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Minireview

Rodent Models for Human Polycystic Ovary Syndrome1

Kirsty A. Walters,2 Charles M. Allan, and David J. Handelsman

Andrology Laboratory, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, New South Wales,
Australia

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most frequent
female endocrine disorder, affecting 5%–10% of women,
causing infertility due to dysfunctional follicular maturation
and ovulation, distinctive multicystic ovaries and hyperandro-
genism, together with metabolic abnormalities including obesi-
ty, hyperinsulinism, an increased risk of type 2 diabetes, and
cardiovascular disease. The etiology of PCOS is unclear, and
decisive clinical studies are limited by ethical and logistic
constraints. Consequently treatment is palliative rather than
curative and focuses on symptomatic approaches. Hence, a
suitable animal model could provide a valuable means with
which to study the pathogenesis of the characteristic reproduc-
tive and metabolic abnormalities and thereby identify novel and
more effective treatments. So far there is no consensus on the
best experimental animal model, which should ideally reproduce
the key features associated with human PCOS. The prenatally
androgenized rhesus monkey displays many characteristics of
the human condition, including hyperandrogenism, anovulation,
polycystic ovaries, increased adiposity, and insulin insensitivity.
However, the high cost of nonhuman primate studies limits the
practical utility of these large-animal models. Rodent models, on
the other hand, are inexpensive, provide well-characterized and
stable genetic backgrounds readily accessible for targeted
genetic manipulation, and shorter reproductive life spans and
generation times. Recent rodent models display both reproduc-
tive and metabolic disturbances associated with human PCOS.
This review aimed to evaluate the rodent models reported to
identify the advantages and disadvantages of the distinct rodent
models used to investigate this complex endocrine disorder.

animal models, fertility, follicular development, ovary, PCOS

INTRODUCTION

Polycystic ovary syndrome (PCOS) is one of the most
common causes of anovulation, infertility, and hyperandrogen-
ism in women, affecting 5%–10% of women of reproductive
age worldwide [1]. PCOS in women is characterized by
reduced fertility, due to dysfunctional follicular maturation and
ovulation and miscarriage, dysregulation of reproductive

hormones including luteinizing hormone (LH) hypersecretion
and hyperandrogenism, causing acne and hirsutism [1–4].
Women with PCOS also often exhibit nonreproductive
metabolic abnormalities such as obesity, metabolic syndrome,
hyperinsulinemia, insulin resistance, dyslipidemia with an
increased risk of cardiovascular disease, and type 2 diabetes
[3–5] (Fig. 1). Yet, despite its prevalence and health impact, the
etiology of PCOS remains poorly understood. In particular,
whether reproductive hormone abnormalities are a primary or
secondary reflex remains enigmatic. Etiological hypotheses for
the origins of PCOS include hormonal imbalances, epigenetic
changes in fetal life, genetic abnormalities, lifestyle, and
environmental factors [3, 4]. The heterogeneity of PCOS and
lack of consensus on a universally accepted PCOS diagnosis
make the unraveling of the etiology and development of
optimal or curative treatment of PCOS difficult. Due to the
logistic and ethical limitations on human experimentation,
appropriate animal models that mimic many or all PCOS traits
would facilitate research, leading to improved understanding of
the pathogenesis of PCOS and potential for innovative and
curative treatments for the PCOS syndrome.

Presently there are 3 different definitions of the clinical
diagnostic criteria used to define PCOS is women. The
National Institute of Child Health and Human Development
Conference in 1990 advised that in order of importance,
diagnostic criteria should be defined as hyperandrogenism,
menstrual dysfunction, and the exclusion of other known
factors [6]. According to the 2003 Rotterdam consensus
criteria, the presence of 2 of 3 of oligo-ovulation or
anovulation, hyperandrogenism (clinical or biochemical or
both), and polycystic ovaries fulfills a diagnosis of PCOS [7].
Whereas in 2006, the Androgen Excess-PCOS Society
recommended that PCOS should be defined by the presence
of hyperandrogenism and/or oligo-ovulation and polycystic
ovaries and the exclusion of other related disorders [8, 9]. The
morphological criteria for a diagnosis of polycystic ovaries is
based on ultrasonographic data where patients exhibit ovarian
enlargement, a thickened outer tunica albuginea, more than 12
follicles per ovary with a diameter of 2 to 10 mm, and an
increased density and area of stroma [1, 10, 11]. Human PCOS
ovaries also exhibit an increase in the numbers of growing
preantral and antral follicles and an arrest in mid-antral follicle
growth, which leads to antrum expansion, increased granulosa
cell degeneration, and development of cystic follicles with thin
granulosa cell walls [10, 12]. On the other hand, the layer of
theca cells that surround the follicle is much thicker than in
normal follicles [10]. Ideally, animal models of human
conditions, such as PCOS, should replicate many or most
clinical characteristics of that disorder. Since the 1960s, a range
of animal models, including rodents, sheep, and non-human
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primates, have been used to study the origins and pathology of
this condition [13–16]. These models have advanced our
understanding of the pathogenesis of PCOS; however, at
present, a convincing whole-animal model representing all
features associated with human PCOS has not been established.
However, a range of characteristics similar to those seen in
women with PCOS have been described in distinct animal
models. Prenatal exposure of sheep and non-human primates to
androgens has provided models that show striking similarities
to women with PCOS [15, 17, 18]; however, these models are
extremely expensive and are not readily adaptable to the use of
genetic manipulations. Rodent models provide a versatile tool
for deciphering the precise biological mechanism(s) associated
with the development of PCOS. Among the numerous
advantages of using rats and mice over other animal species
used as in vivo models include their stable genetic back-
grounds, ease of handling and maintenance, shorter reproduc-
tive lifespan and generation times, short estrous cycles,
feasibility of genetic manipulations, and affordability.

