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The postsynaptic compartment of the excitatory glutamatergic synapse contains hundreds of

distinct polypeptides with a wide range of functions (signalling, trafficking, cell-adhesion, etc.).

Structural dynamics in the post-synaptic density (PSD) are believed to underpin cognitive

processes. Although functionally and morphologically diverse, PSD proteins are generally

enriched with specific domains, which precisely define the mode of clustering essential for signal

processing. We applied a stochastic calculus of domain binding provided by a rule-based

modelling approach to formalise the highly combinatorial signalling pathway in the PSD and

perform the numerical analysis of the relative distribution of protein complexes and their sizes.

We specified the combinatorics of protein interactions in the PSD by rules, taking into account

protein domain structure, specific domain affinity and relative protein availability. With this

model we interrogated the critical conditions for the protein aggregation into large complexes and

distribution of both size and composition. The presented approach extends existing qualitative

protein-protein interaction maps by considering the quantitative information for stoichiometry

and binding properties for the elements of the network. This results in a more realistic view of the

postsynaptic proteome at the molecular level.

Introduction

Synaptic transmission depends on a very well orchestrated

sequence of biochemical processes on both sides of the neuronal

synapse. The aggregation of protein complexes of different

sizes and composition underpins synapse function, and

disruptions at this level are believed to underlie many

neuropsychiatric and neurodegenerative diseases.

Proteomic studies suggest the postsynaptic compartment of

the excitatory glutamatergic synapse contains up to three

thousand distinct polypeptides spanning a wide range of

molecular functions.1–3 The multi-protein signal transduction

complex underlying the postsynaptic membrane is referred to

as a postsynaptic density (PSD). Its major classes of molecule

include receptors, ion channels, cell adhesion proteins and

signalling enzymes all brought together and physically linked

by diverse scaffold proteins. The resulting, highly stable

protein assembly is an electron-dense disc-shaped structure,

roughly 40–50 thick, and up to 500 nm wide.1 It represents a

typical example of the so-called ‘scaffold-based’ signalling

complex, where the microenvironment features a highly enriched

concentration of signalling components and is condensed into

a relatively small sub-cellular volume.4 Within such complexes,

highly conserved, functionally- independent and enriched

proteins, assemble transient signalling modules (‘signalosomes’)

through the combinatorial use of common protein interaction

domains.4,5 The properties of any given ‘signalosome’ will

depend on its composition and structural dynamics rather

than the activity of any specific component; i.e. the complex is

more than a simple sum of its parts.

The main components of the PSD are believed to form a

lattice-like structure, which provides both basal stability and a

mechanism to regulate the signal-dependent structural plasticity

of the system. This core lattice structure is based upon

precisely defined domain–domain interactions between the

several classes of scaffolding proteins. A typical example of

such structural domains, highly enriched within the PSD, is

the PDZ domain.6 PDZ domains are often arranged in tandem

arrays and often associate with other interaction domains,

such as Src homology (SH3) and guanylate kinase (GK)

domains to form large multidomain scaffold proteins, such

as the �membrane �associated �guanlyate �kinases (MAGUKs).6

The intricate domain composition enables MAGUK proteins

to simultaneously bind membrane receptors, channels and

cytoplasmic enzymes, bringing together essential elements of
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the signalling cascade.7 Practically all scaffold proteins in the

PSD, including the MAGUKs, GRIP, SHANK and HOMER

are able to form homodimers due to self-association mediated

by their amino (N)-terminal domains (for MAGUKs), PDZ

domains (for GRIP) or SAM domains (for SHANK).7,8 Since

the most of them are also capable of heteromeric association,

they can in theory support huge multimeric, multilayer scaf-

fold agglomerations.

One of the most important characteristics of domain–domain

protein recognition within the PSD complex is a rather wide-

spread domain ability to bind more than one target sequence

motif, or, so-called, domain promiscuity.9 PDZ domains generally

recognize the short conserved peptide motifs located on the

C-terminus of the other proteins and are known to cross–react

with multiple interaction partners, yet retain some characteristic

selectivity within domain subclasses.9 The same is valid to a

greater or lesser extent for other pairs of the complementary

domains within the scaffold. For example, SH3 domains can

bind proline-rich motifs PXXP, WW domains recognize

prolin-rich peptides with consensus PPXY, EVH1 domains

associate with proline-rich peptide sequence of type

(E/D)FPPPX(D/F).7,10 It has been proposed that relatively weak

binding of proteins via PDZ–C-terminus interaction makes the

PSD structure very dynamic. In turn, this implies that even

weak perturbation can have implications at the level of PSD

organisation.11 At the same time the overall excess of available

binding ‘slots’ guarantees structure integrity and prevents the

dissociation of PSD by outward diffusion of components.

In recent years, the availability of high-throughput proteomic

and interactomic data has made the analysis of the network

representations for the protein complexes a routine task in

bioinformatics. Topological analysis of the synaptic inter-

actome reveals the basic principles underlying the functional

organization of the protein clusters within the network and

helps to identify the most essential elements and network

motifs. Several successful studies performed with respect to

the PSD demonstrated the modular structure within the complex

and linked the protein communities to physiological states of

the synapse, giving insight into possible mechanisms of

neurological diseases.2,3

Although a protein–protein interaction (PPI) graph gives a

rather faithful qualitative representation of complex composition,

it is challenging to infer the real structure of the multiprotein

complex directly from the properties of the interaction net-

work alone. It is also not possible to fully derive a protein-

protein interaction network from a domain–domain interaction

graph alone. Both cases provide a map of possibilities, whereas

abundance of the complex elements and affinities of their

bindings are vital to define the structure and stability of the

real complex. Bearing this in mind, one might decide to look

for the next generation of modelling approaches that supports

predictions at the level of complex stoichiometry from data

describing a protein-protein interaction network. This goal

could be achieved with the help of a relatively new and fast

growing modelling approach called rule-based modelling.

