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Abstract
In previous work, we have proposed a method to control the
characteristics of synthetic speech flexibly by integrating artic-
ulatory features into hidden Markov model (HMM) based para-
metric speech synthesis. A unified acoustic-articulatory model
was trained and a piecewise linear transform was adopted to de-
scribe the dependency between these two feature streams. The
transform matrices were trained for each HMM state and were
tied based on each state’s context. In this paper, an improved
acoustic-articulatory modelling method is proposed. A Gaus-
sian mixture model (GMM) is introduced to model the articula-
tory space and the cross-stream transform matrices are trained
for each Gaussian mixture instead of context-dependently. This
means the dependency relationship can vary with the change of
articulatory features flexibly. Our results show this method im-
proves the effectiveness of control over vowel quality by mod-
ifing articulatory trajectories without degrading naturalness.
Index Terms: speech synthesis, articulatory features, hidden
Markov model, Gaussian mixture model

1. Introduction
The hidden Markov model (HMM)-based parametric speech
synthesis method has made significant progress in recent years
[1, 2]. This method is able to synthesize highly intelligible
and smooth speech sounds [3, 4]. In our previous work, we
have proposed a method to improve the flexibility of HMM-
based speech synthesis by integrating articulatory features [5,6].
Here, we use “articulatory features” to refer to the continuous
movements of a group of speech articulators, such as the tongue,
jaw, lips and velum, recorded by human articulography tech-
niques. In this method, a unified acoustic-articulatory model
with cross-stream dependency is trained. During synthesis, the
characteristics of synthetic speech can be controlled flexibly by
modifying the generated articulatory features according to ar-
bitrary phonetic rules. Experimental results have shown the ef-
fectiveness of this method in controlling the overall character of
synthesized speech and the quality of specific vowels [6].

A piecewise linear transform was used to describe the de-
pendency of acoustic feature production on the movement of
articulatory features in our previous work [5, 6]. Like other
model parameters in the unified acoustic-articulatory HMM,
the transform matrices were trained for each HMM state and
were tied based on context using a decision tree. Therefore, the
cross-stream dependency was entirely determined by the con-
text information of input text. This could become problematic
when the articulatory features were modified using phonetic
rules during synthesis because the transform matrix was ex-
pected to adapt to the new articulatory configuration. In this pa-
per, a feature-space transform tying method is proposed to solve

this problem. A Gaussian mixture model (GMM) is adopted to
model the articulatory space and the cross-stream transform ma-
trices are estimated for each Gaussian component instead of for
each HMM state (thus depending on its context information).

This paper is organized as follows. Section 2 gives a
brief overview of our baseline acoustic-articulatory modelling
method. Section 3 describes our proposed method in detail.
Section 4 introduces the results of our experiments and Section
5 presents the conclusions we draw from this work.

2. Baseline
In our baseline method, the general framework of HMM-based
speech synthesis was followed to integrate articulatory features
into the conventional modelling of acoustic features [6]. Let
X = [x!

1 , x!
2 , ..., x!

T ]! and Y = [y!1 , y!2 , ..., y!T ]! denote the
parallel acoustic and articulatory feature sequence of the same
length T . For each frame, the feature vector xt ∈ R3DX

and yt ∈ R3DY consist of static parameters and their veloc-
ity and acceleration components, where DX and DY are the
dimensions of static acoustic features and static articulatory fea-
tures respectively. In model training, an HMM λ is estimated
by maximizing the likelihood function of the joint distribution
P (X, Y|λ). A piecewise (state-wise) linear transform is added
to the model parameters to represent the dependency between
the generation of acoustic features and the articulatory move-
ments. The joint distribution can be written as

P (X, Y|λ) =
∑

q

πq0

T∏

t=1

aqt−1qtbqt(xt, yt), (1)

bj(xt, yt) = bj(xt|yt)bj(yt), (2)
bj(yt) = N (yt; µYj

,ΣYj ), (3)

bj(xt|yt) = N (xt; Ajyt + µXj
,ΣXj ). (4)

where q = {q1, q2, ..., qN} is the state sequence shared by the
two feature streams; πj and aij represent initial state probabil-
ity and state transit probability; bj(·) is the state observation
probability density function (PDF) for state j; N (; µ,Σ) de-
notes a Gaussian distribution with a mean vector µ and a co-
variance matrix Σ; Aj ∈ R3DX×3DY is the linear transform
matrix for state j. This matrix is context-dependent, hence a
globally piecewise linear transform can be achieved. The model
parameters can be estimated using the EM algorithm [6].