The strong evolutionarily conserved similarities in regula-
tion of reproductive function by the hypothalamic-pituitary
axis and the process of ovarian follicle development and
ovulation allow parallels to be drawn between rodent and
human species. Additionally, rodent models of PCOS have
shown many characteristics of the human disorder including
hyperandrogenism, elevated LH, disrupted cyclicity, presence
of follicular cysts/polycystic ovaries, and altered insulin
sensitivity. Hence, in terms of exhibiting the majority of
reproductive and endocrine symptoms associated with PCOS,
rodent PCOS models appear to closely parallel the human
condition. This review focuses on outlining the advantages and
disadvantages of the numerous rodent models used to
investigate this complex endocrine disorder.

HORMONAL METHODS TO INDUCE PCOS IN
RODENTS

Androgens

Within the ovary, androgens, mainly androstenedione (A4)
and testosterone (T), are synthesized in the theca cells. A direct
role for androgen receptor (AR)-mediated effects in the ovary
and female reproductive functions has been recently confirmed
by findings from AR knockout mouse models, where a loss of
AR actions lead to subfertility, predominantly due to defective
gonadotropin regulation, follicular development, and ovulation
[19, 20].

Testosterone and androstenedione. Although 1 study
reported that exposure of rodent fetuses to testosterone
propionate (TP) by intra-amniotic administration induced
anovulation in 64% of rats [21], in most studies, prenatal
treatment of mice with T [22] or rats with TP [21, 23–27] had
no effect on cyclicity or ovarian function, inferred by the
presence of follicles at various stages and corpora lutea. A
detailed study by Wu et al. [28] showed that prenatal treatment
of rats with T on Days 16 and 19 of gestation resulted in
irregular estrous cycles and an ovarian phenotype of increased
numbers of preantral and antral follicles but a decrease in
preovulatory follicle and corpus lutea populations. Treated rats
also exhibited an increase in T, estradiol (E2), progesterone (P),
and LH serum levels and an increase in the frequency of LH
pulse secretion [28]. The variation in the findings of the
presence of disrupted cyclicity and anovulation appears to be
due to the degree of transplacental transfer of the administered
steroid into the fetus [21].

A single postnatal treatment of rats with TP during the first
5 days of life completely blocked [23, 25, 29–32] or
significantly reduced their ability to ovulate [23]. Rats exposed
to TP in the first 5 days of life resulted in persistent anovulatory
estrus [33], whereas TP exposure on Day 1 or 5 also caused
acyclicity and polycystic ovaries with atretic follicles, cystic
follicles exhibiting thin granulosa cell layers [30–32, 34], and
increased production of estrogens (estrone [E1] and E2) and
androgens (T and A4) [34]. Similarly, mice treated on Days 1–
3 with TP or T [16, 31] or with TP on Days 1–24 [27] exhibited
anovulation and the presence of polyfollicular ovaries, while
most but not all A4-treated females exhibited anovulation [16].
Treatment of older rats (;3 weeks of age) with TP or A4 for 35
consecutive days also caused polycystic ovaries [35, 36], and
TP treatment induced anovulation and increased the presence
of apoptotic follicles and unhealthy oocytes [35]. Females also
exhibited insulin resistance, a characteristic feature of human
PCOS, indicating that androgens can lead to insulin resistance
[35]. However, unlike the significantly enlarged ovaries from
women with PCOS, TP [23, 30, 34, 37] and A4 [36] treatment
resulted in smaller ovaries in rats. Interestingly, treatment of
rats on Days 15–25 with TP did not induce a PCOS-like
phenotype, with rats exhibiting morphologically normal
ovaries [27], highlighting the fact that androgen effects, which
leads to the development of the PCOS phenotype may occur
only during specific times.

