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Articulatory Control of HMM-based Parametric
Speech Synthesis using Feature-Space-Switched

Multiple Regression
Zhen-Hua Ling, Member, IEEE, Korin Richmond, Member, IEEE, and Junichi Yamagishi

Abstract—In previous work we proposed a method to control
the characteristics of synthetic speech flexibly by integrating
articulatory features into a hidden Markov model (HMM) based
parametric speech synthesiser. In this method, a unified acoustic-
articulatory model is trained, and context-dependent linear
transforms are used to model the dependency between the two
feature streams. In this paper, we go significantly further and
propose a feature-space-switched multiple regression HMM to
improve the performance of articulatory control. A multiple
regression HMM (MRHMM) is adopted to model the distribution
of acoustic features, with articulatory features used as exogenous
“explanatory” variables. A separate Gaussian mixture model
(GMM) is introduced to model the articulatory space, and
articulatory-to-acoustic regression matrices are trained for each
component of this GMM, instead of for the context-dependent
states in the HMM. Furthermore, we propose a task-specific
context feature tailoring method to ensure compatibility between
state context features and articulatory features that are manip-
ulated at synthesis time. The proposed method is evaluated on
two tasks, using a speech database with acoustic waveforms and
articulatory movements recorded in parallel by electromagnetic
articulography (EMA). In a vowel identity modification task, the
new method achieves better performance when reconstructing
target vowels by varying articulatory inputs than our previous
approach. A second vowel creation task shows our new method
is highly effective at producing a new vowel from appropriate
articulatory representations which, even though no acoustic
samples for this vowel are present in the training data, is shown
to sound highly natural.

Index Terms—Speech synthesis, articulatory features, multiple-
regression hidden Markov model, Gaussian mixture model

I. INTRODUCTION

IN recent years, hidden Markov models (HMM) have
been successfully applied to acoustic modelling for speech

synthesis, and HMM-based parametric speech synthesis has
become a mainstream speech synthesis method [1], [2]. In
this method, the spectrum, F0 and segment durations are
modelled simultaneously within a unified HMM framework
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[1]. At synthesis time, these features are predicted from the
sentence HMM by means of a maximum output probability
parameter generation (MOPPG)1 algorithm that incorporates
dynamic features [3]. The predicted parameter trajectories are
then sent to a parametric synthesiser to reconstruct the speech
waveform. This method is able to synthesise highly intelli-
gible and smooth speech sounds [4], [5]. Another significant
advantage of this model-based parametric approach is that it
makes speech synthesis far more flexible compared to the con-
ventional unit selection and waveform concatenation approach.
Specifically, several adaptation and interpolation methods have
been applied to control the HMM’s parameters and so diversify
the characteristics of the generated speech [6]–[10]. However,
this flexibility relies upon data-driven machine learning algo-
rithms and is strongly constrained by the nature of the training
or adaptation data that is available. In some instances, though,
we would like to integrate phonetic knowledge into the system
and control the generation of acoustic features directly when
corresponding training data is not available. For example,
this phonetic knowledge could be place of articulation for a
specific phone, the differences in phone inventories between
two languages, or physiological variations among different
speakers. Unfortunately, it is difficult to achieve this goal
because the acoustic features used in conventional HMM-
based speech synthesis are typically the parameters that are
required to drive a speech vocoder, which do not enable fine
control in terms of the human speech production mechanism.

We have previously proposed a method to address this
problem and to achieve flexible control over HMM-based
speech synthesis by integrating articulatory features [11], [12].
Here, we use “articulatory features” to refer to the continuous
movements of a group of speech articulators,2 for example the
tongue, jaw, lips and velum, recorded by human articulography
techniques such as electromagnetic articulography (EMA)
[15], magnetic resonance imaging (MRI) [16] or ultrasound
[17]. In this method, a unified acoustic-articulatory model is

1This is often referred to as maximum likelihood parameter generation
(MLPG) in the literature. However, in accordance with the technical differ-
ence between “likelihood” (which interprets the probability distribution as a
function of the model parameters given a fixed outcome) and “probability”
(which interprets the probability distribution as a function of the outcome
given fixed model parameters), the term “output probability” is used in this
paper in place of “likelihood” to refer to the parameter generation criterion.

2In some literature, the term “articulatory features” may refer to the scores
for pre-defined articulatory classes, such as nasality or voicing, which can be
extracted from acoustic speech signals [13]. This kind of articulatory feature
has also been applied to expressive speech synthesis in recent work [14].
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trained and a piecewise linear transform is adopted to model
the dependency of the acoustic features on the articulatory
features. During synthesis, articulatory features are first gen-
erated from the trained model. The generation of acoustic
features and the characteristics of synthetic speech can then be
controlled by modifying these generated articulatory features
in arbitrary ways, for example in accordance with phonetic
rules. Experimental results have shown the potential of this
method for controlling the overall characteristics of synthe-
sised speech, as well as the identity of specific vowels [12].

The initial motivation for developing this method was in
fact two-fold: to gain articulatory control, of course, but
also to improve the accuracy of acoustic feature generation.
Consequently, both these aims influenced the model structure
we developed. However, in terms of optimising articulatory
control alone, we hypothesise there are some shortcomings
in this model structure which could be improved in order to
achieve even better control. First, in short, the articulatory fea-
tures are constrained to be generated from the unified acoustic-
articulatory model, which makes the integration of phonetic
knowledge into articulatory movement prediction somewhat
inconvenient. Second, the transform matrices between articu-
latory and acoustic features are trained for each HMM state
and are tied based on context using a decision tree as for
other model parameters. This may prove problematic when ar-
ticulatory features are modified by significant amounts during
synthesis because the fixed transform matrix may no longer be
appropriate for the new articulator positions. Third, the unified
acoustic-articulatory model is trained without considering the
specific task of articulatory control. The modified articulatory
features could conflict with the context information used in
model training and parameter generation.

To address these shortcomings, an improved method for
articulatory control over HMM-based parametric speech syn-
thesis is proposed in this paper. As the first improvement, a
multiple-regression hidden Markov model (MRHMM) [18] is
introduced to replace the unified acoustic-articulatory HMM
used in our previous work. This makes it possible to integrate
other forms of articulatory prediction model. The MRHMM
was initially proposed to improve the accuracy of acoustic
modelling for automatic speech recognition (ASR) by utilising
auxiliary features that are correlated with the acoustic features
[18]. The auxiliary features that have been used in this way
include fundamental frequency [18], emotion and speaking
style [19], for example. The MRHMM has also been applied to
HMM-based parametric speech synthesis, with sentence-level
style vectors being used as the explanatory variables [10]. In
this paper, we propose to treat articulator movements as the
external auxiliary features to help determine the distribution
of acoustic features.

