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The thermodynamic properties of the dipolar hard-sphere fluid are studied using theory and simulation. A
new theory is derived using a convenient mathematical approximation for the Helmholtz free energy relative to
that for the hard-sphere fluid. The approximation is designed to give the correct low-density virial expansion.
New theoretical and numerical results for the fourth virial coefficient are given. Predictions of thermodynamic
functions for dipolar coupling constants λ = 1 and 2 show excellent agreement with simulation results, even at
the highest value of the particle volume fraction ϕ. For higher values of λ, there are deviations at high volume
fractions, but the correct low-density behavior is retained. The theory is compared critically against the established
thermodynamic perturbation theory; it gives significant improvements at low densities and is more convenient
in terms of the required numerics. Dipolar hard spheres provide a basic model for ferrofluids, and the theory
is accurate for typical experimental parameters λ � 2 and ϕ � 0.1. This is demonstrated explicitly by fitting
osmotic equations of state for real ferrofluids measured recently by analytical centrifugation.
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I. INTRODUCTION

The theory of fluids of polar molecules relies heavily on
the use of simple molecular models [1]. The simplest model of
a polar molecule is a dipolar hard sphere (DHS), this being a
hard sphere of diameter σ bearing a permanent dipole moment
μ at its center. The interaction between two DHSs i and j is
given by a sum of hard-sphere (HS) and dipolar (D) terms:

uij = uHS
ij + uD

ij . (1)

The hard-sphere potential is

uHS
ij =

{∞ rij < σ

0 rij � σ
, (2)

and the dipolar potential is

uD
ij = μi · μj

r3
ij

− 3(μi · r ij )(μj · r ij )

r5
ij

, (3)

where r ij is the interparticle separation vector and rij =
|r ij |. DHS fluids are useful models of ferrofluids: colloidal
suspensions of ferromagnetic nanoparticles in liquids. Taking
into account the nanoparticle polydispersity, it is possible to
model very accurately the properties of real ferrofluids such
as the magnetization curve [2,3]. The DHS fluid has been
the subject of intense scrutiny over the years, in terms of its
structure, phase behavior, and dynamics [4]. One of the longest
outstanding questions is whether DHSs exhibit a vapor-liquid
transition [5], from the early theoretical analysis by de Gennes
and Pincus [6] through to the latest computer-simulation
studies by Rovigatti et al. [7,8] The consensus from computer
simulations is that there is no such transition in DHSs, but that
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it may arise in the presence of (small) additional interactions
such as anisotropic repulsions [9], multipolar interactions [10],
isotropic interactions [5,11–13], and interactions mediated
by nonpolar particles [14]. Extrapolations of simulation data
to the DHS limit yield estimates of the putative critical
parameters; at the critical point, the dipolar coupling constant
λ = βμ2/σ 3 � 6 where β = 1/kBT , and the particle volume
fraction ϕ � 0.05 [5,10,13,14].

There are existing theories of DHS thermodynamics such
as the mean spherical approximation (MSA) [15,16] and the
thermodynamic perturbation theory (TPT) of Stell, Rasaiah,
and Narang [17,18] as applied to DHSs by Rushbrooke,
Stell, and Høye [19]. The relative performances of these
theories have been neatly summarized by Henderson [20]. For
the Helmholtz free energy at high density (ϕ � 0.47) TPT
predictions truncated at terms of order λ2 and λ3 bracket
simulation results, but a simple Padé approximant (denoted
here as Padé-TPT) that reproduces these terms [19] does well
for λ as high as 4 [20,21]. The Padé-TPT and MSA theory
do not give accurate results at low densities and in fact do
not predict the virial coefficients accurately since they are
low-order theories with respect to λ. The Padé-TPT and MSA
theory predict critical points at (λ,ϕ) = (3.58,0.0833) and
(4.44,0.0555), respectively [19]. Kalyuzhnyi and coworkers
have developed a version of the TPT that accounts for the
strong association between dipolar particles that sets in at
λ � 4 [22,23]. The theory is based on the identification
of a central-force (CF) portion of the interaction potential
responsible for particle association; in Ref. [23] the theory is
called TPT-CF. TPT-CF gives an apparent DHS critical point
at (λ,ϕ) = (5.92,0.042) [23]. The theory is in accord with
simulated equations of state at the high values of λ = 4.50 and
5.56 [24] inasmuch as the isotherms are supercritical (T > Tc,
λ < λc), but quantitative agreement is lacking. The Padé-TPT
and TPT-CF theories are very similar for low concentrations
and λ � 2, where particle association is not pronounced.
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Certainly the low-density behavior and virial coefficients are
incorrect in both cases.