In summary, although there are some conflicting findings
from fetal exposure to T and TP, generally, prenatal exposure
does not consistently affect cyclicity or ovarian function (Fig.
2). On the other hand, postnatal treatment with T and TP
induces typical human PCOS features of acyclicity, anovula-
tion, polycystic ovaries, hyperandrogenism, and insulin
resistance. In contrast to PCOS ovaries, TP treatment reduced
ovary weight, and A4 treatment produced less severe
characteristics associated with PCOS (Fig. 3). These model
descriptions lack detailed analysis of metabolic disturbances,

FIG. 1. Primary diagnostic features of human PCOS and common
additional symptoms of the condition.
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and defining androgen-regulated mechanisms can be difficult
to interpret as steroid effects may be induced by either the AR
or estrogen receptors (ER), due to the fact that T and A4 can be
aromatized to the estrogens E2 and E1, respectively.

Dihydrotestosterone. Dihydrotestosterone (DHT) is a
nonaromatizable androgen that is converted irreversibly from
T by the enzyme 5a-reductase, a step which enhances its
androgenic potency. Fetal exposure of rats to DHT on Days 16
and 19 and mice on days 16–18 of pregnancy resulted in
irregular estrous cycles in mature, fetus-exposed female mice
[28, 38]. Ovaries from fetal DHT-treated rats exhibited an
increase in preantral and antral follicle numbers but a decrease
in preovulatory follicle and corpora lutea populations, implying
reduced ovulations due to defective follicle maturation to the
preovulatory stage [28]. Rats and mice prenatally exposed to
DHT exhibited increased T and LH serum levels, replicating
the human PCOS traits of androgen and LH hypersecretion [28,
38]. Rats that were exposed also exhibited an increase in the
frequency of LH pulse secretion and elevated serum E2 and P
levels [28], suggesting excessive androgens may disrupt
negative steroidal feedback signaling to the hypothalamus. In
addition to reproductive axis abnormalities, prenatally androg-
enized mice (treated with DHT on Days 16–18 of gestation)
exhibit metabolic alterations with impaired glucose tolerance
but normal insulin sensitivity and increased adipocyte size,
indicating altered adipocyte function; however, body and fat
mass were unchanged [39].

Postnatal treatment of rats with DHT propionate (DHTP
[DHT ester with prolonged half-life relative to that of DHT])
on Day 1 or 5 had no effect upon cyclicity or the histological
appearance of ovarian follicles stages and corpora lutea [30].

On the other hand, 21-day-old (prepubertal) rats treated with
90-day continuous-release pellet containing DHT and collected
11–13 weeks later displayed irregular estrous cycles and
ovarian features similar to human PCOS, including increased
numbers of large atretic follicles and follicular cysts with a
thickened theca interna cell layer and thin granulosa cell layer
and fewer corpora lutea than controls [40]. However, unlike
human PCOS ovaries, ovary weight was reduced. At the
estrous stage, plasma T and E2 levels were unaltered, but P was
significantly decreased, indicating anovulation. DHT-treated
rats also showed many metabolic features also present in
human PCOS, including increased body weight, body fat, and
abdominal fat; enlarged adipocytes; elevated leptin and
cholesterol levels; and insulin resistance [40–42].

In conclusion, prenatal exposure to DHT induced irregular
reproductive cycles, indicating this model may be of use in the
study of mechanisms leading to disrupted regulation of the
hypothalamic-pituitary-gonadal axis (Fig. 2). However, poly-
cystic ovaries were not present and detailed analysis of
metabolic features of human PCOS are lacking. Postnatal
treatment from 3 weeks of age with 90-day continuous release
pellets containing DHT appears to be an attractive model with
ovarian morphology and key reproductive and metabolic
features closely paralleling the human condition (Fig. 3).

Dehydroepiandrosterone. The observation that dihydro-
testosterone (DHEA) levels are increased in women with
PCOS [43] led to the development of a PCOS animal model
using postnatal DHEA treatment (22- to 23-day-old rats treated
with DHEA for 36 days) as the inducer of polycystic ovaries
[36]. The DHEA rodent model exhibits some features of the

FIG. 2. Dysfunctional reproductive and metabolic features of human PCOS found in PCOS rodent models, induced by prenatal treatment with
androgens. CL, corpus luteum; ia, intra-amniotic injection; im, intramuscular; implant, silicone elastomer (Silastic; Dow Corning) implant; sc,
subcutaneous injection; #, decrease; ", increase; -, not determined in publication(s).
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human PCOS condition, such as acyclicity, abnormal matura-
tion of ovarian follicles, and anovulation [44–46].

