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Using in-plane electric fields, the electrical induction of the uniform lying helix (ULH) alignment in

chiral nematic liquid crystals is reported. This process permits spontaneous induction of the ULH

alignment to give an in-plane optic axis, without the need for complex processing. Flexoelectro-optic

switching is subsequently obtained by holding the in-plane electrodes at a common voltage and

addressing via a third, plane-parallel electrode on a second, or upper, substrate to give a field across

the device in the viewing direction. For this device, in optimized bimesogenic materials, we

demonstrate full intensity modulation and sub-millisecond response times at typical device

temperatures. VC 2012 American Institute of Physics. [doi:10.1063/1.3682305]

Recent work on liquid crystal (LC) devices has focussed

on improving the electro-optic response time, using moder-

ate addressing fields, and there is currently significant inter-

est in using faster switching materials and electro-optic

effects for, for example, large area flat-panel television dis-

plays, holographic projection, and telecommunication phase

devices. Existing technology, using conventional nematic

LCs, is fundamentally limited by the viscoelastic response

with typical “on” and “off” response times of the order of a

few milliseconds or more. However, Patel and Meyer

showed1 that the flexoelectro-optic effect in chiral nematic

LCs (N*) could be used to generate sub-millisecond response

times albeit with weak optical phase modulation and rela-

tively high fields. We showed recently, through design of

bimesogenic LCs specifically for this effect,2–4 that response

times substantially less than a millisecond may be obtained

using low electric field amplitudes (<5 V/lm),5 with room

temperature operation and below.3

In order to observe flexoelectro-optic switching in N*

LCs, the direction of the applied electric field must be or-

thogonal to the helical axis. For conventional indium tin ox-

ide (ITO) electrode structures, which are coated on the top

and bottom substrates, the zero field LC alignment is in the

so-called uniform lying helix (ULH) arrangement where the

helical axis lies in the plane of the device.1 Application of an

electric field orthogonal to the helical axis then leads to an

in-plane deflection of the optic axis. However, the generation

of the uniform ULH texture, necessary for high optical con-

trast, has proved problematical. Various methods involving

combinations of mechanical, thermal, and electric field

cycling,1–7 periodic boundary conditions,8,9 complex litho-

graphic processes, and electro-hydrodynamic effects using

materials with high dielectric anisotropy, De,10 have all been

used with varying degrees of efficacy. For example, in the

latter case the critical electric field for unwinding of the N*

LC to a homeotropic state is relatively low which limits the

extent of flexoelectro-optic switching that can be achieved.

Bimesogenic compounds, whereby the liquid crystalline

moieties are attached end to end via a flexible spacer, avoid

these problems and have led to the development of materials

that exhibit both low De (<2) and enhanced flexoelectro-

optic switching angles of over 680�.5,11

In this letter, we present a method of spontaneously

aligning the ULH, in N* LCs optimized for the flexoelectro-

optic effect, through purely electrical means at any tempera-

ture using a tri-electrode configuration (Fig. 1). An in-plane

low frequency field applied across the surface electrodes

induces a well-aligned ULH texture. Once this is achieved,

the surface electrodes are electrically connected, at the same

potential, and using the upper electrode, an electric field is

applied across the cell to generate the flexoelectro-optic

switching observed through crossed polarisers. In the sche-

matic Fig. 1, the lower surfaces are the inter-digitated ITO

electrode arrays with a width w of 3 lm and electrode separa-

tion s of 9 lm. The upper electrode is a uniform ITO surface

FIG. 1. (Color online) Schematic of the electro-optic cell, comprising inter-

digitated in-plane ITO-coated electrodes on lower glass substrates and a pla-

nar uniform ITO upper electrode, both substrates coated with planar

alignment layers (rubbed parallel to the in-plane electrode long axis).

a)Authors to whom correspondence should be addressed. Electronic addresses:

djg47@eng.cam.ac.uk, aiconess@lgdisplay.com, and hjc37@cam.ac.uk.
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and the cell gap d is 5 lm. The cell surfaces were pre-treated

with antiparallel-rubbed polyimide alignment layers, and the

direction of rubbing was parallel to the in-plane electrodes.

