M

EI
,

d2 y

dx2
¼ � q

EI
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2c

p
� r2c y
(x2 þ r2c )2

5

where EI is the flexural stiffness of the arch or curved beam. If

the following property, ª is defined as

ª ¼ 1

tanj0
6

then rc ¼ ª‘. Also, if v ¼�!
AD then x ¼ ‘� v and if u ¼ v=‘,

then equation (7) becomes

d2 y

du2
¼ � �y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ª2 þ (1� u)2

p

� ª2 y

[ª2 þ (1� u)2]2

7

with u 2 [0, 2] and

� ¼ q‘3

EI
8

The problem then can be summarised as: for a given arch

(defined by its length ‘ and a value for ª that represents the

springing angle j0 in equation (6)) � can be evaluated and

therefore the critical load qcr , equation (8). In a manner similar

to the instability problem of axially loaded columns, the

quantity � is obtained from the boundary conditions in

equation (7), which are y ¼ 0 at the locations u ¼ 0 and u ¼ 2

(bases) and at u ¼ 1 (apex). This approximation is usually true

as it was assumed that y � ‘, y9 � 1 and r0 � y ffi r0.

The differential equation (7) is integrated by means of a

numerical/graphical method. A value for ª is chosen and then

for every � a value for y at the support B is calculated (yB),

which in general should not be 0. The values of yB are then

plotted and the roots of the equation yB(�) are evaluated
graphically. The thrust lines for the first three roots are

illustrated in Fig. 10. Dieste observed that for the solutions

corresponding to

(a) �1 (Fig. 10(a)): the corresponding minor value for qcr is not

correct as it represents buckling where y is either entirely

positive or negative—that is, the original length increases;

this is incompatible with the flexural buckling assumptions

that the length remains constant

(b) �2 (Fig.10(b)): this value gives an acceptable shape

(c) �3 (Fig. 10(c)): although mathematically correct, it is more

probable the arch may have already buckled under the

lower load corresponding to �2.

As a result, the value for � is �2: Dieste evaluated values of �
for every ª following this procedure and formed a series of

curves shown in the diagram in Fig. 11, discussed below.

x

N
C

ϕ

ϕ

H

A

l /2� S D

y

ϕ0

B

Fig. 9. Buckling of catenary arch under self-weight12
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The foregoing analysis assumes constant moment of inertia, I.

In the Gaussian vault I varies between maximum at crown and

minimum at support. If the masonry is assumed to be made of

solid units, the moment of inertia I in each cross-section can be

evaluated from the expression

I ¼ ‘s th
2

8
þ bt3

12
9

where ‘s is the length of the cross-section, t is the thickness of

the shell and h is the amplitude of the undulation (Fig. 12).

ı ¼ Icrown

Isupport
10

The charts in Fig. 11 combine �, j0 and �. Modifying the

procedure established for uniform arches, qcr can be calculated

from equation (8): I is the value at the supports, ª in equation

(6) results from the average springing angle j0 of all the

directrices and a family of curves can then be calculated (Fig.

11) in terms of the variable � that is used to define the change

in the cross-section (equation (10)).

Dieste also developed an alternative method for calculating the

critical buckling load using virtual displacements and

successive approximations. This method is more rigorous and

takes more detailed account of the variable cross-section

geometry of the vaults, and predicts slightly higher buckling

loads.12

4. THE GAUSSIAN VAULTS AT THE J. HERRERA Y

OBES (JHO) WAREHOUSE, MONTEVIDEO DOCKS

(1977–1979)

The design and construction of the Gaussian vault will be

considered in more detail with reference to the above project.