During synthesis, the acoustic and articulatory features
are simultaneously generated from the trained models using
maximum-likelihood parameter generation (MLPG) algorithm
that considers explicit constraints of the dynamic features. In
order to control the characteristics of synthetic speech flexi-
bly, the generated articulatory features can be modified based
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on phonetic knowledge to reproduce acoustic parameters that
reflect those changes appropriately [6].

3. Proposed Method
3.1. Model Structure

As discussed above, the transform matrix Aj in Eq.(4) is tied
across states according to context information. This may lead
to the incorrect representation of feature dependency when the
generated articulatory features are modified during synthesis. In
this paper, we improve the model structure so that the transform
matrix can be determined by the articulatory features instead
of the context information. Here, a GMM model λ(G) of M
mixtures is trained in advance using only the articulatory stream
of training data to represent the articulatory space. Then, the
transform matrices are trained for each mixture component of
λ(G). Mathematically, we rewrite Eq.(4) as

bj(xt|yt) =
M∑

k=1

P (xt, mt = k|yt, qt = j, λ, λ(G)), (5)

=
M∑

k=1

ζk(t)P (xt|yt, qt = j, mt = k, λ, λ(G)), (6)

where mt denotes the mixture index of λ(G) for articulatory
feature vector at frame t; the HMM state sequence q and the
GMM mixture sequence m = {m1, m2, ..., mN} are assumed
to be independent, i.e.

P (mt = k|yt, qt = j, λ, λ(G)) = P (mt = k|yt, λ
(G))

= ζk(t). (7)

For each Gaussian mixture, the dependency between the acous-
tic and articulatory features is represented as

P (xt|yt, qt = j, mt = k, λ, λ(G))

= N (xt;Akξt + µXj
,ΣXj ), (8)

where ξt =
[
y!t , 1

]! ∈ R3DY +1 is the expanded articulatory
feature vector and Ak ∈ R3DX×(3DY +1) is the transform ma-
trix for the k-th mixture of λ(G). Fig.1 compares the feature
production models used in our baseline and proposed meth-
ods. We see that an extra Gaussian mixture sequence mt is
introduced to determine the cross-stream transform matrix for
each frame. We can interpret ζk(t) as a weight that varies ac-
cording to yt, and which changes how each transform matrix is
weighted, or “blended” together, according to Eq.(6).

3.2. Model training

To train the HMM parameter set {Ak, µXj
,ΣXj , µYj

,ΣYj}1,
we substitute Eq.(2), (3), (6), (8) into Eq.(1) and get

P (X, Y|λ) =
∑

q

∑

m

P (X, Y, q, m|λ), (9)

where

P (X, Y, q, m|λ) = πq0

T∏

t=1

aqt−1qtζmt(t)N (yt; µYqt
,ΣYqt

)

· N (xt; Amtξt + µXqt
,ΣXqt

). (10)

1In this work, the covariance matrices ΣXj and ΣYj of each HMM
state are set to be diagonal for simplification.

1tq ! "tq j 1tq #

1!ty ty 1#ty

1!tx tx 1#tx

. . . . . .

(a) Baseline

, }$ j jY Y% && , , }$ j j jX X A%% &
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. . .
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(b) Proposed
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Figure 1: Feature production model for combined acoustic and
articulatory modelling in our (a) baseline and (b) proposed
methods. The definition of the parameters on the arcs that rep-
resent the dependency relationship can be found in Eq.(3), (4)
and Eq.(7), (8).

The EM algorithm is adopted to estimate the parameter set that
maximizes Eq.(9). The auxiliary function is defined as

Q(λ, λ′)

=
∑

q

∑

m

P (X, Y, q, m|λ) log P (X, Y, q, m|λ′) (11)

=
N∑

j=1

M∑

k=1

T∑

t=1

γj(t)ζk(t)
[
logN (yt; µ

′
Yj

,Σ′
Yj

)

+ logN (xt; A′
kξt + µ′

Xj
,Σ′

Xj
)
]

+ K, (12)

where K is a constant term that is independent of the model
parameter set; γj(t) is the occupancy probability of state j at
time t; N is the total number of HMM states.