The N*LC materials used in the investigation consisted

of a mixture of nematic bimesogens, shown in Fig. 2, of

equal concentrations by weight. 3.5 wt. % of the high twist-

ing power chiral dopant, BDH-1281 (Merck KGaA),5,11 was

then added to generate the chiral nematic phase. The phase

sequence was I-(83 �C) – N*-(35 �C) – smectic LC, as deter-

mined from polarised microscopy at a cooling rate of 1 �C/

min. Materials were allowed to mix in the isotropic phase for

a period of 24 h before filling into the test cells by capillary

action. The microscope-based electro-optic apparatus used in

this study is described elsewhere.5 Electric field amplitudes

E for the surface alignment mechanism were calculated from

the in-plane applied voltage (V2-V3)/s and, for the

flexoelectro-optic switching mechanism, from the voltage

applied across the cell (V1-V2)/d, where V2¼V3. The precise

electric field profile, however, for both cases, will be non-

uniform within the cell; particularly for the in-plane only

mode.12

In zero electric field, the N* LC naturally adopts a Grand-

jean texture due to planar anchoring conditions imposed by

the rubbed polyimide alignment layers. A ramping alternating

10 Hz electric field was then applied to the Grandjean texture

using the in-plane electrodes (between V2 and V3) only (Fig.

3). Above a threshold value, Eth� 2 Vrms/lm, defects were

observed to form above the interdigitated electrodes, and

these coalesced over the inter-electrode regions as the field

was increased. The texture became more uniform at

�10 Vrms/lm and, on field removal, relaxed to the ULH align-

ment. Between crossed-polarizers, the texture possesses a uni-

form bright, or dark, state when oriented at 45�, or parallel, to

the polarizer transmission axis, respectively (Fig. 3). The fre-

quency of the surface in-plane applied field is important; too

high a frequency is not conducive to alignment, yielding a

poorly aligned ULH texture. It is emphasized that the excel-

lent ULH alignment was achieved by only using the planar

alignment layers and application of an in-plane surface field

at constant temperature; no further thermal cycling or me-

chanical treatment was needed. In this case a ramping electric

field was used to illustrate the defect formation process (Fig.

3). In practice, all that is required to induce the ULH texture

in these devices is the application of an in-plane low ac fre-

quency electric field of the correct amplitude, e.g., typically

10 Hz, 10 V/lm, respectively. Once the alignment has been

induced, polymer stabilization techniques can be employed to

further ruggedize the texture.13–15

Following the induction of the stable ULH texture,

flexoelectro-optic switching was obtained by applying a

common voltage to the in-plane electrodes (V2¼V3) and

addressing across the cell via the third electrode on the top

substrate (i.e., between V1 and common V2, V3). Figure 4(a)

shows the electro-optical response recorded through crossed

polarizers, at 40 �C, when addressing the cell in this configu-

ration. The optical response follows the polarity of the field,

as expected for ULH flexoelectro-optic switching (red line).

By addressing through an in-plane field only (i.e., no field

across the cell gap), at similar field strength, no such modula-

tion (blue line) was observed. In this case, clearly there is no

macroscopic rotation of the optic axis in the plane of the de-

vice. Figure 4(b) shows the in-plane rotation of the optic axis

/, as a function of the applied electric field strength across

the upper and lower substrates. The procedure for measuring

/ is described in detail elsewhere.2 It is well known1–8 that

/ varies according to

tan / ¼ e

K

P

2p
E: (1)

Here, e and K are the effective flexoelectric and elastic coef-

ficients, respectively, and P is the N* pitch. In accordance

with Eq. (1), / is found to vary in a linear fashion at low tilt-

angles, reaching 22.5� at E¼ 5.5 Vrms/lm (Fig. 4(b)). For

the mixture considered here (e/K¼ 1.8 C/Nm, P� 320 nm at

40 �C), the predicted switching angle is /¼ 26.2� for the

equivalent electric field strength, and this was confirmed

using conventional LC cells with uniform ITO layers on

FIG. 2. Chemical structures of the fluorinated bimesogenic compounds used

in mixtures.

FIG. 3. (Color online) Schematic diagram of the uniform lying helix texture induction process using interdigitated electrodes. Application of low frequency,

in-plane (V2, V3) fields induce defects, which relax into the ULH alignment after the removal of the field. Flexoelectro-optic switching is achieved by applying

a voltage across the connected in-plane electrodes (V2¼V3) and the top substrate (V1).