The warehouse was originally constructed with load-bearing

brick walls and a steel barrel vault roof. The roof was

destroyed by a major fire in 1977. Dieste’s firm won the

competition to rebuild the warehouse. Unlike most of the

other entries, which proposed complete demolition and

reconstruction, Dieste recommended retention and repair of

the walls and a new Gaussian vault for the roof. The overall

dimensions are 79 m by 46 m. The roof consists of a series of

14 discontinuous vaults (Fig. 13). The geometry of each vault

can be determined by

applying the catenary

equation (equation (1)) at

various sections as

previously described. The

cross-section of the vault at

mid-span is shown in Fig. 14

and glazing is installed in

the discontinuity between the

vaults (Fig. 15). The

underside of the vault

diffuses the natural light to

provide pleasant ambient

lighting conditions. The

inside distance between the

side walls varied by as much

as 300 mm along the length

of the building. To maximise

the efficient use of the

formwork this variation was

taken up by an in situ

concrete edge beam, which

itself varied to provide a

consistent distance between

the springing points of the

vaults. The vaults are

sensitive to horizontal

movement at the reactions

and the beam was also
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Fig. 11. Design charts for buckling of catenary arches12
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Fig. 10. Buckling modes for vaults12
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necessary to provide a stiff lateral support and anchorage for

the pre-tensioned tie rods, used to contain the lateral thrust

from the vaults. Each vault spans 44.74 m and is 5.68 m wide,

with the span-to-rise ratio varying between 7 and 10. The

vault is constructed using a single layer of extruded hollow

clay blocks 100 mm deep, known as ‘ticholos’ and topping to

provide an overall thickness of 130 mm. Reinforcement is

placed both transversally and longitudinally within the joints

between the units. The joints are filled with a 1:2.5 cement–

sand mortar. The sand used is coarse, similar in grading to

sharp concrete sand and the mortar has a higher compressive

strength than conventional bricklaying mortar, typically 20 N/

mm2. Dieste expresses the form of the vaults at the gables,

using glazing to separate the vault from the walls, making

clear that the vault does not rely on these walls for stability

(Fig. 15). Owing to the early striking times of the vault the

most significant loading condition occurs during transfer of

self-weight as the formwork is lowered while the masonry is

still developing strength.

The critical buckling load for the vault can be predicted using

Dieste’s methods. The geometric properties are: average

springing angle, j0 ¼ 258, second moment of area of the vault

at the supports, Isupport ¼ 0.00104 m2 and Icrown ¼ 0.0706 m2 .

Therefore, u ¼ 68, and from Fig. 11, � ¼ 78. Dieste used a

value of 7000 N/mm2 for the elastic modulus.12 He obtained

the value of elastic modulus from tests on prototype vaults.

The value is consistent with other studies of the elastic

modulus for brickwork with relatively low-strength bricks.13

The critical buckling load is obtained from equation (8) using

Isupport. The buckling load qcr is 45.44 kN/m. The self-weight of

the masonry is taken as 16 kN/m3 and, if the cross-section of

the vault is considered as 5.68 m by 0.13 m, produces a linear

load of 11.8 kN/m. The factor of safety against collapse is,

therefore, 3.85.

5. FE STUDY OF JHO WAREHOUSE

Dieste’s method was compared with the results of a finite-

element analysis (FEA). A model of the vault was constructed

using the FE package Abaqus14 and used to study the vault

under static loads and buckling. Self-weight and asymmetric

wind loads were applied to the model. The geometry of the

vault was taken from the setting-out drawings for the

formwork supplied by Dieste y Montañez. A single vault was

modelled in its entirety using four node shell elements of

(S4R5) type. The nodes used to generate the FE mesh were the

same as those used by Dieste in the construction of the vault’s

crown, 29 uniformly spaced nodes between the apex and the

support and 18 nodes in the transverse direction. The spacing

of the transverse nodes was refined in the area of the lowest

catenary, where variation in stresses was likely to be greatest.