Postnatal treatment of mice [47, 48] and rats [44–46] with
DHEA for 20 consecutive days resulted in all or most females
exhibiting follicular cysts with a thin granulosa cell layer and
anovulation. Ovaries exhibited an increase in fat and stroma
tissues and increased numbers of atretic follicles [48, 49],
hyperandrogenism, and altered ovarian steroidogenesis with
elevated serum levels of androgens [44, 48, 50], estrogens, P,
and prostaglandin [44, 47, 49, 50]. In one study, LH levels
were elevated while follicle-stimulating hormone (FSH) levels
did not change [44], but in other studies, LH and FSH levels
were both decreased [46] or unchanged [50]. Limited data are
available on whether DHEA treatment induced the metabolic
disturbances associated with PCOS. However, DHEA treat-
ment of mice did not affect body weight, but did increase
serum fasting insulin levels without affecting fasting glucose
levels [47].

In conclusion, postnatal treatment of rodents with DHEA
induced human PCOS characteristics of acyclicity, anovula-
tion, polycystic ovaries, and hyperandrogenism (Fig. 3).
However, unlike human PCOS cystic follicles, which are
characterized by a thickened theca cell layer, cysts in DHEA-

treated ovaries exhibited a thin layer of theca cells [49].
Furthermore, the elevation in LH levels was not consistent, and
currently, there are limited data pertaining to the presence of
associated metabolic characteristics.

Overall, prenatal and postnatal exposure to various
androgens can induce both reproductive and metabolic deficits
similar to those exhibited in PCOS women (Figs. 2 and 3).
However, care must be taken when comparing models, as age
of analysis had an effect on the observed phenotype, with
differences in the presence of cysts or corpora lutea observed
[26, 45] in most but not all studies [25]. Prenatal exposure can
lead to vaginal fusion, and although researchers have varied
doses of androgens to minimize this effect [38], this is a
significant limitation of this model for evaluation of fertility,
which is a key feature of PCOS. Furthermore, although some
neonatally androgenized rats display elevated androgen and LH
levels, this is not consistent, and some models display normal
serum levels of LH, FSH, T, and E2 [51], raising doubt about
their suitability as models for PCOS. On the other hand,
although postnatal treatment with most androgens decreased
ovary weight, in contrast to enlarged ovaries in PCOS women,
findings from the treatment with androgens later in life, in
particular DHT, support the use of this approach in the study of

FIG. 3. Dysfunctional reproductive and metabolic features of human PCOS present in PCOS rodent models induced by postnatal treatment with
androgens. Day of birth is Day 1. A4, androstenedione; BMC, bone mineral content; BW, body weight; CL, corpus luteum; DHTP, dihydrotestosterone
propionate; LBM, lean body mass; LDL, low-density lipoprotein; pellet, 90-day continuous release pellet; PRL, prolactin; sc, subcutaneous injection; TC,
total cholesterol; TG, triglycerides; #, decrease; ", increase; -, not determined in publication(s).
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the etiology and treatment of PCOS, as rodents exhibited many
reproductive and metabolic features associated with human
PCOS.

Estrogens

Estrogens, are synthesized in the granulosa cells by the
conversion of androgens, involving the enzyme P450 aroma-
tase [52], and play a major role in female fertility including
normal ovarian and uterine function [53, 54].

Estradiol benzoate, E2, and E2 valerate. Adult rats,
postnatally treated with estradiol benzoate (EB) on Day 1,
displayed acyclicity, anovulation, and ovarian atrophy [29].
However unlike human PCOS, ovary weight and serum LH
levels were decreased. Other hormone differences observed
were a significant increase in both FSH and prolactin serum
levels [29]. Young cycling adult rats exposed to E2 for 8 weeks
via a subcutaneous continuous release implant [55] or a single
injection of estradiol valerate (EV) [56–59] exhibited acyclic-
ity, anovulation, and polycystic ovaries, which contained an
increased number of atretic follicles and cysts with a thin
granulosa cell layer and an abnormally thickened theca layer
[55, 57, 60]. However, EV treatment decreased ovary weight
and failed to provoke LH hypersecretion [56, 61], hyper-
androgenism, obesity, and changes in glucose and insulin
concentrations, which differs significantly from human PCOS,
but rats did exhibit hypertension and an increase in inguinal fat
depot weight [60].