In recent experimental work, Luigjes et al. have obtained
the equation of state (osmotic pressure � as a function of
ϕ) of colloidal suspensions of ferromagnetic nanoparticles
(magnetite particles stabilized with oleic acid and dispersed in
decalin) [25,26]. By analytical centrifugation of a suspension
and measuring the concentration profile, the sedimentation
equilibrium can be solved to yield � over the concentration
range ϕ � 0.1. By comparing the measured second virial
coefficient B2 to that for DHSs [27–29], an apparent value of
λ may be obtained. For “large” nanoparticles with an average
magnetic core diameter of 13.4 nm, the apparent value of λ lies
in the range 2–3, with a mean value from different experiments
(with different centrifuge rotor speeds and particle loadings)
of λ � 2.2.

The experimental studies have prompted a theoretical
reinvestigation of the thermodynamic properties of DHSs at
low volume fractions ϕ � 0.1 and with coupling constants
of order 1. In this work a new theory is constructed based
on the difference between the Helmholtz free energies of
DHS and reference HS fluids. The only inputs of the theory
are the differences between the first few DHS and HS virial
coefficients, in practice computed as series expansions in λ.
Explicit expressions for the free energy, chemical potential,
and equation of state are presented. Comparison with new
Monte Carlo (MC) simulation results shows that the theory
works excellently over the whole fluid range of ϕ and up to λ =
2. Discrepancies set in at very high values of λ = 3 and 4; while
the low-ϕ behavior is captured correctly (due to the correct
virial coefficients being input), significant deviations are seen
at higher concentrations. Overall the new theory is a significant
improvement over the Padé-TPT at low volume fractions;
while the latter is accurate at λ = 1 and 2, it does not give
the correct virial coefficients, with the error becoming quite
large at high values of λ. The new results should be of direct
relevance to almost all real colloidal ferrofluids. Expressions
for the equation of state and chemical potential are necessary
for the study of phase equilibria, while the chemical potential
is a fundamental input for the study of magnetophoresis,
sedimentation, and gradient diffusion [30]. An advantage of
the new theory is that the expressions are entirely analytic and
simple, which facilitates fitting of experimental data. The new
theory does not require any microscopic information for the
reference HS system, whereas the coefficients appearing in
TPT need to be computed from the HS radial distribution
function at the required particle concentration. Hence, the
new approach should be easily applied to other systems for
which the thermodynamic properties of a related reference
system are well known but the microscopic structure is
not.

This article is arranged as follows. In Sec. II the theory
and simulation methods are detailed, and new analytical and
numerical results for the fourth virial coefficient of DHSs are
presented. The main results are presented first as a comparison
between theory and simulation for 1 � λ � 4 (Sec. III A),
and then as a comparison between theory and experiment
for λ � 2.3 (Sec. III B). The conclusions from the work are
summarized in Sec. IV.

II. MODEL AND METHODS

A. Theory

Consider a fluid of N DHSs in a volume V at temperature
T . The concentration is ρ = N/V , and the volume fraction is
ϕ = ρv0 where v0 = πσ 3/6 is the particle volume. The virial
expansion for the Helmholtz free energy F is [31]

βF

N
= βF id

N
+

∞∑
n=1

n−1Bn+1ρ
n, (4)

where F id is the ideal-gas contribution and Bn+1 is a
temperature-dependent virial coefficient. The difference be-
tween virial expansions for the DHS fluid (F ) and the HS fluid
(F HS) can be written as

β	F

N
= β(F − F HS)

N
=

∞∑
n=1

n−1Gn+1ϕ
n. (5)

Gn+1 is related to the virial coefficients by

Gn+1 = Bn+1 − BHS
n+1

vn
0

, (6)

where Bn+1 and BHS
n+1 are virial coefficients for the DHS and HS

fluids, respectively. The second virial coefficient B2 is known
exactly in various forms [27,29] and as a series expansion in
λ [28,32–34]:

B2 = BHS
2

[
1 −

∞∑
m=1

λ2m

(2m − 1)[(2m + 1)!!]2

m∑
r=0

(
2r

r

)]
(7)

= BHS
2 − v0

(
4

3
λ2 + 4

75
λ4 + 116

55125
λ6 + · · ·

)
, (8)

BHS
2 = 4v0. (9)

[(2m + 1)!! means the product of all odd positive integers up
to (2m + 1).] The third virial coefficient B3 has been given as
a series expansion in λ and from direct numerical computation
[27,35]. The fourth virial coefficient B4 seems not to have been
given at all. The leading order expression for B4 in terms of λ

is derived in Appendix. The expansions for B3 and B4 are as
follows:

B3 = BHS
3 − v2

0

[(
4 ln 2 + 2

3

)
λ2 − 20

9
λ3

− 1468

15

(
ln 2 − 1 933 981

2 818 560

)
λ4

]
+ 0.0424λ5

+ 0.00844λ6 + 0.00391λ7 − 0.000554λ8

+ 0.000401λ9 − 0.000124λ10 + 0.0000356λ11

− 0.0000115λ12 + · · · , (10)

BHS
3 = 10v2

0, (11)

B4 = BHS
4 − v3

0(2.901720λ2 + · · ·), (12)

BHS
4 = v3

0

35

[
−712 + 219

√
2

π
+ 4131

π
arccos

(
1√
3

)]
. (13)

The numerical coefficients in Eq. (10) are taken from Ref. [35];
the numerical uncertainties in these figures are omitted, but
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FIG. 1. (Color online) Virial coefficients for DHSs from numeri-
cal computation (points) and from expansions (lines) [Eqs. (8), (10),
and (12)]: (a) and (b) B2; (c) and (d) B3; (e) and (f) B4. Results
are shown on two different scales, 0 � λ � 5 and 0 � λ � 1.5; the
data represented by black circles in (a), (c), and (e) are shown on
the expanded scale in (b), (d), and (f), respectively. Error bars are
indicated in the numerical results for B3 and B4, but in most cases
these are smaller than the symbol size.

they amount to less than 1% in each case. To test the expres-
sions, B3 and B4 have been calculated in the range 0 � λ � 5
by straightforward application of the Mayer-sampling method
developed by Singh and Kofke [36]. In each calculation a
total of 109 configurations was sampled with the acceptance
rates for particle translations and rotations each set at 50%.
The results are shown in Fig. 1 along with the exact result
for B2 and the expansions given above. For HSs (λ = 0)
B2, B3, and B4 are positive reflecting the purely repulsive
interactions. With the introduction of dipolar interactions, B2

decreases and eventually becomes negative beyond the “Boyle
point” λ � 1.64, signaling effective attractions between pairs
of particles. B3 initially decreases with increasing λ, but, as
shown in Ref. [35], it exhibits a local minimum at λ � 0.75 and
a maximum at λ � 3.8, and then decreases rapidly, becoming
negative at λ � 4.3. B4 shows a very complex dependence on
λ, with two minima (near λ = 0.30 and 2.10) and one local
maximum (near λ = 0.90). Beyond λ = 2.10, B4 increases
rapidly and monotonically, and at λ = 4 is approximately
equal to 2 × 104σ 9 (not shown in Fig. 1). Overall, with λ

increasing from 0 to 4, B3 and B4 signal changes in the
collective interactions from increasing attraction to increasing
repulsion. The expansion of B2 up to λ6 given in Eq. (8)
converges rather rapidly, with the coefficients all of the same
sign, and is quite accurate up to λ = 4 [28,29]. The expansion

of B3 in Eq. (10) exhibits coefficients of different sign and
clearly does not converge very rapidly [35].