Rule-based modelling provides a syntax that can be used to

formalize protein interactions. Importantly it provides a mechanism

to explicitly describe protein/domain binding sites, affinities,

state (post-translational modification) and concentrations.

It has been deliberately developed to tackle combinatorial complex-

ity, which inevitably emerges in the situation where each of the

plethora of system components bears multiple binding sites,

which are subjected to posttranslational modifications and

have multivalent binding partners. The enormous number of

concurrent modifying and binding events in such systems

grows exponentially, and simulations rapidly become compu-

tationally intractable. In a rule-based approach, each rule

defines only what is essential for a particular interaction and

omits all the irrelevant context, so-called ‘rule decontextuali-

zation’. Accordingly, one rule may account for multiple

possible states of a model component (agent) that satisfy the

rule implicitly, without increasing the size of the model. This

helps avoid the combinatorial explosion in models as they

scale in size. Rules can be visualised using graphs/contact

maps and easily converted to an executable mathematical

model that can be simulated using either deterministic or,

more often, stochastic algorithms. In this way, the gradual

introduction of rule-based systems may help to solve the

limitations of static maps, adding the necessary quantitative

information onto the existing protein-protein interaction map.

During the past five years several methodologies for

rule-based modelling have been proposed: StochSim, MCell,

Smoldyn and ChemCell, Kappa and BioNetGen language

(BNGL).12–16 Although principally similar, each language

implements its own specific spectrum of features and could

be used alternatively or complementary, depending on the

purpose of study. These methods have been validated on

receptor signalling models each designed with different rule-

based modelling techniques, including Tar-receptor-mediated

hemotaxis, FceRI - and TCR (T-cell receptor)-mediated

responses in immunoreactivity, GPCR (G-protein coupled

receptors)-signalling and many others.16–19 The advantage of

rule-based techniques is that the calculation efficiency does not

depend upon a size of the network implied by the set of rules.

That makes it possible to simulate the formation of the

multisubunit signalling complex together with all complexity

of the receptor-mediated phosphorylation cascade.

As a first step into quantitative model development, we

focussed on examining the steady states that are reachable by

the system rather than on dynamics of transition process. We

applied the rule-based approach to study the composition of

quasi-steady-state protein complexes in postsynaptic density.

We created a rule-based model of PSD with the Kappa

language.15,20 Kappa formalism has previously been used to

study ‘liquidity’ of protein agglomerates at equilibrium.20 Its

implemented simulation algorithm is also insensitive to size of

generated complexes.21 For the initial model we focused on

interactions between the proteins comprising the core subset of

PSD, including key scaffolding proteins and their closest

interaction partners, thus, reproducing the core lattice structure.

The dynamics of PSD aggregation was described by rules,

taking into account protein domain structure and relative

protein abundance, where known. The percentage distribution

of PSD proteins according to their functional category was

reviewed in.22 The same study also summarised several reports

of stochiometric composition of PSD from in the literature for

a core set of PSD components.22–24 Using this information to

set initial concentrations of the model elements, we applied a
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stochastic calculus to perform the numerical analysis of the

relative distribution of sizes of protein complexes, obtained in

steady state. As the exact structure of PSD along with values

for binding affinities and complex half-lives are not available

for the most reactions considered in the model, we ran the

global sensitivity analysis to identify subset of parameters

(affinity reaction constants) that appears the most important

for formation of realistic structure and composition of PSD.

The resulting model allows interrogation of the critical

conditions for the protein aggregation to support large

complexes. At the same time, the model can capture the effect

of mutations, posttranslational modifications, and alternative

splice variants on complex structure and size.

Results

Model building and structure

The work presented here represents a proof of concept, which

aims to reproduce the basic lattice composition of the post-

synaptic density and demonstrate that the modeling approach

can be extended to capture dynamic and quantitative

processes at the synapse. The PSD is understood to consist

of several families of scaffold proteins cross-linked by a series

of key domain–domain interactions. These scaffolds bring

together the rest of the elements of PSD, namely the neuro-

transmitter receptors, elements of various signaling cascades,

cell adhesion and cytoskeletal molecules. In this first attempt

we have restricted the model to a reduced set of core elements

(54 proteins) manually curated from the literature. The model

components are shown in a network diagram (Fig. 1). The

description of the main components (agents) considered in the

model is summarized below.

Scaffolds

The main scaffold components with their characteristic

domains are shown in Fig. 2. Our model includes four genes

encoding MAGUKS (from the DLG family of proteins): PSD-95

(DLG4/SAP90), PSD93 (DLG2), SAP102 (DLG3) and

SAP97 (DLG1). Each has a similar domain composition

(Fig. 2). Among them PSD-95 is known to be one of the most

abundant (B300 copies/average PSD) and the most stable

(with very little turnover during a 30 min period) proteins in

the postsynaptic density.7

The MAGUKS each possess 3 PDZ domains. The first two

PDZs have similar binding properties and are known to

interact with NMDA (N-methyl-D-aspartate) receptors and

Shaker-type K + channels, which underpins their functional

surface clustering and proper subunit composition.25 The third

PDZ domain is used to bind cytoplasmic signalling enzymes

such as nitric oxide synthase (nNOS), Ras GTPase-activating

protein (SynGAP), Rap GTPase-activating protein (SPAR)

and some others. SH3 and GK domains operate in a tandem

mode, linking the PSD-95 family proteins to the other scaffolds.