Pinned conditions were applied at the supports. Although

brickwork is a non-linear, anisotropic material for the purposes

of the FE study it was considered as homogeneous and linear

elastic; this assumption is justified for the masonry as the

stresses are low in relation to the compressive strength of the

masonry. Figures for the compressive strength of the actual

brickwork are not available. The compressive strength of

brickwork is greatly influenced by the brick strength, the

mortar grade orientation of the applied compressive forces and

the shape of the prism. The first author of the present paper has

carried out extensive tests on brickwork13 and it is unlikely the

b

h

ls

t

Fig. 12. Second moment of area of cross-section of Gaussian
vault

Fig. 13. The JHO warehouse at Montevideo Docks (Dieste
Archive)

2·20 m

A

B

130 mm

Glazing

C

5·68 m

Fig. 14. Cross-section of JHO vault at crown

Fig. 15. Junction between gable and the vault, JHO
Warehouse
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the compressive strength is less than 8 MPa. In order to

compare with Dieste’s own methods it was important to use the

same elastic properties, namely elastic modulus 7000 N/mm2

and Poisson ratio 0.15.

The behaviour of the vault under self-weight was analysed.

This corresponds to the striking of the formwork when the

load is transferred from the formwork to arching action of

the vault. It is the most onerous loading condition, being

applied after only one to two days of curing. The stiffening

effect of the topping was ignored in the analysis as it has

low elastic modulus at this stage of construction and is

primarily intended to provide weathertightness. The analysis

shows that the stresses are compressive and low in

comparison with the likely compressive strength of the

masonry, the maximum stress, 1.48 N/mm2 occurring at the

springing. Fig. 16 presents the variation of axial force along

three separate sections following the directix, corresponding

to the lower free edge, section A, the lowest catenary curve,

section B and the highest catenary curve, section C (Fig. 14).

The catenary section with greatest rise, section C, has a near

uniform axial force, gradually increasing towards the

supports, verifying the catenary behaviour of the vaults.

Along section A, the lower side edge of the vault, the

compressive stresses are greater than either section C or B

and gradually decrease towards the support. Along section B,

the lowest catenary, the stresses are least at the crown and

then increase towards the support. The stresses at the support

are slightly lower for section A than section B, although the

situation at the crown is reversed. If considered as

independent catenaries then section B, the shallowest curve,

should have the greater axial stress through its length. Table

1 compares the results of the FE analysis with the

compressive stresses calculated assuming independent

catenaries for the three sections, A, B and C, using equation

(1). The calculated force at the crown for section A, the free

edge, is considerably lower than predicted by the FE model

while the calculated force at the crown of section B, the

lowest rise, is greater than predicted by the FE model. There

is clearly a redistribution of forces around the crown of the

vault, which illustrates the influence of the transverse

curvature of the vault as it stiffens the shallowest section at

the crown; while section A, with a free edge, has less

support, the forces at the crown are considerably greater than

predicted by the catenary analysis. The calculated results for

section C, the section with the greatest rise, are very close to

the results from the FEA. The FEA can also provide the

deflections that Dieste’s theory does not predict. At the

crown the deflection varies across the vault with a maximum

of 14.2 mm at the outer edge of the cross-section, or 1/3160

of the span, to a minimum deflection at the highest point,

(where the catenary section is the deepest), of 7.7 mm, Fig.

17. The vault, therefore, twists slightly along the directrix

with a relative deflection of 6.5 mm across the crown.

A buckling analysis under self-weight was performed by

applying the elastic instability process in Abaqus to the FE

model. The program resolves the eigenvalue buckling problem

by performing a linear perturbation analysis and estimates the

critical buckling loads of stiff structures—that is, those

structures that carry their design loads primarily by axial or

membrane action, rather than by bending action.14 The

response of the model to instability is defined by its linear

elastic stiffness in the base state, ignoring non-linear material

behaviour. The analysis produces the eigenvalues for the

loading conditions and these coincide with the factor of safety

against buckling. In this case, the eigenvalues for the first three

modes under self-weight are 4.37, 4.54 and 8.76 (where the

vault is considered to buckle along its main axis) and the first

buckling mode is shown in Fig. 18. These values validate the

analysis by Dieste’s methods, which predicted a factor of safety

of 3.85.
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Fig. 16. Variation of axial force along vault
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Fig. 17. Variation of deflection along vault owing to self-weight