As a second improvement, we propose a feature-space
regression matrix switching method for the MRHMM in
order to address the restriction that comes with context-
dependent regression matrix training for articulatory control.
In this method, a separate Gaussian mixture model (GMM) is
introduced to model the articulatory space, and the regression
matrices are estimated for each mixture component in this
GMM instead of for each HMM state. This idea is similar

to the switching system in the field of control systems, e.g.
[20], where impedance parameters are switched according to
the contact configuration during the assembly process.

Finally, as a third improvement, a strategy of task-specific
context feature tailoring is presented to avoid potential con-
flicts arising between state context information and the artic-
ulatory features that are generated and modified at synthesis
time.

The remainder of this paper is organised as follows. Section
2 gives a brief overview of the unified acoustic-articulatory
modelling method proposed in our previous work. Section
3 describes our proposed novel method in detail. Section 4
presents the experiments we have conducted and their results,
and Section 5 gives the conclusions we draw from this work.

II. UNIFIED ACOUSTIC-ARTICULATORY MODELLING

A. Model training

Our previous work took the general framework of HMM-
based parametric speech synthesis and integrated articulatory
features into the conventional model for acoustic features
by expanding the observed feature vectors [12]. Let X =
[x>1 , x>2 , ..., x>T ]> and Y = [y>1 , y>2 , ..., y>T ]> denote the parallel
acoustic and articulatory feature vector sequences of the same
length T . For each frame, the feature vectors xt ∈ R3DX and
yt ∈ R3DY consist of static parameters and their velocity
and acceleration components, where DX and DY are the
dimensions of static acoustic features and static articulatory
features respectively. The detailed definition of these dynamic
features may be found in [12]. The feature production model
used in this method is illustrated in Fig. 1. A piecewise
linear transform is added to the parameters of the HMM
(transform matrices Aj) to represent the dependency between
the acoustic features and the articulatory movements. During
model training, an HMM λ is estimated by maximising the
likelihood function of the joint distribution P (X,Y|λ), which
can be written as

P (X,Y|λ) =
∑

q

πq0

T∏
t=1

aqt−1qtbqt(xt, yt), (1)

bj(xt, yt) = bj(xt|yt)bj(yt), (2)
bj(yt) = N (yt;µYj

,ΣYj ), (3)

bj(xt|yt) = N (xt; Ajyt + µXj
,ΣXj

), (4)

where q = {q1, q2, ..., qT } is the state sequence shared by
the two feature streams; πj and aij represent initial state
probability and state transition probability; bj(·) is the state
observation probability density function (PDF) for state j;
N (;µ,Σ) denotes a Gaussian distribution with a mean vector
µ and covariance matrix Σ; and Aj ∈ R3DX×3DY is the linear
transform matrix for state j. This matrix is context-dependent
and tied to a given regression class using a decision tree, and
hence a globally piecewise linear transform is achieved. The
model parameters can be estimated using the EM algorithm,
as described in [12].



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING DRAFT 3
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Fig. 1. Feature production model used in our previous unified acoustic-
articulatory modelling method [12]. xt and yt are the acoustic and articulatory
feature vectors respectively at frame t. The definition of the parameters on
the arcs that represent the dependency relationship can be found in (3) and
(4).
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B. Parameter generation

A flowchart summarising the generation of acoustic features
with articulatory control is shown in Fig. 2. The MOPPG
algorithm, which embodies explicit constraints inherent in the
dynamic features [3], is employed to generate articulatory
and acoustic features from the trained model. In order to
control the characteristics of the synthetic speech flexibly,
the generated articulatory features may be modified according
to phonetic knowledge to reproduce acoustic parameters that
reflect those changes appropriately. The detailed formulae for
this parameter generation process were introduced in [12].

C. A discussion on articulatory control over synthesis

In previous experiments we have shown the method of
unified acoustic-articulatory modelling with cross-stream de-
pendency described above can achieve effective control over
the characteristics of the synthesised speech [12]. However,
we also note the degree of control that is possible with that
method has not yet fully met our expectations. For example,
one experiment in [12] demonstrated control over vowel iden-
tity through modification of tongue height. However, though
the experiment proved this modification to be effective and
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Fig. 3. Average position of EMA receivers on the tongue for the vowels
/E/, /I/, and /æ/ in the database used in [12]. Only the vowels in stressed
and accented syllables were selected to calculate the average positions.
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Fig. 4. Flowchart for the generation of acoustic features with articulatory con-
trol using the proposed Feature-Space-Switched MRHMM (FSS-MRHMM).

convincing, it was necessary to raise or lower the tongue
position by approximately 1.0 cm to achieve a clear transition
from vowel /E/ to /I/ or /æ/ [12]. This range of modification
is larger than the differences in tongue height among these
three vowels that we observe in the recorded database, as
shown in Fig. 3. In fact, as mentioned in Section I, we can
identify three aspects of the structure of the model presented
in [12] that in theory restrict or limit the scope of articulatory
control that is possible. We shall consider these three factors
in more detail next.

The first limitation arises from the fact that the articulatory
features are generated from the unified acoustic-articulatory
HMM, which is trained context-dependently and contains a
large number of parameters. At synthesis time, there are two
ways to effect articulatory control: by manipulating either i)
the articulatory PDF parameters or ii) the generated articula-
tory feature trajectories. Both these approaches have inherent
advantages and disadvantages. On one hand, for example,
it is relatively straightforward to modify the mean vectors
of Gaussian PDFs (e.g. to add an offset to the appropriate
articulatory PDF mean parameters to change the target position
of the tongue). On the other hand, it is less obvious how to
manipulate covariance matrices directly according to phonetic
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rules, or indeed how to modify mean and variance parameters
to obtain exactly the articulatory trajectories that are desired
after processing with the MOPPG algorithm. Meanwhile,
the second approach of modifying the generated articulatory
trajectories instead also becomes problematic for example if
the phonetic rules are not applied globally but to some specific
phones, because extra smoothing algorithms are necessary
to ensure the continuity and naturalness of the modified
articulatory trajectories. With such difficulties in mind, it is
interesting to note that there exist other forms of generative
model, such as target approximation models [21], [22], which
offer a model structure that is more compact and easier to
control than the HMM used for articulatory prediction in
[12]. Thus, to make it more convenient to control an HMM-
based synthesiser via articulation, it seems prudent to consider
separating the model for predicting articulatory movements
from the unified acoustic-articulatory HMMs.