Guanylate kinase-associated protein (GKAP) mediates the

multilayer organization, simultaneously binding the GK

domain of PSD-95 family proteins and PDZ domain of

another scaffold, situated deeper, ankyrin repeat-containing

protein (SHANK).26 SH3 and GK domains are also capable

of binding each other in both intramolecular and intermolecular

way, providing the additional integrity to the multiprotein

complex.27 Different groups of PDZ proteins, glutamate-

receptor-interacting protein (GRIP) and protein interacting

with C kinase 1 (PICK2) interact with AMPA (a-amino-

3-hydroxy-5-methyl-4 isoxazole propionic acid) receptors.

GRIP proteins contain up to 7 PDZ domains, amongst which

PDZ4 and PDZ5 are able to interact with AMPARs. Others

can bind ephrin receptors, Ras guanine exchange factors and

many other proteins.26

SHANK, another master scaffolding protein, is found

deeper in the PSDs than the MAGUKs. It is wedged in

between the receptor structure on the cell surface and inner

elements of actin cytoskeleton. SHANK self-associates

through its Sterile alpha-motif (SAM) domains, thus, contributing

to the highly-ordered structure of the PSD.28 Shank interacts

Fig. 1 Protein-protein interaction map of minimal mode of post-

synaptic density considered in the Kappa model (54 proteins). Func-

tional protein subcategories are marked by respective colours. This

static map captures the interactions in the reduced model of the post-

synaptic density.

Fig. 2 Domain–domain interaction map considered in the model. A.

Domain structure of the major components of PSD. Abbreviations:

EVH1, Homer type EVH1 domain; GK, guanylate kinase; L27, L27

domain; PH, pleckstrin homology domain; RapGAP, GTPase-activator

protein for Rap/Ran-like GTPases; RasGAP, GTPase-activator

protein for Ras-like GTPases; RhoGEF, guanine nucleotide exchange

factor for Rho/Rac/Cdc42-like GTPases; SAM, sterile alpha motif;

SH3, Src homology 3 domains;.B Complementary domain–domain

interacting pairs formalized in the model.
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with EVH1 domain of the scaffold protein Homer via its