In a thermodynamic theory, one might strive to compute
higher order virial coefficients to ever higher orders in λ, but
this brute-force approach can lead to difficulties since the virial
(and λ expansion) coefficients fluctuate in sign. Therefore, a
polynomial expansion of the free energy might not be the best
approach, since the result will depend sensitively on the terms
of highest order in n and λ. Hence, it could be more effective
to transform Eq. (5) back into a logarithmic form, such as
in βF/N = − ln Q1/N from which the virial expansion is
derived in the first place. The advantage is that a logarithm of a
polynomial is less sensitive to the truncation of the polynomial.
An alternative to Eq. (5) is therefore

β	F

N
= − ln

[
1 +

∞∑
n=1

n−1Inϕ
n

]
, (14)

where the minus sign at the front is important because the
presence of cohesive dipolar interactions should give β	F <

0. This means that the argument of the logarithm should always
be greater than unity and hence there should be no danger of
an accidental logarithmic divergence. Without the minus sign,
the argument of the logarithm may accidentally approach zero,
leading to a divergence. The coefficients In can be determined
by matching terms between Eq. (5) and the Maclaurin series
of Eq. (14). The first three coefficients are

I1 = −G2, (15)

I2 = −G3 + G2
2, (16)

I3 = −G4 + 3
2G3G2 − 1

2G3
2. (17)

Care has to be taken in the computation of these coefficients.
B2 and G2 are computed using the expansion in Eq. (8) so
that the theory is entirely analytic and can easily be fitted
to experimental data, as demonstrated in Sec. III B. The
expansion of B3 and G3 is known up to λ12. Hence, I2 should
be computed to the same order, and so G2 is included up to
λ6. B4 and G4 are known up to λ2. Because G3G2 and G3

2
contribute only higher order terms, these should be neglected.
Therefore, at the current level of approximation I3 is truncated
at λ2, i.e., I3 � −G4. The explicit expressions for I1, I2, and
I3 are as follows:

I1 = 4

3
λ2 + 4

75
λ4 + 116

55 125
λ6, (18)

I2 =
(

4 ln 2 + 2

3

)
λ2 − 20

9
λ3 +

(
661 727

9600
− 1468

15
ln 2

)
λ4

− 0.155λ5 + 0.111λ6 − 0.0143λ7 + 0.0105λ8

− 0.00146λ9 + 0.000677λ10 − 0.000130λ11

+ 0.0000464λ12, (19)

I3 = 2.901720λ2. (20)

Given these expressions for In in terms of λ it is a simple
matter to compute the Helmholtz free energy and the re-
maining thermodynamic functions, such as the pressure P =
−(∂F/∂V )N,T and the chemical potential μ = (F + PV )/N .
Inserting the Carnahan-Starling equation of state for the HS
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fluid [37], the properties of the DHS fluid are

β	F

N
= − ln

(
1 + I1ϕ + 1

2
I2ϕ

2 + 1

3
I3ϕ

3

)
, (21)

Z = βP

ρ
= ZHS −

(
I1ϕ + I2ϕ

2 + I3ϕ
3

1 + I1ϕ + 1
2I2ϕ2 + 1

3I3ϕ3

)
, (22)

ZHS = 1 + ϕ + ϕ2 − ϕ3

(1 − ϕ)3
, (23)

β	μ = β(μ − μHS) = β	F

N
+ Z − ZHS. (24)

The new theory is compared to Padé-TPT [19]. In essence,
the difference in Helmholtz free energy between DHSs and
hard spheres at the same density and temperature is given
by 	F = λ2F2/(1 − λF3/F2), where F2 and F3 are the
coefficients in the TPT of order λ2 and λ3, respectively. The
coefficients are computed from the known radial distribution
function for HSs, which is itself state dependent. Hence,
TPT and its extensions [22,23] are more cumbersome than
the new theory proposed here; both approaches require the
thermodynamic functions of the reference system as input, but
in the new theory, one just needs a few virial coefficients. In
addition, the new approach is expected to give the correct low-
density behavior, something that TPTs fail to treat correctly
because of the low order in λ [20,29,35].

B. Simulations

Standard MC simulations were performed in the NPT

ensemble using N = 256 particles in a cubic box with
periodic boundary conditions [38]. The Ewald summation
with conducting boundary conditions was used to handle
the long-range dipolar interactions. One MC cycle consisted
of, on average, N attempts at translating or rotating a
randomly selected particle, and one attempt at altering the
volume. Maximum translational, orientational, and volume
displacement parameters were adjusted to give acceptance
rates of approximately 20%, 50%, and 20%, respectively. For
each state point, averages were calculated over 5 × 105 MC
cycles after 1 × 105 cycles for equilibration. The Helmholtz
free energy as a function of particle volume fraction ϕ was
estimated by thermodynamic integration:

βF

N
= βF id

N
+

∫ ϕ

0

(
Z − 1

ϕ

)
dϕ. (25)

The Carnahan-Starling expression for the Helmholtz free
energy of the HS fluid was used to obtain 	F :

βF HS

N
= βF id

N
+ ϕ(4 − 3ϕ)

(1 − ϕ)2
. (26)

The difference between chemical potentials of the DHS and
HSs fluids β	μ was computed using Eq. (24).