In order to re-estimate the transform matrix A′
k for each

GMM mixture, we set ∂Q(λ, λ′)/∂A′
k = 0 and get

N∑

j=1

T∑

t=1

γj(t)ζk(t)Σ−1
Xj

(xt − µXj
)ξ!

t

=
N∑

j=1

T∑

t=1

γj(t)ζk(t)Σ−1
Xj

A′
kξtξ

!
t . (13)

This equation can be simplified as

Z =
T∑

t=1

V(t)A′
kD(t), (14)

where

Z = {zil} =
N∑

j=1

T∑

t=1

γj(t)ζk(t)Σ−1
Xj

(xt − µXj
)ξ!

t , (15)

V(t) = diag
{

v(t)
ii

}
=

N∑

j=1

γj(t)Σ
−1
Xj

, (16)
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D(t) =
{

d(t)
il

}
= ζk(t)ξtξ

!
t . (17)

According to Eq.(14), each element in Z can be calculated as

zil =
T∑

t=1

3DY +1∑

p=1

v(t)
ii a′

ipd(t)
pl =

3DY +1∑

p=1

a′
ip

T∑

t=1

v(t)
ii d(t)

pl . (18)

Therefore, the transform matrix A′
k can be updated line by line.

For the i-th line,

a′
i = G(i)−1zi, (19)

where zi =
[
zi1, zi2, ..., zi(3DY +1)

]!; A′
k = {a′

il} and
a′

i =
[
a′

i1, a
′
i2, ..., a

′
i(3DY +1)

]!; G(i) = {g(i)
pr } and g(i)

pr =
∑T

t=1 v(t)
ii d(t)

pr .

The re-estimation formulae for other model parameters can
be derived by setting ∂Q(λ, λ′)/∂λ′ = 0 as

µ′
Xj

=

∑M
k=1

∑T
t=1 γj(t)ζk(t)(xt − A′

kξt)∑T
t=1 γj(t)

, (20)

Σ′
Xj =

1
∑T

t=1 γj(t)

M∑

k=1

T∑

t=1

γj(t)ζk(t)

· (xt − µ′
Xj

− A′
kξt)(xt − µ′

Xj
− A′

kξt)
!, (21)

µ′
Yj

=

∑T
t=1 γj(t)yt∑T
t=1 γj(t)

, (22)

Σ′
Yj =

∑T
t=1 γj(t)(yt − µ′

Yj
)(yt − µ′

Yj
)!

∑T
t=1 γj(t)

. (23)

3.3. Parameter generation with articulatory control

Similar to our previous work [6], the maximum likelihood cri-
terion is adopted and only the optimal HMM state sequence is
considered in the parameter generation. The generated articu-
latory features can be modified to control the characteristics of
synthetic speech. The detailed steps are introduced as follows:

1) Generate the optimal state sequence q∗ using the trained
duration distributions [2].

2) Generate the optimal articulatory features Y∗. In order
to simplify the calculation, only the articulatory stream
in the HMM is used, i.e., to maximize

P (Y|λ, q∗) ≈
T∏

t=1

N (yt; µYq∗t
,ΣYq∗t

). (24)

This can be solved using the conventional maximum
likelihood parameter generation (MLPG) algorithm [1].

3) Modify the articulatory features by designing function
f(·) based on phonetic rules and get Ŷ = f(Y∗).

4) Generate the optimal acoustic features X∗ according to
the modified articulatory features by maximizing

P (X|Ŷ, λ, q∗)

=
T∏

t=1

M∑

k=1

ζk(t)N (xt; Akξ̂t + µXq∗t
,ΣXq∗t

). (25)

where ζk(t) is calculated based on Ŷ. This is an MLPG
problem with mixtures of Gaussians at each frame. We
can solve it by either considering only the optimal mix-
ture sequence or using an EM-based iterative estimation
method [1].
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Figure 2: Average preference scores on the naturalness of three
system with 95% confidence interval.

4. Experiments
4.1. Database and System Construction

A multi-channel articulatory database was used in our experi-
ments. The acoustic waveform was recorded concurrently with
EMA data using a Carstens AG500 electromagnetic articulo-
graph. 1,263 phonetically balanced sentences were read by a
male British English speaker. 1,200 sentences were selected
for model training. The waveforms were in 16kHz PCM for-
mat with 16 bit precision. Six EMA sensors were located at
the tongue dorsum (T3), tongue body (T2), tongue tip (T1),
lower lip (LL), upper lip (UL), and lower incisor (LI) of the
speaker. Each sensor recorded spatial location in 3 dimensions
at a 200Hz sample rate: coordinates on the x- (front to back),
y- (bottom to top) and z- (left to right) axes (relative to viewing
the speaker’s face from the front). Because of the very small
movements in the z-axis, only the x- and y-coordinates of the
six sensors were used in our experiments, making a total of 12
static articulatory features at each frame.