prolin-rich motif. The resulting quaternary complex

HOMER/SHANK/GKAP/PSD95 is likely to represent a core

scaffold structure of PSDs.8

Our preliminary model also considers the synaptic scaffolding

molecule S-SCAM/MAGI2, which contains 5-6 PDZ

domains which can bind the NR2 subunits of NMDArs and

guanine-nucleotide exchange factor nRapGEP/RAPGEF2.29

In addition (like PSD95-related proteins), MAGI2 can bind

GKAP via its GK domain.29

Receptors

NMDARs are the calcium-permeable glutamate receptors of

the PSD, playing a central role in synaptic plasticity. They are

known to exist as tetrameric complexes composed of two

gycine–binding NR1 subunits and two glutamate-binding

NR2 subunits.25,26 NR2 subunits may associate with PDZ1

and PDZ2 domains of PSD-95 family proteins, which favours

receptor clustering on the postsynaptic membrane.25,30

Another important receptor class, AMPAs, also have a

tetrameric structure, mostly presented by GluR1/GluR2

heteromers.22 GluR2 can bind the PDZ5 domain of scaffold

protein GRIP and PDZ domain of PICK1 (protein interacting

with C kinase1).6 GluR1 directly binds SAP97 a member of

the MAGUKs family.31 We included stargazin, the protein

which links NMDA and AMPA signalling, binding PDZ

domains of PSD-95 related proteins and AMPA receptor

subunits.32 Excitatory synapses are enriched with the other

group of receptors: metabotropic glutamate receptors

(mGluR1 and mGluR5). In the model we describe co-clustering

of mGluRs by means of their simultaneous interaction with

EVH1 domain of HOMER and PDZ domain of SHANK.33

GTPases and their regulators

Ourmodel incorporates the small GTPase Rap1 and its regulators

that are found to bind the PSD9-family proteins through their

GK domains. Amongst these is Spine–associated RapGap

(SPAR), which stimulates GTPase activity of Rap. Synaptic

GTPase-activating protein (SynGAP) has been shown to have

dual specificity towards H-Ras and Rap1 and also binds to

PSD95-family proteins through one of its three PDZ domains.34,35

To balance the system we included the guanine-nucleotide

exchange factors for Rap1, nRapGEF.6,36 The MAGUKS also

directly bind kalirin-7, a guanine-nucleotide exchange factor for

Rho GTPases Rac1, RhoA and RhoG, which is involved in

regulation of spine formation via actin remodelling.37–39

Cytoskeleton

The postsynaptic protein CRIPT, known to influence the

microtubule structure, binds the PDZ3 domain of MAGUK

scaffolds.26 The NR1 subunit of NMDA receptors does not

interact with PSD95 directly, but instead binds a set of

proteins, mainly linked to the cytoskeleton. Among these is

a-actinin, an actin cross-linking protein, which links NMDArs

to F-actin.40 Spectrin, which also participates in the actin

remodelling, binds to NMDAr independently of a-actinin via

sites on the NR1 and NR2 subunits.41 Cortactin, F-actin

binding protein, possesses an SH3 domain and is able to

interact with prolin-rich domain of SHANK42 and prolin-rich

domain of Dynamins (large GTPases).43

Kinases and phosphotases

We have included several of the kinases that dynamically regulate

protein interactions within the PSD, and also contribute to

multiprotein agglomeration. Among these is Ca2+/calmodulin-

dependent protein kinase II (CAMKII), the most abundant

protein in PSDs.22,23 CAMKII exists in a form of a dodecameric

oligomer and is believed to play a structural role within a PSD,

binding non-competitively with several abundant PSD proteins,

such as a-actinin, NR2 NMDA receptor subunit, SynGAP and

kalirin.22,34,40,44,45 MAGUK proteins also interact with

A-kinase-anchoring protein 79/150 (AKAP79/150), a scaffold

for the serine/threonin kinases PKA and PKC, as well as Ca2+/

calmodulin-dependent protein phosphotase (PP2B).6 Such

organization brings the kinases into close proximity with their

potential substrates. Among these substrates, NR1 and spectrin

are considered in the model as the targets for PKA, and NR1 and

GluR1 as the targets for PKC.41,46 PKC binds receptors for

activated C kinase (RACKs), which is also known to perform a

scaffolding function, bringing together two distinct kinase

types.47 The multiple WD domains of RACK1 selectively bind

the pleckstrin homology (PH) domain containing proteins, such

as spectrin and dynamin.48 At the same time some of these

domains are known to be capable of binding Src-family tyrosine

kinases, such as Src and Fyn, via their SH2 domains. The src

family tyrosine kinases are highly expressed in neurons and play

a regulatory role in membrane trafficking. In addition to their

SH2 domain they also have an SH3 domain, which interacts with

proline-rich domains (PRD) of other proteins, such as dynamin

and PI3K.49 Both Src and Fyn can phosphorylate the NR2B

subunit of NMDA receptors.50

The model also includes the class IA phosphoinositide-

3-kinase (PI3K), which is known to participate in synaptogenesis.51

It interacts with phosphoinositide-3 kinase enhancer (PIKE),

which links the PI3K cascade to mGluR receptors, binding the

EVH1 domain of scaffold protein Homer via a proline-rich

domain.52,53

We have also included several other proteins that are known

to interact with the main scaffold components of PSD like

insulin receptor substrate of 53 kDa (IRSp53), nitric oxide

synthase (NOS), phospholipase Cg, ProSAP-interacting protein

1 (ProSAPiP1), LZTS1 and some others.54–58 The full list of

components and associated rules could be found in Supple-

mentary Table 1 and 2.

To date, the model consists of 54 proteins (agents), 136 rules

and 84 parameters (Supplementary file 1). All reactions in the

system were assumed to take place as concurrent processes within

the volume of the spine, which was estimated to be

B 4.0e–16 L.22,23 Numerical abundance data for key components,

including the PSD-95 family proteins, CaMKII, NMDA and

AMPA receptor subunits, SynGAP, GKAP, SHANK, HOMER

and some others were sourced from Sheng and Hoogenraad.22

Although cooperativity is thought to be essential for operation

of some domain tandems (PDZ1/2, SH3/GK, etc.),11 the first

model does not take the phenomenon into account, so that all

the domains/sites are assumed to work independently. The

selected modeling framework can capture this logic and it will
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be introduced into future revisions to improve biological

plausibility.

The current model assumes mostly unconditional binding,

which means that at this point, for simplicity, we generally

overlook the post-translational regulation of protein-protein

interaction. The modelling framework allows these features

and these will be implemented in future studies.

The model considers competitive protein interactions based

on domain promiscuity. Accordingly, one of the main model

assumptions is that similar domains, which comprise the

different peptides, will interact with similar affinity. Even a

minimal model of PSD contains 54 components that would

give B150 reversible rules of interaction with B300 affinity

constants. In fact, we assign specific rules for the complementary

pairs of domain, such as PDZ1-C-terminal motif, SH3–

proline-rich domain (PRD), etc. This allows us to reduce (by

a factor of 3) the number of constants considered in the model.

Most of the rules in the initial model account for unconditional

binding/unbinding and have a form of:

‘NR2_DLG_PDZ1’ DLG(PDZ1), NR2(c) - >

DLG(PDZ1!1), NR2(c!1) @ k8 (1)

‘NR2_DLG_PDZ1_diss’ DLG(PDZ!1), NR2(c!1) - >

DLG(PDZ1), NR2(c) @k_8 (2)

The above two rules in Kappa syntax describe the reactions

for association (1) and dissociation (2) for members of

MAGUKS/DLG family of proteins family and their interactions

with NR2 receptor subunits, where the rate of forwards

reaction is k8 and the rate of backward reaction is k_8. In

accordance with above, the pair of constants k8/k_8 could be

substituted not only for all 4 PSD-95 family members, but also

for the rest of the extensive list of model agents that carry PDZ

domain and interact with C-terminal motifs of other proteins.

While this might seem an over simplification, we considered it

appropriate for a demonstration bearing in mind that we can

later check for critical parameters and fine tune them. Sensitivity

analysis (see below) was performed on the model for this

purpose.

The model does not aim to describe the dynamic process of

signal propagation through the postsynaptic signaling cascade

per se, but is rather focused on the steady-state complex

association. That is why the regulatory rules, which may

condition the binding or unbinding, such as phosphoryl-

ation/dephosphorylation of model components were set to

an effective minimum.

As a result, dynamic regulation is rather sparsely covered in

the current model. However, the elements of the main signaling

cascades are included, which gives the perspective for manipulation

and demonstrates a proof of principle that we can accommodate

such logic. Further revisions to describe most of the regulatory

events within consensus PSD, would allow tracking the

dynamics of complex aggregation over the time of signal

propagation.