III. RESULTS

A. Comparison between theory and simulation for 1 � λ � 4

Figure 2 shows β	F/N for λ = 1, 2, 3, and 4 from
the new theory, Padé-TPT, and MC simulation. The new
simulation results are compared with umbrella-sampling MC

0.0 0.1 0.2 0.3 0.4 0.5
ϕ

-6

-5

-4

-3

-2

-1

0

βΔ
F

 / 
N

λ = 1
λ = 2
λ = 3
λ = 4

FIG. 2. (Color online) Difference between Helmholtz free ener-
gies of DHS and HS fluids β	F/N as a function of volume fraction ϕ

for fluids with λ = 1 (black circles and lines), λ = 2 (red squares and
lines), λ = 3 (green diamonds and lines), and λ = 4 (blue triangles
and lines). The unfilled points are from the present MC simulations,
the filled points are from umbrella-sampling MC simulations in
Ref. [39], the dashed lines are from Padé-TPT, the solid lines are
from the present theory [Eq. (21)], and the dotted lines are from the
virial expansion [Eq. (5)].

data from Ref. [39], which are for extremely small systems
and without proper treatment of the long-range dipolar
interactions. Nonetheless, the agreement between simulation
results is excellent. The low-density virial expansion [Eq. (5)]
clearly does not provide a reliable extrapolation to high
densities, while the logarithmic expression [Eq. (21)] is far
more accurate. The virial expansion is ignored henceforth.
For λ = 1 and 2, the agreement between the theories and
simulation is excellent. If anything, the new theory is slightly
better at higher volume fractions, all the way up to ϕ � 0.4.
For λ = 3 and 4 the deviations between theory and simulation
are significant, but in different ways. The Padé-TPT roughly
tracks the simulation results, but the low-density behavior is
inaccurate. The new theory, on the other hand, has the correct
initial slope at low density and remains in good agreement
with simulation up to ϕ = 0.05–0.1.

A very similar picture emerges from the chemical potential
β	μ shown in Fig. 3. For λ = 1 there is very little to choose
between the new theory and Padé-TPT in comparison to
the simulation results; both are in excellent agreement with
simulation results up to ϕ � 0.4. For λ = 2 the agreement is
good up to ϕ � 0.2, and then the two theories part company. At
λ = 3 and λ = 4 the the initial slopes are captured accurately
by the new theory, while the Padé-TPT gets them completely
wrong. The new theory remains accurate only as far as
ϕ � 0.05 at these high values of λ.

The equation of state is shown in Fig. 4 in the form of
βPv0 as a function of ϕ. For λ = 1 and 2 the new theory is in
excellent agreement with the simulation results over the entire
density range, although the scale obscures the low-density
behavior, which will be elaborated upon below. The new
theory and Padé-TPT appear to be of comparable accuracy.
For λ = 3 and 4 both theories are inaccurate at high density
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FIG. 3. (Color online) Difference between chemical potentials of
DHS and HS fluids β	μ as a function of volume fraction ϕ for
DHS fluids with λ = 1 (black circles), λ = 2 (red squares), λ = 3
(green diamonds), and λ = 4 (blue triangles). The points are from
MC simulations, the dashed lines are from Padé-TPT, and the solid
lines are from the present theory.

ϕ � 0.2. The Padé-TPT critical point is at λ = 3.58, and since
λ = 4 corresponds to a subcritical isotherm (T < Tc), there is
a “flattening” of the equation of state and hence a deviation
from the simulation results. In the new theory, solving the
simultaneous equations (∂P/∂V ) = 0 and (∂2P/∂V 2) = 0
yields the critical point at (λ,ϕ) = (3.64,0.0493), and so λ = 4
corresponds to a subcritical isotherm here as well.