In summary, exposure to E2 resulted in ovarian morpho-
logical features of anovulation and polycystic ovaries similar to
those of PCOS patients (Fig. 4). However, these models are
limited by the lack of endocrine and metabolic features
associated with human PCOS.

Aromatase Inhibitors

Polycystic ovaries can be induced by androgen exposure
including not only exogenous androgens but also as a result of
secondary endogenous androgen excess [2, 62]. The latter
includes the rat PCOS model induced by letrozole, a
nonsteroidal aromatase inhibitor, which blocks the conversion
of androgens to estrogen [63]. Letrozole treatment of adult rats
for at least 21 consecutive days induced acyclicity [40] or
irregular estrous cycles [63] and anovulation, with ovaries
exhibiting many large follicular cysts and either reduced
numbers or no corpora lutea [40, 63–65]. Ovaries exhibited
increased follicle atresia and multiple cysts with thin granulosa
cell layers and thickened theca cell layers [40]. Endocrine
disruptions included elevated levels of LH, FSH, and T,
reflecting the accumulation of endogenous ovarian androgen
secretion due to a block in aromatase activity. In contrast, the
decreased P secretion observed is consistent with the observed
anovulation [40, 63–65]. E2 levels were either decreased [64,
65] or unchanged [40]. Additionally, treated rats exhibited
some metabolic features of human PCOS with increased body
weight [40, 66] and body fat but no change in insulin
sensitivity or lipid metabolism [40]. However, there is one
report of elevated glucose, cholesterol, and triglyceride levels
in female rats treat orally with letrozole [66].

In conclusion, the letrozole-induced PCOS rodent models
induced many features of human PCOS (Fig. 4), although
further work is required to confirm the metabolic disruptions
present before this model can be confirmed as a valid and
useful model for the metabolic features of PCOS. Furthermore,
the reduction in E2 observed [63–65] may be a limitation of
this strategy as the polycystic ovaries, anovulation, absence of

corpus luteum, and elevation of serum LH and T levels, also
present in ER-a (Esr1) knockout female mice [67–70] may be
a consequence of disruption of E2 action rather than the reflex
increase in serum T.

Antiprogestins

The antiprogestin RU486 is a synthetic steroid with a high
affinity for progesterone (and glucocorticoid) receptors with
potent antagonistic but no agonistic activity [71]. Rodents
treated with RU486, hence lacking progesterone action, show
numerous endocrine and ovarian morphological features
similar to those of human PCOS. Administration of RU486
to adult cycling female rats for 4–9 days resulted in acyclicity,
polycystic ovaries [72–74], and anovulation [75]. Ovaries
contained an increased number of atretic follicles [72, 74, 75]
and thin granulosa cell layers [73, 75]. Similar to human
PCOS, serum LH, T, and E2 levels were significantly increased
[74–77]. FSH levels were variable, with different models
displaying unchanged [77], increased [72], or decreased [74]
levels. Whether the differing length or dose of RU486
treatment affected FSH levels requires further assessment. In
respect to metabolic abnormalities associated with human
PCOS, RU486 treatment did not alter body weight or insulin
sensitivity [77].

In summary, rats injected with RU486 displayed many
features found in women with PCOS, including acyclicity,
anovulation, presence of follicular cysts and elevated androgen
and LH levels (Fig. 4). However, for RU486 administration to
be validated as a useful PCOS model, metabolic disturbances
require further detailed assessment. Furthermore, the effects of
RU486 have, to date, not been studied in mice.

PHYSIOLOGICAL MANIPULATION TO INDUCE PCOS
IN RODENTS

Changes in Light Exposure

In rodents, the LH surges that trigger ovulation are
controlled by cyclic light-dark photoperiods [78]. An absence
of these light-dark photoperiods within a 24-hour period can
disrupt normal cycling in rats and inhibit ovulation, a key
characteristic of PCOS [79]. Such a physical mechanism to
induce PCOS may have advantages in avoiding the off-target
effects of hormone inducers of PCOS models, which may
differ from naturally occurring PCOS in women. For instance,
aromatase inhibitors that induced a PCOS phenotype dramat-
ically reduced E2 activity [63–65]. Continual exposure of
mature rats to an environment of constant light was developed
as an alternative approach to inducing PCOS [80]. Exposure of
adult rats to continuous light leads to the gradual development
of chronic anovulation. The intensity, duration, and spectral
characteristics of the light influence the rate at which acyclicity
and anovulation occur [81, 82]. Exposure of 21-day-old rats to
constant light for 10 [82] or 12 [81] weeks induced acyclicity
and smaller polycystic ovaries. In another rat study acyclicity,
anovulation and polycystic ovaries without a reduction in
ovary weight were found after continuous light for 74 days
[83]. Altered hormones levels are also induced by exposure of
rats to constant light with serum FSH and P levels lower, E2
and E1 levels were elevated, but LH level was unchanged
compared to those of controls [84]. Surprisingly, androgen
levels were not assessed.