Model simulation results

One of the main obstacles to many Systems Biology approaches

is the paucity of kinetic data to constrain the model. Ideally we

want the exact values for B100 constants, which are simply

not available. However, we found some information for the

order and the range of main constants from the literature. For

instance, the equilibrium constant (Kd) for the most of PDZ-C-

terminus interactions was estimated in a low micromolar

range, 1–50 mM.9 Respectively, the approximate ranges could

be obtained from literature for other domain–domain inter-

actions. Some of them would be more specific, others would be

estimated by similarity, but in all the cases the value used

should not be considered precise. To reduce this uncertainty

we optimized the whole system to a biological phenomenon. In

our particular case we know that the average PSD has a total

Fig. 3 Results of simulation of Kappa model of the post synaptic density. A. Distribution of sizes (in molecular copies) of the steady- state

complexes obtained in 10 000 simulation runs. Different colours correspond to ‘wild type’ and mutated states of the model (see below) B.

Distribution of the diversity of composition of complexes obtained in 10 000 simulation runs. Different colours correspond to ‘wild type’ and

mutated states of the model.
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molecular mass of 1.10 � 0.36 gigadaltons (GDa).22 Thus, we

have reason to assume that we are looking for the set of

parameters that gives us a protein agglomeration tending

towards that mass. We set the ranges for the each dissociation

konstant (Kd) consistent with the available literature data.

Also, we set the unimolecular dissociation rates (general

unbinding) for all the reactions to the same range of

0.03–0.1 s�1(KappaLanguage.org). After that, 10 000 points

(i.e. parameter sets) were uniformly sampled using Sobol

algorithm from hypercube bound by values for dissociation

rate constant and values for dissociation equilibrium constant.

We performed numerical analysis on the relative steady state

distribution of protein complexes and their sizes. The results from

10000 simulations are presented in Fig. 3. Most of the complexes

obtained from simulations are relatively small, composed of

200–300 molecules (Fig. 3A). Initial inspection of largest

complexes obtained revealed that some of these are simple polymers

of scaffold proteins without any channels or receptor attached

(not shown). We then examined the molecular composition of

complexes. The distribution of protein diversity of the complex

components is presented at Fig. 3B. The most common

molecular diversity observed was in the range of 25–35 types

of molecules per complex. The single biggest complex obtained

in simulation, composed of 1586 molecules from 48 types of

proteins (Fig. 4B). We also looked at the correlation of size

and composition for the complexes. Fig. 3A, shows the index

of biggest complex for each of 10 000 simulations versus the

index of the most diverse complex, and high density on the

diagonal provides the evidence that larger complexes in average

have more diverse composition.

Supplementary Fig. 2 shows more detailed analysis of

simulation results obtained from simulation for one particular

parameter set, giving the largest (1586 molecules) complex

shown on the Fig. 4B. That particular parameter set gives in

total 236 complexes of various sizes from 1 to 1586. Among

them, calmodulin participates in more than half of the complexes

(114 complexes); PSD95 and SynGap take the second and

third place with 76 and 67 complexes, respectively, while

GRIP participates in only one complex from 236 obtained.

Supplementary Fig. 3 shows the brutto composition of the

largest (1586 molecules) complex obtained in this simulation.

Having such a model in hand, it is now simple to simulate

situations where stoichiometry of modelled PSD differs from an

‘average hippocampal excitatory synapse’. For example, we

could easily simulate a PSD 95 knockout. For this, we changed

the initial concentration for the PSD95 protein from 300molecules

down to 0. We then ran the simulation in the same manner as

it has been described above. The results of this simulation are

presented at Fig. 3 and 4. It is clear from the figure that

removing PSD95 from the complex distinctly reduced the

average sizes of complexes. The most frequently appearing

complexes do not exceed the 100 molecules in total (Fig. 3A).

The composition of those complexes also became less diverse,

with a maximum between 15 to 25 protein types in any

simulation (Fig. 3B). The correlation between size and component

variability also became less pronounced, especially within the

range 0–25 molecule types (X axes) (Fig. 4C). The biggest

complex, composed of 729 molecules is presented at Fig. 4D.

Interestingly, in this simulation all of the largest complexes

comprise of SHANK polymer sheets. Basically, in ‘mutant’

simulations, the PSD complex seems to recruit additional

SHANK molecules replacing PSD95-based polymers in the

‘wild-type’ simulation. Although we would prefer to extend the

model before proposing hypotheses about the nature of the PSD,

this is a good example of a readily testable prediction that we can

obtain from this kind of modelling strategy. Supplementary Fig. 4

demonstrates proteins participating in the complexes for the

example parameter set, giving the largest complex (729 molecules).

Here, the RACK1 protein participates in 63 complexes from

212 obtained; calmodullin and actin take the second (54 complexes)

and third (41 complexes) places in respect with their popularity.

At the same time SHANK is concentrated in single biggest

complex as its major component (Supplementary Fig. 5).

We also tested a ‘‘double mutant’’ example, when both concen-

tration of PSD95 and SHANK were set to 0. Simulation showed

further reduction both in complex size (most of the complexes are

composed of 15–25 molecules) and in complex composition

(10–17 protein types). The biggest complex detected in this

simulation was composed of 176 molecules. The majority of

medium sized (15–25 molecules) complexes consist of other

MAGUK-proteins and the first and second order interaction

partners (data not shown).

Graph properties of simulated PSD complexes

We next looked at the graph properties of the clusters

obtained in simulation. For this we extracted the biggest

complexes from all the simulations and analysed them from

the point of view of the network topology. We were particularly

interested in level of connectivity of the network elements that

could be inferred from clustering coefficient, closeness and

presence of small bound motifs (cliques).