The relative performance of the theories in predicting the
equation of state, particularly at low density, is clarified in
Figs. 5 and 6. The compressibility factor Z in Fig. 5 highlights
the shortcomings of the both the new theory and Padé-TPT,
since at λ = 4 there are significant negative deviations even
at low densities in the region of ϕ � 0.1. For λ = 1, 2, and 3,
however, the agreement between both theories and simulation

0.0
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βP
v 0

(a) λ = 1 (b) λ = 2
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FIG. 4. The equation of state for DHS fluids with (a) λ = 1, (b)
λ = 2, (c) λ = 3, and (d) λ = 4. The points are from MC simulations,
the dashed lines are from Padé-TPT, and the solid lines are from the
present theory.
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FIG. 5. The compressibility factor Z = βP/ρ as a function of
volume fraction ϕ for DHS fluids with (a) λ = 1, (b) λ = 2, (c) λ = 3,
and (d) λ = 4. The points are from MC simulations, the dashed lines
are from Padé-TPT, and the solid lines are from the present theory.

is rather good. A closer inspection of the low-density behavior,
however, shows up some significant differences. In Fig. 6 we
plot the quantity (Z − 1)/B2ρ where B2 is the exact value. At
low density

Z − 1

B2ρ
≈ 1 +

(
B3

B2v0

)
ϕ, (27)

and so the limiting slope and intercept predicted by theory
should show up inaccuracies in the expressions for B2 and B3.
In all cases, the new theory outperforms the Padé-TPT because
of the accurate representations of B2 and B3 given in Eqs. (8)
and (10), respectively. At higher densities, both theories are of
comparable accuracy.

The reasons for the relative performance of the theories are
quite clear. The Padé-TPT contains terms only up to λ3, and
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FIG. 6. (Z − 1)/B2ρ as a function of volume fraction ϕ for DHS
fluids with (a) λ = 1, (b) λ = 2, (c) λ = 3, and (d) λ = 4. The points
are from MC simulations, the dashed lines are from Padé-TPT, and
the solid lines are from the present theory.

021126-5



ELFIMOVA, IVANOV, AND CAMP PHYSICAL REVIEW E 86, 021126 (2012)

this truncation is particularly serious for the second and third
virial coefficients, which govern the low-density behavior of
the properties under consideration. The new theory contains
accurate representations of B2 and B3 by construction, and
hence the low-density behavior is captured correctly.

B. Comparison between theory and experiment at λ � 2

In Refs. [25,26], Luigjes et al. present measurements of
the osmotic pressure � as a function of ferrofluid volume
fraction ϕ from analytical centrifugation experiments. The
compressibility factor Z = β�/ρ was found to be a roughly
linear decreasing function of volume fraction ϕ � 0.1 and
was fitted using the second-virial expression Z ≈ 1 + B2ρ.
An apparent value of λ can be obtained from the fitted value of
B2. Measurements were taken using two different centrifuges
and at different rotor speeds. For 13.4 nm particles, an average
value of λ � 2.2 was obtained. Note that B2 is a rapidly
decreasing function of λ. Hence, a small deviation in the
measured value of B2 lead to a large change in the apparent
value of λ.

Figure 7 shows some of the experimental data of Luigjes
et al. in the form of the equation of state (β�v0 versus ϕ).
The data were analyzed in the range ϕ � 0.04 using Eq. (22)
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FIG. 7. The equation of state from experiment (crosses) and
theory with the indicated values of λ (solid lines); the digits in
brackets are estimated fitting uncertainties in the final significant
figures. The experimental data taken with different equipment,
centrifuge rotor speeds, and particle loadings are as given in Ref. [26].
(a)–(c) Beckman analytical centrifuge: (a) 1200rpm and 36 gL−1;
(b) 1400 rpm and 36 gL−1; (c) 1600 rpm and 36 gL−1. (d)–
(f) LUMifuge low-speed centrifuge: (d) 500 rpm and 134 gL−1;
(e) 625 rpm and 134 gL−1; (f) 1000 rpm and 134 gL−1.
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FIG. 8. The compressibility factor Z = β�/ρ as a function of
volume fraction ϕ from experiment (crosses) and theory with the
indicated values of λ (solid lines); the digits in brackets are estimated
fitting uncertainties in the final significant figures. The experimental
details are the same as those in Fig. 7.

and by fitting λ directly. The apparent values of λ are given
in Fig. 7, lie in the range 2.0–2.6, and have an average value
of about 2.3. These numbers are in excellent agreement with
those reported by Luigjes et al. given the likely experimental
uncertainties.