In conclusion, although the light exposure approach induced
anovulation and disrupted cycles, LH hypersecretion observed
in human PCOS was not present in this model. Furthermore,
hyperandrogenism, a key characteristic of human PCOS, and

RODENT MODELS OF PCOS
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FIG. 4. Dysfunctional reproductive and metabolic features of human PCOS observed in PCOS rodent models, induced by postnatal treatment with
estrogen, letrozole, and RU486. BMC, bone mineral content; BW, body weight; CL, corpus luteum; EB, estradiol benzoate; im, intramuscular; implant,
subcutaneous continuous release; LBM, lean body mass; pellet, 90-day continuous release pellet; po, once daily orally; PRL, prolactin; sc, subcutaneous
injection; #, decrease; " ¼ increase; -, not determined in publication(s).

FIG. 5. Dysfunctional reproductive and metabolic features of human PCOS present in rodent models, induced by exposure to constant light or genetic
modification. CL, corpus luteum; TG, triglycerides; #, decrease; ", increase; -, not determined in publication(s).
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the presence of metabolic disturbances have not been reported
(Fig. 5).

GENETICALLY MODIFIED RODENT MODELS OF PCOS

To date, several rodent models with characterized genetic
mutations exhibit many of the reproductive and metabolic
characteristics associated with human PCOS (Fig. 5).

Leptin Mutant Rodent Strains

Leptin is synthesized and secreted from fat cells in response
to metabolic status and has been found at higher than expected
levels in a substantial proportion of women with PCOS for
their body mass index, T level, and insulin sensitivity [85].
Altered leptin signaling has been proposed to be involved in
the development of the disorder [85]. In support of this, leptin
has a direct stimulatory effect on GnRH secretion [86], and an
abnormality in the regulation of hypothalamic GnRH secretion
is a feature of human PCOS [87, 88].

Leptin-deficient (ob/ob) and leptin receptor-deficient
(db/db) mice. Mice with a mutation in the obese (ob) or
diabetes (db) gene lack endogenous leptin or possess a
nonfunctional leptin receptor, respectively, and displayed some
metabolic and reproductive characteristics of women with
PCOS. Adult ob/ob and db/db females are infertile and
exhibited acyclicity, anovulation, and increased follicular
atresia [89–92]. Hormone changes in ob/ob mice included
significantly increased serum T, E2, and P levels [93, 94] and
reduced serum FSH levels [95], while db/db females exhibited
a significant decrease in serum E2 and P levels. Metabolic
features of PCOS exhibited by both mutant mice include severe
obesity, a diabetes-like syndrome of hyperglycemia, glucose
intolerance, and elevated plasma insulin [91, 94, 96–98].
However unlike human PCOS, polycystic ovaries were not
present in either model, and serum LH levels were unchanged
in ob/ob mice [95].

New Zealand obese mouse (NZO/HlLt). New Zealand
obese (NZO) mice represent a model of polygenic obesity.
Although they have normal leptin and leptin receptor genes,
NZO mice exhibited a defect in leptin transport across the
blood-brain barrier. Along with obesity, the NZO mouse
exhibited insulin resistance and hyperinsulinemia, all of which
are common metabolic abnormal characteristics of PCOS [99].
Furthermore, the mouse displayed dyslipidemia, hypercholes-
terolemia, and hypertension [100]. The NZO mouse is
subfertile, and ovaries displayed increased ovarian volume,
reduced numbers of corpora lutea and ovulations, and an
increased number of atretic follicles [99]. Hormonal differences
included reduced LH levels and increased E2 levels but
unchanged T levels. Although NZO mice displayed many
metabolic disturbances associated with human PCOS, the key
features of polyfollicular ovaries and hyperandrogenism are
absent in this model.