Using igraph package in R61 we estimated transitivity for each

biggest complex, which appeared to be equal to 0 in all cases. As

the transitivity reflects the probability of the adjacent vertices of a

network to be connected, we can conclude that we are dealing

with a rather sparsely connected graph. We also calculated the

size of the largest clique (complete subgraph) in each of the

biggest networks and found that it never exceeds 2. This supports

again our hypothesis that graph is sparse and has a tree-like

structure. In comparison, if we calculate the same parameters for

the static PPi map, consisting of the model elements, we will get

the transitivity equal to 1.15 and maximal cliques of size 4. This

means that the highly connected motifs presented at the PPi

network are not necessary subjected to inheritance by the

rule-generated network and will be transformed with respect to

the actual stoichiometry and affinity of network elements.

We also calculated closeness, which represents how many

steps are required to access the every other vertex from the

given one. The inverse of closeness gives the measure of

average shortest path for each vertex. We separately estimated

its maximum and minimum values for each cluster as follows:

max cl = max(1/closeness(g))

min cl = min(1/closeness(g))

The maxcl value was distributed between 5 and 68. The

minimum of mincl possessed the value from 2 to 30. Finally,
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we estimated the average path, which gives the representation

of average coherence of elements of the network. The average

path was distributed between 4 and 42 with a mode around 10

(Supplementary Fig. 1).

We looked at the correlation between the size of the complex

and its average shortest path and found a few sizable

complexes (1300–1500 molecules) with average path about

20 (Supplementary Fig. 1). Among them we chose the complex

of 1222 molecules size with the smallest value for mincl (12)

and marked the correspondent parameter set as potentially

giving the most connected structures.

Sensitivity analysis

As mentioned above, we used the same constant values for

multiple protein-protein interactions where they are mediated

via a similar domain–domain association. Although this

assumption successfully reduces the parameter set, it might

be a critical oversimplification. To address this, we performed

sensitivity analysis (PRC coefficient calculated by sensitivity

package in R62), studying the correlation between the values of

association and dissociation constants (kn and k_n) and maxi-

mum size of the protein complex obtained in simulation.

Fig. 5, A demonstrates the distribution of the constants

according to the value of the correlation coefficient. Constants

with the largest positive value show positive correlation with

the size of the complex, while constants with lowest negative

value influence the peptide aggregation negatively. Constants

with values around 0 have no measurable effect on the complex

size. Constants with the largest magnitude need to be checked

more carefully than those tending towards 0, which have

minimal effect and could be fixed. We observed k37 having a

maximum of positive influence on the complex size. This

constant corresponds to coiled-coil domain homodimerization.

In the current model it accounts for Homer and ProSAPiP1

protein self-association. Among the most size-affecting constants

were observed k23 (dimerization of AMPArs subunits), k33

(a-actinin–F-actin binding), k32 (cortactin–F-actin binding),

k27 (PDZ domain of SHANK binding to C-terminus of

SHANK interacting proteins), k21 (GK–GK-binding domain

interaction), and k29 (SH3–PRD interaction).

We performed the same analysis looking at the complex

composition, searching for the constants, having the most

influence on the molecular diversity of steady state complexes.

The obtained ranking is presented at Fig. 5B. Here, once

again, the rates of association and dissociation for coiled-coil

domains, k37 and k_37 appear the most important. Other

influencing parameters from previous analysis come to the

Fig. 4 Results of simulation of Kappa model of the post synaptic density: correlation between size and composition. A. Correlation of size and

composition for the complexes obtained in 10 000 simulation runs for ‘wild-type’ simulation. B. Protein-protein interaction map for the

postsynaptic density complex obtained in ‘wild-type’ simulation (1586 protein copies), comprising the 48 protein types of the 54 considered in

the model. Red color corresponds to the MAGUK family proteins. C. Correlation of size and composition for the complexes obtained in 10 000

simulation runs for mutant simulation. D. Protein-protein interaction map for the postsynaptic density complex obtained in PSD95 mutant

simulation (729 protein copies). Presented is an example of the largest steady state complex obtained in stochastic simulation. The complex

comprises the 32 protein types of the 54 considered in the model. Red color corresponds to the SHANK family proteins.
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surface again, though in different order. Additionally, a new

parameter, k35 appears in the list. It accounts for the association

of stargazin and GluR1, thus forming a physical link between

NMDA and AMPA subsystems in the unified complex.

Experimental details

The model consists of 136 rules describing the reversible

binding reactions for 54 proteins. Those 54 proteins were

selected from the core set of 89 proteins that was detected in

most experimental studies of PSD (data not shown). The

selection criterion for the 54 proteins was the participation

in the scaffold-based lattice structure, which resulted in main

scaffold members and their first coordination sphere. The

biological information for physical protein association and

underlying domain–domain interactions was extracted from

the literature (Supplementary table 1). The kinetic information

for domain–domain interactions, if available, was also derived

from the literature (Supplementary table 1). The proposed

rules use the Kappa language semantics (RuleBase.org) and

generally have a form:

A (b), B (a) h-i A (b!1), B (a!1),

where A and B are the interacting proteins, a and b are their

interacting sites (domains).

Resulting rules have the protein names (PDS95, GKAP,

etc.) instead of A and B and domain names instead of a and b.

Domain names used are either traditional (PDZ, SH3, etc.) or,

if unknown, could be optional, reproducing the name of

binding partner.

The model structure was defined in RuleStudio, an Eclipse-

based kappa editor.21,63 The model template was obtained from a

a basic interaction map by introduction of symbolic rate

constants. The R package randtoolbox64 was used to sample

10000 parameter sets from hypercube described. The same R

script was also used to create a kappa model corresponding to

the individual parameter set obtained from Sobol sequence

sampling procedure. Each individual model was simulated by

jsim21 simulator for 1000 s (i.e. to steady state). XML files

generated by jsim were parsed by an R script with R XML

package65 and final snapshots were converted into igraph61

representation and then used to create dataset for sensitivity

analysis. All source code is available from authors by request.