Figure 8 shows the compressibility factor Z = β�/ρ along
with the theoretical curves for the values of λ determined
above, to show consistency. (Fitting to Z leads to values of
λ about 5% higher than those determined above.) For these
values of λ, the DHS equation of state shows more curvature
than that seen in experiments. This is not due to the accuracy of
theory, because the comparison with simulation results shows
that it is reliable in the region ϕ � 0.1 and λ � 2. The reasons
for the discrepancy are not known, but they might arise from
describing a complex colloidal system with as simple a model
as monodisperse DHSs.

IV. CONCLUSIONS

A new thermodynamic theory of dipolar hard-sphere fluids
has been derived by representing the free energy with respect
to that of the hard-sphere fluid by a logarithmic equation.
The argument of the logarithm is a polynomial expansion in
density with coefficients chosen to give the first few terms
in the conventional virial expansion. The new theory has
been compared to existing thermodynamic perturbation theory
and the results from computer simulations. The comparison
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has been made in terms of the Helmholtz free energy, the
chemical potential, and the equation of state. For low values
of the dipolar coupling constant (λ = 1 and 2), the agreement
between the new theory and simulation is excellent. Deviations
set in for stronger dipolar coupling (λ = 3 and 4) and at
high density (ϕ � 0.1), but the theory retains the correct
low-density behavior by construction. The thermodynamic
perturbation theory is competitive at high densities, but for
strong dipolar coupling, the predicted low-density behavior is
in significant error. The reasons for this arise primarily from
the thermodynamic perturbation theory being truncated at low
order in the dipolar coupling constant with higher order terms
accounted for in an approximate Padé summation.

From a practical point of view, the new theory is extremely
simple, and the basic approach may be applied to other
situations where the properties of a reference system are
known. With just a few low-order virial coefficients, the
properties at low and high density may be predicted. By
contrast, the expansion coefficients in thermodynamic pertur-
bation theory are obtained by integrals over the state-dependent
radial distribution function of the reference system. This
is a cumbersome process, and in general the microscopic
properties of the reference system might not even be known.
Examples of systems to which the new theory could be
applied, starting from the hard-sphere free energy, include the
square-well fluid [40], patchy colloids [41], hard ellipsoids
[42], charged hard spheres [43], and systems with higher
multipolar moments. More realistic atomistic models based
on Lennard-Jones and electrostatic interactions might also be
tackled, using the Lennard-Jones fluid as a reference system.

The new theory has been used to fit osmotic equations
of state for real ferrofluids over the density range ϕ � 0.04.
The values of the dipolar coupling constant (λ � 2.3) are in
good agreement with those extracted by other methods. The
accuracy of the theory in the relevant experimental regime
(ϕ � 0.1 and λ � 2) has been demonstrated. It is hoped that
the explicit results of this work provide a convenient means
of computing the thermodynamic properties of model polar
fluids and real ferrofluids.
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APPENDIX: CALCULATION OF B4

In the absence of an applied field, the fourth virial
coefficient is given by [31]

B4 = − 1

8V

∫ ∫ ∫ ∫
(3f12f23f34f14 + 6f12f23f34f14f13

+ f12f23f34f14f13f24) d1 d2 d3 d4, (A1)

where
∫

di = (4π )−1
∫

d r i

∫
d�i represents, for particle i

(i = 1,2,3,4), an integration over the position vector r and

an average over the orientation unit vector �. The Mayer f

function between particles i and j is fij = exp (−βuij ) − 1
and can be decomposed in to hard-sphere (HS) and dipolar
(D) f functions according to the potentials in Eqs. (2) and (3):

fij = f HS
ij + (

f HS
ij + 1

)
f D

ij . (A2)

The dipolar f function f D
ij is expanded in terms of λ:

f D
ij =

∞∑
l=1

λl

l!