063501-2 Gardiner et al. Appl. Phys. Lett. 100, 063501 (2012)



both upper and lower substrates. The slight reduction (�4�)
in the “effective” value of / measured with the tri-electrode

geometry is believed to be due to the slight non-uniformity

of the field profile, due to the substrate bearing the in-plane

gap electrodes.

Response times for 10% to 90% (rise) and 90% to 10%

(fall) changes in light transmission for the ULH device are

shown in Fig. 4(c) as a function of temperature for

E¼ 5.5 Vrms/lm, which is the field needed to deflect the

optic axis through /¼622.5�. The rise and decay curves

were symmetrical for each pulse and the response times (rise

and decay) were numerically equal to each other. The

response times decreased from s¼ 1.1 ms at 40 �C to

s¼ 500 ls at 50 �C, due to the Arrhenius-like decrease of the

viscosity with increasing temperature.

To demonstrate intensity modulation, around the zero

field “off” state, the ULH optic axis is positioned (between

crossed polarizers) in the same direction as the transmission

axis of one of the polarizers to give zero light transmission.

The average transmission, as the optic axis switches reversi-

bly through 6/ on field reversal is then proportional to

hsin2(2/)i. This is shown in Fig. 4(d), where the full average

intensity modulation occurs at /¼ 45�, corresponding to

E¼ 11.8 Vrms/lm. As expected, Fig. 4(d) does not exhibit a

threshold, because the underlying flexoelectric effect itself is

threshold-less (Eq. (1)). The absolute maximum light inten-

sity transmitted is modulated by sin2(pDnd/k), where Dn is

the effective birefringence of the ULH structure and k is the

wavelength of light. Reducing the magnitude of the driving

field, or more practically the voltage, may be achieved using

a number of different methods. Firstly, the cell gap could be

reduced by using materials with greater birefringence, lead-

ing to a reduction in the voltage required. Secondly, the

addressing scheme could be modified, since the switching is

electrically symmetric (no dc field bias) to use one /¼ 22.5�

switched state as the dark state, which requires one polarizer

axis to be at 22.5� to the in-plane electrode long axis; this

then halves the drive voltage requirements. Thirdly, through

continued material improvements, an increase in the e/K pa-

rameter would further lower the effective field required.

Figure 5 shows the excellent uniform alignment and op-

tical contrast of the tri-electrode induced ULH texture, of a

large area cell, between crossed polarizers in the “off” (no

FIG. 4. (Color online) Electro-optic characterization of the device measured

at 40 �C: (a) the relative transmitted intensity recorded with application of

electric field (2.8 Vrms/lm), 50 Hz signal (black line plotted on primary axis)

(i) between the substrate in-plane electrodes only (blue line, plotted on the sec-

ondary axis) and (ii) addressing between the lower in-plane electrodes and the

upper plane-parallel electrode (red line, plotted on secondary axis), both with

crossed polarizers. (b) The tilt angle of the optic axis as a function of the

applied electric field. (c) The temperature dependence of the exactly superpos-

able rise and decay response times. (d) The dependence of the transmission on

the applied electric field showing full intensity modulation, through crossed

polarizers.

FIG. 5. (Color online) Photographs of the electrically induced ULH aligned

texture, between crossed polarizers, on a cold-cathode fluorescent backlight.

(a) The “off” state with the ULH optic axis positioned along the analyzer

direction and (b) the “on” state with the application of an E¼ 11 Vrms/lm,

50 Hz electric field.
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electric field) and “on” states (with an applied electric field

of E¼ 11 Vrms/lm at f¼ 50 Hz. The alignment is fully

retained after switching the sample many hundreds of times.

Contrast ratios of �50:1 were obtained.

In summary, these results show that it is possible to

induce stable ULH alignment in a chiral nematic liquid crys-

tal using in-plane electric fields at ambient temperatures.

ULH flexoelectro-optic switching is subsequently obtained

by addressing via a third electrode across the device. The

possibility of having a wholly electrical induced alignment is

potentially important for practical application and manufac-

turability of next-generation devices employing the chiral

flexoelectro-optic effect.
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