40-order frequency-warped LSPs and an extra gain di-
mension were derived from the spectral envelop given by
STRAIGHT [7] analysis, with a frame shift of 5ms. A 5-state,
left-to-right HMM structure with no skips was adopted for the
unified acoustic-articulatory modelling. Besides the feature-
space transform tying method proposed in this paper, we also
evaluated an improved initialization method for the transform
matrices in the experiments. Three systems were constructed
and compared, which are

SYS A Baseline method using 100 context-dependent transform
matrices. Aj was initialized as a zero matrix for the first
iteration of EM re-estimation [6].

SYS B The same as SYS A except for the initialization strategy
for Aj . The initial Aj was estimated by fixing µXj

= 0
for each HMM state in the EM re-estimation.

SYS C Proposed method using 64 mixtures for model λ(G). The
same initialization strategy as SYS B was adopted.

4.2. Subjective evaluation

First, a preference test was conducted to compare the natural-
ness of the three systems. 20 sentences not existing in the train-
ing set were selected and synthesized by all three systems. 41
native English listeners took part in the test, which was con-
ducted in listening booths. Fig.2 shows the average preference
score of all the listeners. We see that there is no significant dif-
ference in naturalness among the three systems.

Then, we carried out a vowel quality modification experi-
ment to evaluate the effectiveness of these three systems in con-
trolling the characteristics of synthetic speech. Five monosyl-
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Figure 3: Vowel quality perception results (a) without articula-
tory modification, (b) modifying /E/ towards /I/, and (c) modify-
ing /E/ towards /2/.

labic words (“bet”, “hem”, “peck”, “ten”, “dead”) with vowel
/E/ were selected and embedded into the carrier sentence “Now
we’ll say ... again”. We tried to modify the vowel /E/ to be
perceived as the vowels /I/ and /2/ by manipulating the gen-
erated articulatory trajectory during synthesis. In our previous
work [6], we only modified the EMA dimensions corresponding
to the height of tongue with a fixed shift (-1.5cm to 1.5cm) to
change vowel /E/ to /I/ and /æ/. Although positive results were
achieved, the range of modification needed was in fact much
larger than the true difference between tongue positions when
pronouncing these vowels. In this experiment, the function f(·)
in the step 3) of Section 3.3 was designed to replace the gener-
ated trajectories of all EMA dimensions for the sentences with
vowel /E/ with the ones for vowel /I/ or /2/. We expect such test-
ing scheme can evaluate the speech character controlling abil-
ity of different systems when the ideal targets for articulatory
modification are known. 10 native English listeners were asked
to listen to the three groups (without articulatory modification,
modifying /E/ to /I/, and modifying /E/ to /2/) of synthesized
samples using each system and to write down the key word in
the carrier sentence they heard. Then, we calculated the per-
centages for how the vowels were perceived as shown in Fig.3.

From Fig.3(a), we see that these three systems have simi-
lar dictation correctness for synthetic vowel /E/ without articu-

latory modification. Figs.3(b) and (c) show the percentage of
stimuli perceived as the vowel that is the target of the modi-
fication is increased both by the new transform matrix initial-
ization strategy and the proposed feature-space transform tying
method. Comparing SYS A with SYS C, the percentage of re-
sponses in which the synthetic vowel was correctly perceived
as the target vowel increased from 24% to 76% when modify-
ing /E/ to /I/, and from 12% to 40% when modifying /E/ to /2/.
Although this improvement is significant, the final performance
of vowel modification towards /2/ is not so good. This is be-
cause there still exist limitations in our improved model struc-
ture when reconstructing acoustic features based on the modi-
fied articulatory features. As shown in Fig.1(b), the GMM mix-
ture index mt can change in response to the articulatory mod-
ification. However, this may introduce conflict with the HMM
state index qt and {µj ,Σj} which are still fixed and determined
by the context information beforehand.

5. Conclusions
We have presented a feature-space transform tying method for
unified acoustic-articulatory modelling, which is used to im-
prove the flexibility of HMM-based parametric speech synthe-
sis. Experimental results have proved the effectiveness of this
method in better describing the dependency between acous-
tic and articulatory feature streams, compared with the con-
ventional method where transform matrices are tied context-
dependently. On the other hand, the current model stucture still
needs improvement. To further alleviate the restriction of con-
text information and to better model the cross-stream depen-
dency in unified acoustic-articulatory model structure will be
the tasks of our future work.
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