The second limitation lies in the way the articulatory-
acoustic relationship is modelled. As mentioned in Section
II-A, a globally piecewise linear model is used to represent
this relationship, in the form of a number of (tied) state-
dependent linear transform matrices Aj in (4). For small
articulatory modifications, the local linear relationship dictated
by state index j is likely to remain appropriate. However,
with larger changes, as the modified articulatory features are
moved further from their initial starting point, it becomes less
reasonable to assume that the same linear relationship will be
appropriate. In fact, it may be that a significantly different local
linear transform becomes more appropriate, but the model
structure in [12] is unable to react to such changes in the
generated articulatory features, and is instead unfortunately
constrained to use the same fixed transform matrices dictated
by the state-dependent context features.

Finally, as the third limitation, it should also be noted in
(4) that not only are the articulatory-to-acoustic transform
matrices Aj fixed according to the state context features, but
so too are the acoustic distribution parameters µXj

and ΣXj
.

Hence, modifying the generated articulatory trajectories at
synthesis time (using either approach above) risks introduc-
ing a conflict with this HMM state context information. In
some instances, for example, we might wish to modify the
generated articulatory features to a relatively large extent, so
as to change the identity of a vowel or to generate a new,
significantly different speaking style. However, in attempting
such large modifications we introduce a conflict, since the
modified articulatory features will be incompatible with the
other state-dependent model parameters in (4), which will still
correspond to the context features of the acoustic unit before
the articulatory modification.

III. FEATURE-SPACE-SWITCHED MRHMM FOR
ARTICULATORY CONTROL OF SPEECH SYNTHESIS

In order to overcome the shortcomings in our previous
approach, an improved method to gain articulatory control over
HMM-based synthesis is proposed in this paper. Fig. 4 gives
a flowchart illustrating how acoustic features are generated
in this new method. In summary, this method proposes to

1tq  tq j 1tq 

1tx tx 1tx

. . .

, }j j j   

. . .

1ty ty 1ty

Fig. 5. Feature production model of the conventional MRHMM. xt and
yt are the observed feature vector and auxiliary feature vector at frame t
respectively. The definition of the parameters on the arcs that represent the
dependency relationship can be found in (5) and (6).

use a feature-space-switched MRHMM (FSS-MRHMM) for
acoustic modelling. Unlike our previous approach, the articu-
latory features are used as external (or exogenous) explanatory
variables for regression. Meanwhile, instead of tying the
regression matrices in the MRHMM in a state-dependent way,
we tie them within the articulatory space, which ultimately
allows adaptive regression matrix switching in response to
articulatory modification. Finally, subsets of context features
for context-dependent model training are specially selected, or
“tailored”, so as to avoid conflict between context-dependent
model parameters and modified articulatory features at synthe-
sis time. The details of this proposed method will be discussed
in greater depth next.

A. MRHMM for HMM-based parametric speech synthesis

As illustrated in Fig. 4, the unified acoustic-articulatory
HMM for acoustic modelling in Fig. 2 is replaced by an
MRHMM together with a separate external articulatory pre-
diction model. At this stage, we are focussing on the acoustic
modelling part; the external articulatory prediction model is
not within the primary scope of this paper, and will instead
be the subject of future work. For the experiments presented
in this paper, we have chosen to use a baseline articulatory
prediction method that was readily available to us, and which
is described further in Section IV.

We shall begin by briefly reviewing the MRHMM approach
to acoustic modelling. This model was initially proposed to
model acoustic features better by utilising auxiliary features
[18]. Its feature production model is shown in Fig. 5. The
difference between this model and standard HMMs is that
an auxiliary feature sequence Y is introduced to supplement
the state sequence q for determining the distribution of the
acoustic feature sequence X. In this paper, the auxiliary feature
sequence Y is comprised of the articulatory trajectories. Math-
ematically, the distribution of X in the conventional MRHMM
can be written [18] as

P (X|λ,Y) =
∑

q

πq0

T∏
t=1

aqt−1qtbqt(xt|yt), (5)

bj(xt|yt) = N (xt; Ajξt + µj ,Σj), (6)

where X, Y, πj , aij , bj(·) and N (;µ,Σ) have the same
definition as in (1)-(4); q = {q1, q2, ..., qT } is the state
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sequence for X; ξt =
[
y>t , 1

]> ∈ R3DY +1 is the expanded
articulatory feature vector; Aj ∈ R3DX×(3DY +1) is the re-
gression matrix for state j and is tied to a given regression
class using a decision tree. Eq. (6) is similar to (4) in the
unified acoustic-articulatory modelling, whereby Ajξt denotes
a transform from articulatory to acoustic features and µj

represents the mean of the transform residuals. Research on
speech production informs us that the relationship between
acoustic and articulatory features is complex and nonlinear
in form. Here, a piecewise linear transform is adopted to
approximate this nonlinear relationship. The effectiveness of
this approximation has been demonstrated in previous work
[12], [23], [24]. Eq. (6) is also similar to the state PDF in
cluster adaptive training (CAT) of HMMs [25], where each
column of Aj corresponds to the mean vector of one cluster
and ξt corresponds to the cluster weight vector. The difference
is that ξt in the MRHMM is observable, whereas the cluster
weight vector in CAT needs to be estimated for each speaker
(or other factor).

To build the MRHMM-based parametric speech synthesis
system in this paper, the procedures of standard HMM-
based synthesiser training [2] are first followed in order to
initialise model parameters by maximising P (X|λ) without
using articulatory features. The acoustic features consist of F0
and spectral parameters extracted from the waveforms of the
training set. A multi-space probability distribution (MSD) [26]
is applied for F0 modelling to address the problem that F0 is
only defined for voiced speech segments. Context-dependent
HMMs are trained using richly-defined contexts that include
detailed phonetic and prosodic features [2]. A decision-tree-
based model clustering technique that uses the minimum
description length (MDL) criterion [27] is adopted to deal
with the data-sparsity problem and to estimate the parameters
of models whose context description is missing in the training
set. Then, the estimated mean vector and covariance matrix
for each state are used as the initial values of µj and Σj in
an MRHMM. The regression matrix Aj is initialised as a zero
matrix. These parameters are iteratively updated to maximise
P (X|λ,Y) by introducing articulatory features and using the
EM algorithm3. The detailed formulae are to be found in [18].
Next, a state alignment to the acoustic features is performed
using the trained MRHMM in order to train context-dependent
PDF parameters for state duration prediction [1].

At synthesis time, the maximum output probability cri-
terion [3] is adopted to generate acoustic features. For the
purpose of simplification, only the optimal HMM state se-
quence is considered. First, the optimal state sequence q∗ =
{q∗1 , q∗1 , . . . , q∗T } is predicted using the trained duration distri-
butions [2]. Given auxiliary feature sequence Y, the optimal
acoustic feature sequence X∗ is generated by maximising

P (X|λ,Y, q∗) =

T∏
t=1

N (xt; Aq∗t
ξt + µq∗t

,Σq∗t
). (7)

This can be solved using the conventional MOPPG algorithm

3For training the MRHMMs, X only contains the spectral feature stream.
The relationship between the articulatory features and the F0 features is not
considered.