(−βuD
ij

λ

)l

. (A3)

Inserting Eqs. (A2) and (A3) in to the definition of B4

yields an expansion in λ. Terms of order λ disappear because∫∫
uD

12d�1 d�2 = 0 [44]. To order λ2 the expansion is

G4 = B4 − BHS
4

v3
0

= −λ2 (�1 + �2 + �3 + �4) + · · · , (A4)

where �1 to �4 correspond to topologically distinct diagrams.
Taking particle 1 to be at the origin, these coefficients are

�1 = 3

4v3
0

∫ ∫ ∫ (
f HS

12 + 1
)
gD

12f
HS
23 f HS

34 f HS
14 d r2 d r3 d r4,

(A5)

�2 = 3

2v3
0

∫ ∫ ∫ (
f HS

12 + 1
)
gD

12f
HS
23 f HS

34 f HS
14 f HS

13 d r2 d r3 d r4,

(A6)

�3 = 3

8v3
0

∫ ∫ ∫
f HS

12 f HS
23 f HS

34 f HS
14

(
f HS

13 + 1
)
gD

13 d r2 d r3 d r4,

(A7)

�4 = 3

8v3
0

∫ ∫ ∫ (
f HS

12 + 1
)
gD

12f
HS
23 f HS

34 f HS
14 f HS

13 f HS
24

× d r2 d r3 d r4, (A8)

where gD
12 is given by

gD
12 = 1

(4π )2

∫ ∫ (−βuD
12

λ

)2

d�1 d�2 = 2

3x6
12

(A9)

and is a function only of the reduced distance x12 = |r2 −
r1|/σ of particle 2 from particle 1. There is an equivalent
expression for gD

13. The remaining integrations are relatively
straightforward and were first considered by Nijboer and Van
Hove in the calculation of the third virial coefficient for hard
spheres [45]. In each case, integrations over the position
vectors r3 or r4 (or r2 and r4) yield functions only of x12

(or x13); these are denoted by w1 to w4. The coefficients �1 to
�4 can then be determined by direct integration with respect
to r2 (or r3). All of the w functions given below are equal to
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zero outside of the ranges indicated:

w1(x12) =
(
f HS

12 + 1
)

v2
0

∫ ∫
f HS

23 f HS
34 f HS

14 d r3 d r4, w1(x) = −x6

35
+ 9x4

5
− 6x3 − 9x2 + 324x

5
− 81 + 486

35x
(1 � x < 3),

�1 = 3

4v0

∫
gD

12w1(x12) d r2 = 1504

35
− 72 ln 3. (A10)

w2(x12) =
(
f HS

12 + 1
)

v2
0

∫ ∫
f HS

23 f HS
34 f HS

14 f HS
13 d r3 d r4, w2(x) = x6

35
− 9x4

5
+ 6x3 + 9x2 − 291x

5
+ 64 − 324

35x
(1 � x < 2),

�2 = 3

2v0

∫
gD

12w2(x12) d r2 = 144 ln 2 − 4303

70
. (A11)

w3(x13) =
(
f HS

13 + 1
)

v2
0

∫ ∫
f HS

12 f HS
23 f HS

34 f HS
14 d r2 d r4, w3(x) =

(
8 − 6x + x3

2

)2

(1 � x < 2),

�3 = 3

8v0

∫
gD

13w3(x13) d r3 = 48 ln 2 − 57

2
. (A12)

(
f HS

12 + 1
)

v2
0

∫ ∫
f HS

23 f HS
34 f HS

14 f HS
13 f HS

24 d r3 d r4 =
(
f HS

12 + 1
)

v2
0

∫ ∫
f HS

23

(
f HS

34 + 1
)
f HS

14 f HS
13 f HS

24 d r3 d r4

−
(
f HS

12 + 1
)

v2
0

∫ ∫
f HS

23 f HS
14 f HS

13 f HS
24 d r3 d r4

= w4(x12) − w3(x12),

w4(x) =
(

−27x4

70
+ 123x2

35

)√
3 − x2 +

(
−276x

5
+ 1296

35x

)
arccos

[
x√

3(4 − x2)

]

+
(

27x6

140
− 12x4

5
+ 18x2 + 24x

5
− 324

35x

)
arccos

[
x2 + x − 3√

3(4 − x2)

]

+
(

27x6

140
− 12x4

5
+ 18x2 − 24x

5
+ 324

35x

)
arccos

[
−x2 + x + 3√

3(4 − x2)

]
(1 � x <

√
3),

�4 = 3

8v0

∫
gD

12 [w4(x12) − w3(x12)] d r2 � 0.68861033 − �3. (A13)

Combining �1 to �4 with Eq. (A4) gives

G4 � −2.901720λ2, (A14)

which is equivalent to Eq. (12).
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