The adequate sample size (N) should be defined for each model

system individually, since it depends on the properties of the system.

One way to estimate the optimal N is to systematically increase the

sample size and check, whether the set of the most sensitive

parameters keeps changing with the increase of N. When two

consecutive experiments consistently capture and rank a similar

set of most important parameters, one can conclude that there

is no evident advantage in further increasing the sample size.

For our network model we used a quantitative metric ‘‘top-

down coefficient of concordance’’ (TDCC) to assess the ade-

quacy of the sample size N, as suggested by Marino et al.59

TDCC is a measure of correlation between parameter ranks

found in two consecutive sampling experiments, which is

designed to be more sensitive to agreement on the

top rankings.60 We calculated TDCC for sample size

N = [100, 1000, 2000, 5000, 9000, 9600]. Starting from

Fig. 5 The results of the sensitivity analysis. A. Constants were ranked according their relative influence on the complex size. The most positively

influencing constants are coloured in grey, the most negatively influenced constants are coloured in red. B. Constants were ranked according their

relative influence on complex composition. Again, the most positively influencing constants are grey and the negatively influencing-in red.

Pu
bl

is
he

d 
on

 2
6 

A
ug

us
t 2

01
1.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

E
di

nb
ur

gh
 o

n 
21

/0
5/

20
13

 1
1:

54
:4

3.
 

View Article Online

http://dx.doi.org/10.1039/c1mb05152k


This journal is c The Royal Society of Chemistry 2011 Mol. BioSyst., 2011, 7, 2813–2823 2821

N= 2000 TDCC followed a saturation trend (see Supplementary

Fig. 1). Thus we estimated 10 000 as a sufficient number of

Sobol’s points for our analysis.

Discussion

The performance of a signal-transduction system ultimately

depends on the dynamics of its protein-protein interactions

(both regulatory and structural). When considering huge

signaling networks such as that found at the neuronal synapse,

the combined effect of all interactions in the system can not be

predicted intuitively. Instead, mathematical modeling serves as

a powerful tool for quantitative and predictive understanding

of dynamic system behavior. Contemporary modeling techniques

are designed with high levels of complexity in mind. Among

them, rule-based modeling incorporates the molecular

information at the level of protein sites, defining protein

interaction rules in a simple syntax. This enables rule-based

models to deal with combinatorial expansion, inevitably

concomitant of a large signaling network.

The PSD is a good example of a large signaling complex,

comprised of many distinct signaling cascades, operating in well-

orchestrated manner. The elements of these signaling pathways,

as well as membrane receptors, cytoskeleton components and

enzymes are held together by the highly organized lattice struc-

ture built upon scaffold proteins. Interactions within this lattice

environment are mostly underpinned by interactions between

complementary domains, highly enriched in many PSD proteins.

Using the Kappa language, we developed a proof of concept

rule-based model of a minimal consensus PSD. Molecular

diversity was markedly reduced in comparison with real

2000–3000 molecular types described for PSDs. The model

includes a minimal set of functional categories of proteins that

are known to comprise the PSD. Among these are representatives

of the main scaffolds, receptors, cytoskeleton components and

signaling elements. All the elements of the model are considered

from the point of view of agglomeration and complex composition,

rather than signal propagation. However, the signaling

mechanics can be superimposed over the existing model structure

in subsequent revisions, as it includes potential outputs such as

actin remodeling or receptor clustering in response to specific

perturbation. The current model includes the main classes of

kinases, reported for the synapse. It has the small GTPase and

their regulatory partners, which allows model extension

with MAPK cascade downstream. Application of post-

translational modification to the network will enable temporal

modeling of signal processing and allow tracking the step by

step dynamics of complex formation.

We simulated the model with a stochastic algorithm, looking

at the distribution of the protein clusters/snapshots at the time

point when the system was reaching a steady state. Where

available we used the stoichiometry data, derived from literature

to set the initial conditions. As the exact kinetic information

for the selected system is very sparse and incomplete we

decided to define the parameter space setting constraints to

the equilibrium constants and rates of the monomolecular

reactions. Further uniform sampling from the parameter

hypercube allowed us to select parameter sets that favor either

larger protein aggregation or those that give the small clusters.

Although the postsynaptic density could be isolated as a single

whole, several immunoprecipitation-based pull-down studies

each revealed the different subsets of PSD proteins, with just a

partial overlap between them.1 The latter might indicate that

some bonds within the complex are weaker and some are

stronger, so that the real system may exist as a combination of

subclusters/‘signalosomes’. From this point of view the parameter

sets giving the collection of the moderate-sized complexes may

actually be realistic also.

The current model does not include the cooperativity in

domain–domain association; all domains are considered to

bind unconditionally and independently. This is not what we

observe in the real system. Indeed, the domains can influence

each other by steric blocking or changing the protein

conformation. However we found this simplification reasonable

when looking at the capacity of the system components to

aggregate and the properties of these aggregations. We

acknowledge that future work will inevitably require adding

the regulatory phenomena to the domain–domain interactions

to make the model more biologically plausible.

Even the minimal model of the PSD presented here still has

an impressively large number of parameters (B90). This

makes even this minimal system barely computationally tractable

thus, further simplification is still appealing. We assigned

single constants at the level of domain–domain interactions

rather than individually by protein pair. This significantly

reduced the parameter space but of course we then have to

rely on sensitivity analysis to reveal network critical inter-

actions that would benefit from more accurate parameters. To

achieve this we ranked the parameters according to the relative

impact on cluster size and diversity. The analysis allows us to

identify those constants that have most influence on the

complex size and composition. Conversely, parameters found

as ‘important’ need more extensive investigation with potential

splitting into more specific/important ones. Our analysis identified

the set of most important parameters, largely corresponding to

interactions between the different classes of scaffold proteins:

GK- GK binding domain, SH3-Proline-rich domain, etc.