1tq  tq j 1tq 

1tx tx 1tx

. . .

1tm tm k 1tm

, }j j 

kA

( ) k t

. . .

1ty ty 1ty

Fig. 6. Feature production model used in the MRHMM with feature-space
regression matrix switching proposed here. xt and yt are the acoustic and
articulatory feature vectors at frame t. The definition of the parameters on the
arcs that represent the dependency relationship can be found in (10) and (11).

[3]. The only difference is that the mean vector at each frame
is calculated as Aq∗t

ξt + µq∗t
instead of µq∗t

.

B. Feature-space-switched MRHMM

In the approach described in Section III.A, the regression
matrices Aj are tied to a number of regression classes to
simulate a globally nonlinear transform from articulatory to
acoustic features. These regression classes are constructed in a
“hard” splitting manner by using the decision trees for acoustic
model clustering. As shown in (6), a unique regression matrix
Aj is determined by the state index j of the acoustic HMMs,
which is independent of the articulatory feature vector ξt. In
order to intuitively reflect the modifications to the articulatory
features at synthesis time, a better way to construct regression
classes is necessary. First, the regression classes should be
formed directly using the articulatory features since the mod-
ified articulatory features may represent context “meanings”
that differ from that of the current state of the acoustic HMMs,
as discussed in Section II.C. Second, the regression classes
should be “soft” since the articulatory features are continuous
variables. Therefore, a new approach to form the regression
classes in articulatory feature space is proposed and applied to
the MRHMM in this section, which we call a “feature-space-
switched MRHMM”.

The feature production model of this method is illustrated
in Fig. 6. A GMM model λ(G) containing M mixture compo-
nents is trained in advance using only the articulatory stream
of the training data to yield M clusters in the articulatory
space. Then, a regression matrix is trained for each mixture
component of λ(G) instead of for each state of the MRHMM
as shown in Fig. 5. Mathematically, we rewrite (6) as

bj(xt|yt) =

M∑
k=1

P (xt,mt = k|yt, qt = j, λ, λ(G)), (8)

=

M∑
k=1

ζk(t)P (xt|yt, qt = j,mt = k, λ, λ(G)), (9)

where mt denotes the mixture index of λ(G) for the articu-
latory feature vector at frame t; the HMM state sequence q
and the GMM mixture sequence m = {m1,m2, ...,mN} are
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reasonably assumed to be independent of each other, so that

P (mt = k|yt, qt = j, λ, λ(G)) = P (mt = k|yt, λ(G))

= ζk(t). (10)

For each Gaussian mixture, the dependency between the
acoustic features and the auxiliary articulatory features is
represented by

P (xt|yt, qt = j,mt = k, λ, λ(G))

= N (xt;Akξt + µj ,Σj), (11)

where Ak ∈ R3DX×(3DY +1) is the regression matrix for the
k-th mixture of λ(G). Note that an extra Gaussian mixture
component index sequence mt is introduced to determine
the regression matrix for each frame, whereas (6) uses state
index j to determine the regression matrix. Furthermore, we
can interpret ζk(t) as a weight that varies according to the
articulatory features, and which changes how each transform
matrix is weighted, or “blended” together, according to (9).
It is in this way that “soft” regression classes are achieved.
A similar model structure can be found in subspace GMM
modelling [28], where all HMM states share the same GMM
structure and the state-dependent subspace vectors play the
role of external articulatory features in our method.

To train the HMM parameter set {Ak,µj ,Σj}4, we substi-
tute (8)-(11) into (5) and get

P (X|λ,Y) =
∑

q

∑
m

P (X, q,m|λ,Y), (12)

where

P (X, q,m|λ,Y) = πq0

T∏
t=1

aqt−1qtζmt
(t)·

N (xt; Amt
ξt + µqt ,Σqt). (13)

The EM algorithm is adopted to estimate the parameter set
that maximises (12). The auxiliary function is defined as

Q(λ, λ′)

=
∑

q

∑
m

P (X, q,m|λ,Y) logP (X, q,m|λ′,Y) (14)

=

N∑
j=1

M∑
k=1

T∑
t=1

γj(t)ζk(t) logN (xt; A′kξt + µ′j ,Σ
′
j) +K,

(15)

where K is a constant term that is independent of the model
parameter set; γj(t) = P (qt = j|λ,X,Y) is the state occupan-
cy probability of MRHMM state j at time t; N is the total
number of HMM states.

In order to re-estimate the transform matrix A′k for each
GMM mixture, we set ∂Q(λ, λ′)/∂A′k = 0 and get

N∑
j=1

T∑
t=1

γj(t)ζk(t)Σ−1j (xt − µj)ξ
>
t

=

N∑
j=1

T∑
t=1

γj(t)ζk(t)Σ−1j A′kξtξ
>
t . (16)

4In this work, the covariance matrices Σj of each HMM state are set to
be diagonal as a simplification.

This equation can be simplified as

Z =

T∑
t=1

V(t)A′kD(t), (17)

where

Z = {zil} =

N∑
j=1

T∑
t=1

γj(t)ζk(t)Σ−1j (xt − µj)ξ
>
t , (18)

V(t) = diag
{
v
(t)
ii

}
=

N∑
j=1

γj(t)Σ
−1
j , (19)

A′k =
{
a′ip
}
, (20)

D(t) =
{
d
(t)
pl

}
= ζk(t)ξtξ

>
t , (21)

According to (17), each element in Z can be calculated as

zil =

T∑
t=1

3DY +1∑
p=1

v
(t)
ii a
′
ipd

(t)
pl =

3DY +1∑
p=1

a′ip

T∑
t=1

v
(t)
ii d

(t)
pl . (22)

Therefore, the transform matrix A′k can be updated line by
line. For the i-th line,

a′i = G(i)−1zi, (23)

where zi =
[
zi1, zi2, ..., zi(3DY +1)

]>
; a′i = [a′i1, a

′
i2, ...,

a′i(3DY +1)

]>
; G(i) = {g(i)pl } and g(i)pl =

∑T
t=1 v

(t)
ii d

(t)
pl .

The re-estimation formulae for the other model parameters
can be derived by setting ∂Q(λ, λ′)/∂λ′ = 0, such that

µ′j =

∑M
k=1

∑T
t=1 γj(t)ζk(t)(xt − A′kξt)∑T

t=1 γj(t)
, (24)

Σ′j =
1∑T

t=1 γj(t)

M∑
k=1

T∑
t=1

γj(t)ζk(t)

· (xt − µ′j − A′kξt)(xt − µ′j − A′kξt)
>, (25)

At synthesis time, the parameter generation criterion in (7)
is modified to

P (X|Y, λ, q∗) =

T∏
t=1

M∑
k=1

ζk(t)N (xt; Akξt + µq∗t
,Σq∗t

), (26)

where ζk(t) is calculated based on the input articulatory
features Y. This is an MOPPG problem with mixtures of
Gaussians at each frame. We can solve it either by using an
EM-based iterative estimation method [3] (thus retaining the
effect of “soft” clustering at synthesis time) or by considering
only the optimal mixture sequence as a simplification.