JCR:LA-cp corpulent (cp/cp) rat. The JCR:LA-corpulent
rat (cp/cp) incorporates the corpulent (cp) gene, isolated by
Koletsky [101]. Rats that are homozygous for the cp gene (cp/
cp) have a defect in the leptin receptor [102]. Female (cp/cp)
rats have been proposed as a potential PCOS model to
investigate the etiology and possible treatment of PCOS,
particularly in the context of metabolic disturbances associated
with the disease. Adult cp/cp females displayed irregular
estrous cycles and disrupted ovulation [103], but unlike human
PCOS ovaries, cp/cp ovaries were reduced in weight.
Additionally, although cp/cp females had a 2-fold increase in
the number of cystic follicles, which were lined with a thin
layer of granulosa cells, compared to those of controls, control

rats also exhibited cystic follicles. As in human PCOS ovaries,
the number of atretic follicles were significantly increased and
corpora lutea numbers were decreased. Adult (12-week-old)
females exhibited elevated serum T concentrations, while E2
levels were similar to those of controls. Most importantly, cp/
cp females exhibited many metabolic disturbances associated
with human PCOS, including obesity, hyperlipidemia, hyper-
insulinemia, and an increased risk of cardiovascular disease
[103]. This model of a genetically obese rodent with the
associated metabolic abnormalities appears to lead to ovarian
dysfunction, which may be useful in the investigation of the
development of PCOS in women who exhibit obesity, insulin
resistance, and dyslipidemia.

Overexpressing Luteinizing Hormone Transgenic Mice
[Tg(Cga-LHB/CGB)94Jhn/J]

As LH hypersecretion is a key feature of PCOS [104], the
production of a mouse overexpressing LH was a logical model
to be evaluated for whether it replicated features of PCOS.
Overexpression of human LHb subunit revealed that contin-
ually elevated levels of LH led to infertility, anovulation,
elevated T and E2 levels, and polycystic ovaries [105, 106].
These transgenic mice also featured some metabolic alterations
associated with PCOS, including obesity, and increase
abdominal fat and insulin levels [107]. However, the
persistently elevated transgenic LH levels also produced other
phenotypes not associated with PCOS, such as ovarian tumors
and enlarged ovaries with multiple corpora lutea, suggesting
that although LH may be associated with the etiology of PCOS,
it is unlikely that LH levels alone trigger the changes leading to
the development of the syndrome.

Mice with Transgenic Overexpression of Plasminogen
Activator Inhibitor-1 (Tg-Serpine1)

Several studies have supported an association between an
elevation in plasma plasminogen activator inhibitor-1 (PAI-1
[official symbol, SERPINE1]) and PCOS [108–110]. SER-
PINE1 is a member of the superfamily of serine protease
inhibitors and prevents plasminogen activation via its inhibi-
tion of plasminogen activators. SERPINE1 is the principal
inhibitor of tissue plasminogen activator (tPA), which mediates
fibrinolysis and urokinase (uPA), which plays a role in cell
surface plasminogen activation. Transgenic overexpression of
an active form of human SERPINE1 in mice led to alterations
in ovarian structure that resembled abnormalities found in
human polycystic ovaries, including reduced corpora lutea, a
thickened tunica albuginea, and the presence of cysts with a
thin granulosa cell layer [111]. Ovaries from Tg-Serpine1
exhibited a thickened tunica and follicular cysts and rarely
exhibited corpus lutea, indicating oligo-anovulation. Ovarian
stromal volume was increased, theca exhibited large lipid
vacuoles, and antral follicles had disorganized granulosa cells
layers. Importantly, hyperandrogenism was evident with
significantly higher T levels in transgenic mice [111]; however,
other hormones were not assessed. This model displayed many
reproductive features of human PCOS, and it has been
proposed that an excess of SERPINE1 in patients with PCOS
may contribute to the development of the disorder [111].
However, a full assessment of hormone profiles and metabolic
features associated with human PCOS remains to be charac-
terized in this model.
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Genetically Modified Rodent Models Exhibiting PCOS-Like
Ovarian Cyst Formation

Several genetically modified mouse models developed
without PCOS in mind display unexpected PCOS-like ovarian
pathology with the formation of ovarian cysts. Some models
also exhibit other features associated with human PCOS, such
as elevated T and LH levels; for example, some transgenic
mice expressing human insulin-like growth factor 1 (hIGF1)
under the control of the mouse LH receptor promoter failed to
mate and displayed polycystic ovaries. Hormone disruptions
were also found with significantly elevated serum T levels and
unchanged E2 levels, but unlike PCOS patients, mice exhibited
decreased LH levels [112]. Ovarian hemorrhagic cyst forma-
tion is a phenotype in several genetic mouse models, including
the aromatase knockout [113], Esr1 knockout [69], transgenic
hCG overexpressing mice [114], transgenic FSH overexpress-
ing [115] and mutated FSH receptor (increased receptor
activity) [116] mice. The hemorrhagic cystic phenotype, which
is not a true PCOS phenotype, appears to be caused by the
common feature of increased gonadotropin action in these
models, implying that elevated gonadotropins themselves are
not the key cause of PCOS development.