Section Rise of
catenary: m

Forces at crown: kN Forces at support: kN

Catenary
equation

Finite
element

Catenary
equation

Finite
element

A 4.707 113.2 151 123 137
B 4.201 123.8 108 132 132
C 6.507 83.0 85 97 100

Table 1. Comparison of forces in vault between catenary equation and FEA
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A further condition of asymmetric load was studied. The

Gaussian vault takes its form from its own self-weight and the

internal forces are primarily axial. Asymmetric load creates

non-axial forces and bending along the directrix. In Uruguay

the temperature very rarely falls below zero and snow loading

is not considered in structural design. Wind load is the

predominant load condition. The design wind speed for coastal

locations in Uruguay is 158 km/h (similar to the design wind

speeds in Scotland). Considering wind load on a shallow vault

it is important to use a loading pattern that generates the most

critical deformations. Melbourne15 suggests the use of external

pressure coefficients Cpe of �0.5 and +0.4 to the windward and

leeward sections respectively of shallow curved vaults. A

conservative loading pattern based on the design wind speed

for Uruguay is a net upward pressure of 0.6 kN/m2 on one side

of the vault and a net downward pressure of 0.5 kN/m2 on the

other side. The FEA includes the self-weight of the vault. The

deflections along section B, the lower catenary, are presented

in Fig. 19. The vault is pushed to one side with maximum

deflections occurring at approximately one quarter of the span

from each support. Thus half of the vault is moving upwards

and the windward side of the vault is being pushed

downwards. The deflections are still relatively low, given the

span of the vault, 66 mm, or a span/deflection ratio of 675. The

stresses along the directix for sections A, B and C are presented

in Fig. 20. Sections B and C are in compression along their full

length but some tension occurs along the lower free edge on

the leeward face of the vault, which concentrates only over a

small portion of the vault around the crown. These small

tensile stresses would be carried by the reinforcement in the

joints and the light steel mesh in the topping. Neither the

reinforcement nor the topping was included in the analysis. A

buckling check for these conditions was also undertaken and

the eigenvalue for the first mode is 3.69. The buckling failure is

shown in Fig. 21.

6. SUMMARY AND CONCLUSION

Eladio Dieste developed and used the Gaussian vault in many

projects during a long career. The undulating geometry of the

vault is intended to resist buckling, while providing maximum

efficiency in use of materials. The catenary geometry of the

vaults ensures that the brickwork is under axial compression

owing to its own self-weight. One of the longest-span vaults,

the warehouse at Montevideo docks has been studied in the

present paper. Using Dieste’s own methods a factor of safety

against elastic buckling failure of 3.85 was obtained. Using

FEA and the same elatic properties a factor of safety of 4.37

against buckling was obtained—slightly higher that Dieste’s.

The FEA has also validated the use of the catenary geometry as

the stresses under self-weight are quite close to those predicted

using the catenary equation although some redistribution of

stresses occurred in the lower catenary around the crown of the

vault. The vault tends to twist around the crown although the

deflections are low. The vault was also analysed under

conditions of asymmetric wind load. The vault tends to deform

sideways with some twisting and the deflections are greater

than under self-weight only but they are still comparatively

low. Under this extreme loading condition the stresses in the

vaults remain primarily in compression except towards the

lower free edge on the leeward side of the vault. The factor of

safety against elastic buckling is 3.69 and is still within the

acceptable limits.
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Fig. 19. Deflection along section B owing to asymmetric wind
loads
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Fig. 18. Buckling of vault under self-weight
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On the basis of the analysis it is difficult to envisage further

refinement to the vault. Using masonry the minimum thickness

is a function of the masonry unit and the vault is only one unit

in thickness. The vault could be made shallower or the

undulation at the crown reduced, leading to a comparatively

small saving in materials. However this is likely to lead to a

marked reduction in factor of safety below an acceptable limit

for this type of construction.

The work of Eladio Dieste is visually exciting and rightly

regarded for its architectural importance. However it is much

more than this. The slenderness of the vault, the use of the

doubly curved surface as a device for both stability and

expression, the use of brickwork in an entirely non-traditional

manner, the development of analysis methods, supported with

practical experience and observation are the products of a truly

outstanding and visionary engineer.
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