C. Task-specific context feature tailoring

In a context-dependent MRHMM, the motivation for using
context information and for introducing auxiliary features is
the same. The aim is to improve the accuracy of acoustic
modelling by taking into account external factors that could
affect the distribution of acoustic features. When applying
an MRHMM to automatic speech recognition, the auxiliary
features supplement the context information to influence the
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TABLE I
EXAMPLES OF THE TASK-SPECIFIC CONTEXT FEATURE TAILORING. “SEGMENTAL FEATURES” REFER TO THE IDENTIFIERS OF CURRENT AND

SURROUNDING PHONES. “PROSODIC FEATURES” REFER TO THE CONTEXT FEATURES RELATING TO PROSODY, SUCH AS PROSODIC BOUNDARIES, STRESS
AND ACCENT POSITIONS.

task full context features base subset control subset

vowel quality control segmental features +
prosodic features

segmental features without
vowel ID + prosodic features vowel ID

speaker quality control
segmental features +
prosodic features +

speaker ID

segmental features +
prosodic features speaker ID

speech synthesis in noise
segmental features +
prosodic features +
noise level/shape

segmental features +
prosodic features noise level/shape

acoustic distribution at each HMM state. These auxiliary fea-
tures are observable and fixed at decoding time. However, for
MRHMM-based parametric speech synthesis with articulatory
control, the articulatory features are generated at synthesis time
and may be manipulated to reflect any phonetic knowledge we
might wish to impart. This introduces the potential for conflict
between the manipulated articulatory features and the context
features, as discussed in Section II.C. Although the feature-
space-switched MRHMM in Section III.B can determine the
regression matrices without using context information, µj and
Σj in (11) are still dependent upon context.

Ultimately, the purpose of using articulatory features here
is not to refine the distribution of acoustic features for a given
context description, but to partially replace the function of
the context features in order to gain flexibility in determining
the distribution of acoustic features. Therefore, to avoid any
conflict, we propose a strategy of task-specific context feature
tailoring. Under this strategy, the full set of context features is
separated into a base subset and a control subset. Only those
features in the base subset are used for the context-dependent
model training, whereas the control subset contains the context
information that can be substituted by the articulatory features.
In this way, we aim to ensure the context features and
the articulatory features are compatible and complementary.
Deciding which features to put in the base subset depends on
the specific task in hand. Several examples of sets of context
features tailored for specific tasks are given in Table I.

Generally, the more context features that can be replaced
by adding articulatory features, the greater the flexibility we
stand to gain in terms of articulatory control. The extreme
case would be to discard all context information and build
an articulatory-to-acoustic mapping at feature sequence level
to gain complete control over the generation of acoustic
features using articulatory inputs. However, it should be noted
that performance will depend heavily on the consistency and
scope of the articulatory features available. For example, it
would be impossible to control the degree of nasality using
EMA data in which a sensor coil had not been placed on
the velum. Relatively recent work shows the accuracy of
purely articulatory-to-acoustic mappings is still unsatisfactory
[29], and this suggests that the articulatory features captured
using current articulography techniques may not yet provide

a description of the articulatory process that is fully adequate.
But the aim of our work is to achieve the desired flexibility
without degrading the naturalness of the synthetic speech
significantly. Hence, the proposed context-tailoring approach
represents a compromise between using the full set of context
features and building a pure articulatory-to-acoustic mapping,
and effectively boils down to finding a trade-off between
naturalness and flexibility. In principle, higher quality and
naturalness can be achieved if more context features are
reserved in the base subset. Conversely, keeping fewer context
features in the base subset can give greater flexibility in terms
of articulatory control over the synthetic speech. In time, it
is possible more elaborate articulatory control will become
achievable with the development of new articulography and
data processing techniques. But for now any limitations inher-
ent in the articulatory data available make it more difficult to
move context features into the control subset and still retain
full naturalness in the synthetic speech.

IV. EXPERIMENTS

A. Database

The same multi-channel articulatory database used in our
previous work [12] was adopted for the experiments of this
paper. This database has been released with a free licence
for research use. As far as we know, it provides the largest
amount of data from a single speaker, and with the best sensor
position consistency, compared to any other articulatory corpus
that is publicly available [30]. It contains acoustic waveforms
recorded concurrently with EMA data using a Carstens AG500
electromagnetic articulograph. A male British English speak-
er was recorded reading around 1300 phonetically balanced
sentences. The waveforms used were in 16kHz PCM format
with 16 bit precision. Six EMA sensors were placed on the
speaker’s articulators, at the tongue dorsum (T3), tongue body
(T2), tongue tip (T1), lower lip (LL), upper lip (UL), and
lower incisor (LI). Each sensor recorded spatial location in
3 dimensions at a 200Hz sample rate: coordinates on the
x- (front to back), y- (bottom to top) and z-(left to right)
axes (relative to viewing the speaker’s head from the front).
Because the movements in the z-axis were small, only the
x- and y-coordinates of the six sensors were used in our
experiments, making a total of 12 static articulatory features
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TABLE II
SUMMARY OF DIFFERENT SYSTEMS USED IN THE EXPERIMENTS.

Label
Model Structure

HMM Context Features Regression Matrix

STD-F standard full N/A

UNI-FC unified full context-dependent

MR-FC MRHMM full context-dependent

MR-FF MRHMM full feature-space-switched

MR-TF MRHMM tailored feature-space-switched

in each frame. The static acoustic features were composed
of F0 and 40-order frequency-warped LSPs [5] plus an extra
gain dimension, which were derived using STRAIGHT [31]
analysis. The frame shift was set to 5ms.

B. Vowel modification task

1) Experimental conditions: As a first step to evaluating
controllability in the various systems described above, we
chose the task of changing the perceptual identity of one
vowel type into another. This control would potentially be
useful for computer-assisted language learning applications,
or human perception experiments in phonetic research, for
example. Five acoustic models were trained and compared in
this experiment. Descriptions of these models are provided
in Table II. Selecting this group of systems allowed us to
evaluate the three major aspects of the proposed approach,
while ensuring perceptual tests remained within practical
limitations. We selected 1200 sentences from the database
for model training, and the remaining 63 sentences were
used as a test set. A five-state, left-to-right HMM structure
with no skips was adopted to model the acoustic features.
Diagonal covariance matrices were used for all five systems.
The STD-F system was trained following the conventional
HMM-based parametric speech synthesis approach [2]. The
UNI-FC system was identical to the FD system in [12], where
100 context-dependent transform matrices were used to model
the relationship between articulatory and acoustic features.