Although these results might seem quite predictable we also

found k37, the association constant for coiled-coil domain as

the very influential for both size and composition of the

complexes that needs the further investigation.

We simulated a knockout phenotype of a PSD protein,

changing the concentration of its main scaffold protein PSD95

to 0. We observed large differences in the sizes of complexes

produced by the simulations and this corresponds to the main

structural role of PSD95. The remaining three MAGUK

proteins were still available in simulation, but due to stoichio-

metric ratio (300 PSD95 : 50 PSD93 : 37 SAP 102 : SAP97)22

their impact is not as strong as of PSD95. All the biggest

complexes of ‘wild-type’ simulation composed of long polymers

of self-associated PSD95 and MAGUK proteins, each bound

to some interacting partners. The biggest complexes obtained

in ‘mutant’ simulation comprised of the polymers of SHANK,

which hold the rest of the system components. As the Shank

appears twice less abundant than PSD95 (150 copies/average

PSD), but still in good excess compared to other scaffold

proteins it is a candidate substitute for the structural role of

PSD-95. The model is not limited to gross knockout mutant
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phenotypes but can also simulate many other more subtle

perturbations. If the different splice variants of the same

protein have different binding domains, this information could

be easily introduced to the model. In similar way, the specific

drug application could be introduced to the model if it alters

the certain domain–domain interactions.

It was interesting to directly compare the topology of the

static PPI network with that obtained through the simulations.

The static interaction model, albeit with a reduced/minimal

protein complement shares the same general network topology

and features as that observed in published receptor models.2

Our simulated rules-based models graphs appeared to have

more of a loose tree-like structure. The small world feature of

the condenses static interaction networks appears, perhaps not

unsurprisingly to be more complex in nature with a distribution

of shortest paths for each pair of molecules within the overall

network architecture. Further, no single simulated network

even contained all 54 proteins (mostly in the range of 20–30

proteins). The topological structure we obtain from the

simulated approach is clearly dependant upon, and varies with

the interaction affinities and stoichiometry for the same given

set of proteins. At the same time, model presented here is

clearly lacking in terms of the molecular classes available for

constructing the network (54 proteins compared with hundreds-

thousands at real synapses). This also might explain the sparse

connectivity observed when we optimize the simulation

conditions towards larger complexes. Having a protein-

protein interaction map and protein domain structure one would

be able to generate the bigger models on the fly, just choosing

the appropriate rule from the list. Adding the post-

translational modifications will enable us to build a more dynamic

picture with further analysis of different parameter influence

on signal propagation.

Conclusions

The work presented here illustrates the possibility of extending

a qualitative protein-protein interaction map into a quantitative

executable model. Existing static PPi models of synapse

proteome cannot capture the dynamic complexity and subtle

perturbations of molecular structure we expect to find in the

postsynaptic density. We developed the rule-based model that

predicts the quantitative distribution of protein complexes

with realistic structure and composition, thus, having a big

potential in providing molecular mechanisms of physiological

phenomena at the post synaptic level.
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J. Neurosci., 2011, 31, 2721–2733.

52 C. B. Chan and K. Ye, The Scientific World JOURNAL, 2010, 10,
613–623.

53 N. Guhan and B. Lu, Trends Neurosci., 2004, 27, 645–648.
54 C. Sawallisch, K. Berhörster, A. Disanza, S. Mantoani,

M. Kintscher, L. Stoenica, A. Dityatev, S. Sieber, S. Kindler,
F. Morellini, M. Schweizer, T. M. Boeckers, M. Korte, G. Scita
and H.-J. Kreienkamp, J. Biol. Chem., 2009, 284, 9225–9236.

55 J. E. Brenman, K. S. Christopherson, S. E. Craven, A. W. McGee
and D. S. Bredt, The Journal of Neuroscience, 1996, 16, 7407–7415.

56 J. W. Gurd and N. Bissoon, J. Neurochem., 1997, 69, 623–630.
57 D. Wendholt, C. Spilker, A. Schmitt, A. Dolnik, K.-H. Smalla,

C. Proepper, J. Bockmann, K. Sobue, E. D. Gundelfinger,
M. R. Kreutz and T. M. Boeckers, J. Biol. Chem., 2006, 281,
13805–13816.

58 H. Maruoka, D. Konno, K. Hori and K. Sobue, J. Neurosci., 2005,
25, 1421–1430.

59 S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, J.Theor.
Biol., 2008, 254, 178–196.

60 R. L. Iman and W. J. Conover, Technometrics, 1987, 29, 351–357.
61 G. Csárdi and T. Nepusz, Inter.Journal Complex Systems, 2006,

1695, 2006.
62 G. Pujol and B. Iooss, 2008.
63 V. Danos, J. Feret, W. Fontana and J. Krivine, Lect. Notes

Comput. Sci., 2008, 4905, 83–97.
64 C. Dutang, 2009.
65 D.T. Lang, 3.1-0 edn, 2010, pp. This package provides many

approaches for both reading and creating XML (and HTML)
documents (including DTDs), both local and accessible via HTTP
or FTP. It also offers access to an XPath ‘‘interpreter’’.

Pu
bl

is
he

d 
on

 2
6 

A
ug

us
t 2

01
1.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

E
di

nb
ur

gh
 o

n 
21

/0
5/

20
13

 1
1:

54
:4

3.
 

View Article Online

http://dx.doi.org/10.1039/c1mb05152k