In conclusion, genetically modified rodent models of PCOS
provide an insight into possible mechanisms or markers for the

development of PCOS. The ob/ob, db/db, and NZO mouse
models and cp/cp rat model all exhibit similar metabolic
disturbances; hence, these models may prove to be useful for
the investigation of the etiology and treatment of PCOS,
particularly in the context of metabolic disturbances associated
with human PCOS. However, their ovarian features of ovarian
PCOS, presence of cysts and lack of corpora lutea, and altered
estrous cycles lack the severity exhibited in many induced
models [13, 40], with ob/ob and db/db models not exhibiting
polycystic ovaries and cp/cp females displaying irregular
estrous cycles rather than being acyclic. On the other hand,
the overexpressing Tg-Serpine1 mouse closely correlates
reproductive characteristics of human PCOS, but metabolic
disturbances remain to be fully characterized. Hence, for future
investigations of PCOS, the use of transgenic approaches has
the advantage of allowing specific candidate genes to be
studied in isolation and/or combinations to identify whether
changes in their expression lead to development of features of
PCOS that parallel the human disorder.

CONCLUSION

Several hypotheses and speculations surround the etiology
of PCOS and, despite it being the most common endocrine
condition in women, little information is available on the

FIG. 6. Summary of dysfunctional reproductive and metabolic traits in PCOS women and rodent models of PCOS. , present; , not present;
?, unknown; *Data are not consistent between publications.
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mechanisms driving its development. Consequently, logical
forms of curative treatment based on its pathogenesis remain
lacking. Various animal models have been shown to closely
mimic key phenotypes of women with PCOS (Fig. 6) and thus
may provide valuable insight into the origins and/or pathogen-
esis of this enigmatic condition. However, the heterogeneity of
PCOS is reflected in the different phenotypes observed in the
many different animal models reported so far. Great opportu-
nities remain to unravel the various key features of this
syndrome by using animal models to decipher the precise
mechanisms involved, and to improve knowledge of the
pathogenesis and treatment of PCOS.

Careful critical analysis of the models to date has increased
our understanding of the pathogenesis of PCOS. Hyper-
androgenism is the most consistent feature of women with
PCOS [117]. PCOS rodent models induced by elevated
androgen levels clearly show that excess androgen can induced
many reproductive and metabolic features of human PCOS.
Furthermore, differences are observed in the presence and/or
severity of these features according to the timing of the prenatal
and postnatal treatment [27] (Figs. 2 and 3). Hence, androgen
programming of the adult female that leads to the development
of the PCOS phenotype may occur only during specific time
windows of prenatal and postnatal life. Estrogens and the
antiprogestin RU486 also induce reproductive features found in
women with PCOS, such as disrupted ovulation, altered estrous
cycles, and changes in hormone levels. However, unlike many
of the androgen-induced models, alterations in follicular
dynamics, a key feature of human PCOS [12, 118], are not a
feature in the estrogen induced models, and both estrogen and
RU486 models fail to closely follow the metabolic disturbances
associated with human PCOS. Thus, these models may be
useful in questions relating to endocrine features of PCOS but
are less informative in terms of the primary causes of PCOS.
Rodent models with altered leptin activity, which primarily
exhibit severe obesity and related metabolic abnormalities, and
the double insulin/leptin receptor knockout mouse [119]
exhibit some of the reproductive characteristics of human
PCOS. This implies that obesity and insulin resistance may
play a role in the development of PCOS. However, due to the
fact that lean women exhibiting anovulation and androgen
excess can have normal insulin insensitivity, it is more likely
that obesity and insulin resistance act to amplify features of
PCOS, rather than them being primary causes themselves. This
conclusion is supported by the findings that not all rodent
androgen induced PCOS models exhibited changes in body
weight.

In conclusion, key questions remain regarding how PCOS
originates, what predisposes women to the condition and its
associated metabolic disturbances, and how approaches to
innovative treatments based on its pathogenesis may be
developed. We have shown that rodent PCOS models do
replicate many of the reproductive, hormonal, and metabolic
characteristics observed in human PCOS and, hence, may be
useful for investigating the pathogenesis of PCOS. However,
different models have distinct advantages and disadvantages;
thus, no one model provides complete replication of the
complex clinical disorder, and more than one single model may
be required to make effective progress in understanding this
condition. Appropriate animal models should be selected based
on which specific facet of PCOS is of interest. Therefore, with
careful and thoughtful use of rodent models of PCOS, these in
vivo paradigms can provide informative and decisive informa-
tion on the mechanisms driving the development of PCOS and
its consequences.
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