The MR-FC, MR-FF, and MR-TF systems were trained
as described in Section III. As for the UNI-FC system, the
regression matrices in these three systems were defined as
three-block matrices corresponding to the static, velocity and
acceleration components of the feature vector in order to
reduce the number of parameters that needed to be estimated.
The task-specific context feature tailoring for the MR-TF
system followed the scheme listed in the first row of Table
I, where vowel ID is used as the control subset of the context
features. For the MR-FC system, the number of regression
matrices was set to 100 in order to match the UNI-FC system.
In the MR-FF and MR-TF systems, the optimal numbers of
GMM mixture components for the feature-space regression
matrix switching were determined using the minimum de-
scription length criterion [27]. Here, the description length is
defined as

D(λ) ≡ − logP (X|λ,Y) +
1

2
D(λ) logG+ C (27)
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Fig. 7. Description length per frame on the training set with varying numbers
of regression matrices for the a) MR-FF and b) MR-TF systems in the vowel
identity modification task.

where logP (X|λ,Y) is the log likelihood function of the
model for the training set; D(λ) is the dimensionality of the
model parameters; G is the total number of observed frames in
the training set; C is a constant. Considering the three-block
matrix structure of Ak, D(λ) = 3MDX(DY + 1) +CD, where
CD is a constant that is independent from the number of mix-
tures M for each system. Ignoring the constant components in
(26), we calculated the average description length per frame
on the training set as

D̄(λ) = − 1

T
logP (X|λ,Y) +

3

2T
MDX(DY + 1), (28)

where T is the number of frames in training feature sequence
X. The results for the MR-FF and MR-TF systems with
M = 8, 16, 32, 64, 128 are shown in Fig. 7, from which we
see that M = 64 leads to the minimum description length
for both systems. Thus, we used 64 Gaussian mixtures for
λ(G) and trained the regression matrices of the MRHMM for
each mixture component in these two systems. For the MR-FF
and MR-TF systems, only the optimal mixture sequence was
considered when solving (26) during parameter generation.

In our previous work [12], monosyllabic words were em-
bedded into a carrier sentence to conduct the vowel identi-
ty modification experiment. However, these sentences were
composed artificially and had no corresponding natural acous-
tic and articulatory recordings. Therefore, we found it was
not possible to guarantee the appropriateness of the input
articulatory features for synthesising the target vowels and to
calculate the generation error of the modified acoustic features
objectively. Instead, the 63 sentences in the test set of the
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Fig. 8. LSP RMSEs for different systems and types of phone in the
vowel identity modification experiment. “vowels-ex-/E/” indicates all vowels
excluding the source vowel /E/ in the modification. The label Ref. represents
the acoustic features generated using the STD-F system and the original
context features without vowel replacement. For the UNI-FC, MR-FC, MR-
FF, and MR-TF systems, the a) natural and b) generated articulatory features
were used respectively.

recorded multi-channel corpus were used to create the test
samples in the experiment here.

Each sentence in the test set was first subjected to standard
front-end text analysis. Next, all vowels in the resulting tran-
scriptions were replaced with the vowel /E/, and the full con-
text features were calculated for these modified transcriptions
in the standard way. These sentences containing only the single
vowel type were then synthesised using the five systems listed
in Table II respectively. Obviously, the speech synthesised
using the STD-F system contained no vowels other than /E/.
For the other four systems, the task was to modify the instances
of vowel /E/ in the synthetic speech to different target vowels
by imposing the articulatory features corresponding to the
original transcription for these test sentences.

2) Objective evaluation: The difference between the gen-
erated acoustic features after vowel modification and the
natural recordings of these test sentences was adopted as
an objective measure to evaluate the performance of each
system in the vowel identity modification task. Root mean
square error (RMSE) between two LSP sequences [12] was
used to quantify this difference. To simplify the calculation of
RMSE, the LSPs were generated using state durations derived
from state alignment against the natural speech performed
using each system. The resulting LSP RMSEs for different
systems and different types of phone are shown in Fig. 8,
where the label Ref. denotes the acoustic features generated

using the STD-F system and the original context features
without vowel replacement.5 The natural articulatory inputs
were derived from the articulatory channel of the recorded
database. The generated articulatory features were predicted
based on the original phone transcription of the test sentences.
For the UNI-FC system, the articulatory components of the
unified acoustic-articulatory HMMs were used to generate
the articulatory features according to the method proposed in
our previous work [12]. As mentioned in Section III.A, the
articulatory prediction model in Fig. 4 is not the emphasis
of this paper. Thus, we adopted our HMM-based articulatory
movement prediction method [32] for the three MRHMM-
based systems. This method is similar to conventional HMM-
based parametric speech synthesis. Context-dependent HMMs
are trained using only the articulatory features of the train-
ing set, which consist of static, velocity and acceleration
components. At synthesis time, articulatory movements are
predicted from the input text using the trained models and the
MOPPG algorithm. Here, full context features were used for
training the articulatory HMM, and the generated articulatory
features were synchronised with the acoustic features at state
boundaries.

In Fig. 8, the RMSEs observed when modifying /E/ to
non-/E/ vowels are of most interest. Comparing the results
of the STD-F and Ref. systems in Fig. 8, we find that
replacing all vowels to /E/ increases the prediction error for
the acoustic features greatly, especially for the non-/E/ vowels
(from 0.607 to 1.031). This is clearly to be expected, since
the acoustic parameter generation is wholly dictated by the
context information in standard HMM-based speech synthesis
and different vowels have significantly different acoustic re-
alisation. Using the articulatory features corresponding to the
target phone transcription, the prediction errors of the UNI-FC
system are much smaller than the STD-F system, especially
for the non-/E/ vowels (from 1.031 to 0.877 with natural
articulatory features, and to 0.896 with generated articulatory
features). This demonstrates the effectiveness of our previous
approach using unified acoustic-articulatory HMMs [12] for
vowel identity modification. The performance of the MR-FC
system is close to the UNI-FC system when either natural
or generated acoustic features are used. This is reasonable
because the model structures of these two systems are similar;
the only difference is that the likelihood of the articulatory
features is not part of the model training criterion for the MR-
FC system, as shown in Fig. 5 and (5). On the other hand, the
vowel identity modification results of both the UNI-FC and
MR-FC systems are still unsatisfactory because the RMSEs
of these two systems for the non-/E/ vowels are significantly
higher than for the Ref. system which utilises the target phone
transcription for synthesis.

Meanwhile, Fig. 8 also shows that both the feature-space-
switched MRHMM model structure and the task-specific con-
text feature tailoring method proposed in this paper further
improve the performance of the MR-FC system in vowel
identity modification. When natural articulatory features are

5Some examples of the synthetic speech used in the vowel modifica-
tion experiment can be found at http://staff.ustc.edu.cn/~zhling/MRHMM-
EMA/demo.html.
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Fig. 9. The EMA and LSP prediction errors for different phones given by
the MR-TF system in the vowel identity modification task.

used as the explanatory variables of multiple regression, the
LSP RMSE observed when modifying /E/ to non-/E/ vowels
decreases from 0.853 (MR-FC) to 0.782 (MR-FF) and 0.614
(MR-TF) respectively. The LSP RMSEs for the MR-TF system
are almost the same as for the Ref. system, which means that
the target vowels can be synthesised as accurately as with
standard HMM-based speech synthesis by modifying the /E/
source vowels using appropriate articulatory inputs. Compar-
ing Fig. 8 a) and Fig. 8 b), we find that the performance
of all the MRHMM-based systems degrades when the natural
articulatory features are replaced with the generated ones. This
means the appropriateness of input articulatory features plays
an important role in our proposed method. The performance
of the HMM-based articulatory movement prediction method
used in this experiment still needs improvement because the
generated trajectories are over-smoothed, due to the aver-
aging effects of HMM modelling and parameter generation
algorithm. A detailed analysis on this articulatory movement
prediction method can be found in [32]. In the MR-TF system,
the average RMSE of EMA feature prediction is 1.107 mm
and the average correlation coefficient between the natural
and the predicted EMA features is 0.8037. We also examined
the relationship between EMA prediction error and the LSP
RMSE of the MR-TF system for different phones. The results
are shown in Fig. 9. We can observe a positive correlation
between these two error types, with a correlation coefficient
of 0.431. Therefore, improving the accuracy of articulatory
movement prediction is essential in order to achieve better
controllability over the synthetic speech.

3) Subjective evaluation: In addition to using the objective
error metrics described above, we have also conducted forced-
choice listening tests to evaluate performance on the vowel
modification task subjectively. Six groups of systems were
compared, and the definition of the systems in each group
is presented in Fig. 10. Fifteen sentences were selected from
the test set and synthesised by both systems in each test group.
Each of these pairs of synthetic sentences were evaluated in
random order by at least twenty native English listeners in
listening booths. The listeners were asked to identify which
sentence in each pair sounded more natural. We calculated
the average preference scores with 95% confidence intervals
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Fig. 10. Average preference scores with 95% confidence intervals in the
forced-choice listening tests of the vowel identity modification task. “NAT”
and “GEN” in brackets refer to the use of natural or generated articulatory
features respectively.

for the six pairs of systems and Fig. 10 shows the results in
detail. From Figs. 10 a) and b), we see that the naturalness
of the UNI-FC and MR-FC systems is much worse than that
of the Ref. system, which means the modification from /E/
to non-/E/ vowels is not achieved ideally in our baseline
system. However, Fig. 10 c) shows that there is no significant
difference in naturalness between the Ref. system and the MR-
TF system with natural articulatory inputs. The effectiveness
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of our proposed methods, including feature-space regression
matrix switching and task-specific context feature tailoring,
are proved by Figs. 10 d) and e) respectively. However, using
generated articulatory features degrades the naturalness of the
MR-TF system significantly as shown in Fig. 10 f). These
findings are consistent with the conclusions drawn from the
objective evaluation results shown in Fig. 8.

C. Vowel creation task

Having identified the proposed MR-TF system as the best
system in the first task, we devised a second task to further
demonstrate the controllability offered by this system. This
was a vowel creation task, whereby the aim was to create a
new vowel without observing acoustic data for it in the training
data set. This is potentially useful for applications such as
building voices for different accents of a language, or cross-
language speaker adaptation, for example. We simulated the
scenario of vowel creation by selecting a target vowel from
the English phone set and removing all sentences containing
this target vowel from the training set. Vowel /2/ was selected
as the target vowel in our experiment, and 809 sentences in
the database which contain no instances of this vowel were
selected for training. 50 sentences were selected randomly
from the remaining 454 sentences to form a test set. The STD-
F and MR-TF systems listed in Table II were trained using this
specially designed training set. In the MR-TF system, the task-
specific context feature tailoring was conducted in the same
way as for the vowel modification task. Again, the optimum
number of GMM mixture components was identified using the
minimum description length criterion, and this was found to
be 64 components.

The sentences in the test set were synthesised using the two
systems. For the MR-TF system, both natural and generated
articulatory features were evaluated.6 The HMM-based articu-
latory prediction model used in the vowel identity modification
task, which was trained using the full database and full context

6Again, samples of the synthetic speech used in the vowel cre-
ation experiment are available at http://staff.ustc.edu.cn/~zhling/MRHMM-
EMA/demo.html.

0

00

00

00

00

00

00

00

00

00

000

/// /// /// /// ///

)
)

))
)

)
))

)
)

))
)

))
)

)
))

)
)

))
)

)

///

///

///

///

ssssss

DDD-F RR-DF(NNN)

Fig. 12. Vowel identity perception results for synthesising different vowels
using the STD-F system and creating vowel /2/ by articulatory control using
the MR-TF system.

features, was reused here. Acoustic feature prediction error
for different types of phone was calculated and is shown in
Fig. 11. From this figure, we see that the STD-F system has
much higher LSP RMSE for /2/ than for the other vowels and
consonants, because the acoustic data for /2/ was not available
during training. In contrast, the MR-TF system can predict
the acoustic features of the /2/ vowel much more accurately,
even though the acoustic features of this vowel were unseen
at training time. This is an important and very promising
result that clearly demonstrates the flexibility of the proposed
model. Its accuracy at predicting LSP features for other vowels
and consonants is very close to that of the STD-F method
when the natural articulatory features are given. Similar to
the observations made in the vowel identity modification task,
using generated articulatory movements degrades the accuracy
of the MR-TF system at predicting acoustic features.

A vowel identity perception test was also carried out to
further evaluate the effectiveness of creating the target /2/
vowel. Five monosyllabic words (“but”, “hum”, “puck”, “tun”,
“dud”) containing the /2/ vowel were selected and embedded
within the carrier sentence “Now we’ll say ... again”. These
sentences were synthesised using the STD-F system and the
MR-TF system respectively. Because recordings of natural
articulatory movements for these sentences were not avail-
able, the articulatory features generated from the HMM-based
articulatory prediction model were adopted as an alternative
in the acoustic feature generation procedure of the MR-TF
system. For the purpose of comparison, we substituted the
vowel /2/ in the five monosyllabic words with /E/, /I/ and
/æ/, and then synthesised the respective test sentences using
the STD-F system. Thus, we created twenty-five stimuli for
the vowel identity perception test. Thirty-two native English
listeners were asked to listen to these stimuli and to write
down the key word in the carrier sentence they heard. Then, we
calculated the percentages for how the vowels were perceived.
These results are shown in Fig. 12. We see that only 35% of
the synthesised vowels /2/ were perceived correctly using the
STD-F system, due to the lack of acoustic training samples
for this vowel. This percentage is above chance level because
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the phonetic characteristics of the /2/ vowel were still taken
into account when designing the question set for the decision-
tree-based model clustering during context-dependent model
training. Using the MR-TF system and the generated articu-
latory features, this percentage increased to 66.25%, which
is close to the perception accuracy of synthesising vowel /E/
(68.75%) and /æ/ (66.25%) using the STD-F system. Again,
this demonstrates the MR-TF system is able to generate a new
vowel accurately from appropriate articulator settings, which
further proves the flexibility of the articulatory control offered
by this system.

V. CONCLUSION

In this paper, we have presented an improved acoustic mod-
elling method for imposing articulatory control over HMM-
based parametric speech synthesis. In contrast to the unified
acoustic-articulatory modelling used in our previous work, we
have employed the framework of the multiple regression HMM
to model the influence of the articulatory features on the gener-
ation of acoustic features. In this way, the articulatory features
can be predicted using a separate articulatory prediction model,
in which it is easier to integrate phonetic knowledge than
with an HMM. A method involving feature-space regression
matrix switching and a strategy of task-specific context feature
tailoring has been proposed to improve the performance of
the conventional MRHMM in dealing with the manipulated
articulatory features. We have used a database with parallel
waveform and EMA data in our experiments to evaluate this
novel approach. Our results have shown the proposed method
can achieve better control in vowel identity modification than
the unified acoustic-articulatory modelling with full context
features and context-dependent transform tying. Furthermore,
our experiments have proved this method is effective in
creating a new vowel, for which there are no acoustic samples
in the training set, from appropriate articulatory features.

So far, our experiments have focussed on either modifying
or creating isolated vowels. To apply the proposed framework
to control the characteristics of synthetic speech at the word,
sentence, or speaker level is in principle also possible, though
there are certain issues that must be addressed in order to do
so. First, for example, is the relationship between those speech
characteristics we wish to control and the articulatory features
that are available; in order to control some aspect of speech, it
must be readily represented in terms of the features available.
A second important prerequisite is an adequate module for
articulatory movement prediction. Not only must this generate
articulator trajectories that are plausible and accurate for whole
utterances, but also it must allow convenient control to change
the generated trajectories. As a final example, when attempting
to impose articulatory control over longer spans, the issue
of maintaining synchrony between the states of the acoustic
models and the externally generated articulatory inputs
becomes more prominent. As discussed in Section II.C, the
HMM-based articulatory movement prediction method used
in the experiments here is not convenient for sophisticated or
extensive articulatory manipulation. Therefore, to investigate
better models for articulator movement prediction will be a

key task in our future work. Preliminary results of ongoing
work in this direction have been presented in [33], where a
target-filtering approach was adopted to predict the trajectories
of articulator movements. This will help move us closer to our
ultimate goal, which is to apply the current articulatory control
approach to practical scenarios such as cross-accent speaker
adaptation (e.g. changing a British English accent to an
American one) and simulating Lombard effects in synthesised
speech in response to environmental noise conditions.

REFERENCES

[1] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura,
“Simultaneous modeling of spectrum, pitch and duration in HMM-based
speech synthesis,” in Eurospeech, 1999, pp. 2347–2350.

[2] K. Tokuda, H. Zen, and A. W. Black, “HMM-based approach to mul-
tilingual speech synthesis,” in Text to speech synthesis: New paradigms
and advances, S. Narayanan and A. Alwan, Eds. Prentice Hall, 2004.

[3] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura,
“Speech parameter generation algorithms for HMM-based speech syn-
thesis,” in ICASSP, vol. 3, 2000, pp. 1315–1318.

[4] H. Zen, T. Toda, M. Nakamura, and K. Tokuda, “Details of Nitech
HMM-based speech synthesis system for the Blizzard Challenge 2005,”
IEICE Trans. Inf. & Syst., vol. E90-D, no. 1, pp. 325–333, 2007.

[5] Z.-H. Ling, Y.-J. Wu, Y.-P. Wang, L. Qin, and R.-H. Wang, “USTC
system for Blizzard Challenge 2006: an improved HMM-based speech
synthesis method,” in Blizzard Challenge Workshop, 2006.

[6] J. Yamagishi and T. Kobayashi, “Average-voice-based speech synthesis
using HSMM-based speaker adaptation and adaptive training,” IEICE
Trans. on Inf. & Syst., vol. E90-D, no. 2, pp. 533–543, 2007.

[7] K. Shichiri, A. Sawabe, K. Tokuda, T. Masuko, T. Kobayashi, and
T. Kitamura, “Eigenvoices for HMM-based speech synthesis,” in ICSLP,
2002, pp. 1269–1272.

[8] J. Yamagishi, K. Onishi, T. Masuko, and T. Kobayashi, “Acoustic
modeling of speaking styles and emotional expressions in HMM-based
speech synthesis,” IEICE Trans. Inf. & Syst., vol. E88-D, no. 3, pp.
503–509, 2005.

[9] M. Tachibana, J. Yamagishi, T. Masuko, and T. Kobayashi, “Speech
synthesis with various emotional expressions and speaking styles by
style interpolation and morphing,” IEICE Trans. Inf. & Syst., vol. E88-
D, no. 11, pp. 2484–2491, 2005.

[10] T. Nose, J. Yamagishi, T. Masuko, and T. Kobayashi, “A style control
technique for HMM-based expressive speech synthesis,” IEICE Trans.
Inf. & Syst., vol. E90-D, no. 9, pp. 1406–1413, 2007.

[11] Z.-H. Ling, K. Richmond, J. Yamagishi, and R.-H. Wang, “Articulatory
control of HMM-based parametric speech synthesis driven by phonetic
knowledge,” in Interspeech 2008, 2008, pp. 573–576.

[12] ——, “Integrating articulatory features into HMM-based parametric
speech synthesis,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 17, no. 6, pp. 1171–1185, Aug. 2009.

[13] K. Kirchhoff, G. Fink, and G. Sagerer, “Conversational speech recogni-
tion using acoustic and articulatory input,” in ICASSP, 2000, pp. 1435–
1438.

[14] A. Black, T. Bunnell, Y. Dou, P. Muthukumar, F. Metze, D. Perry,
T. Polzehl, K. Prahallad, S. Steidl, and C. Vaughn, “Articulatory features
for expressive speech synthesis,” in ICASSP, 2012, pp. 4005–4008.
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