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Polynomial C" shape functionson thetriangle
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ABSTRACT: We derive generic formulae for all possil@}¢ continuous polynomial
interpolations for triangular elements, by consigigindividual shape functions, without
the need to prescribe the type of the degreesetlrm in advance. We then consider the
possible ways in which these shape functions casob®ined to form finite elements with
given properties. The simplest case of fifth-ongelynomial functions is presented in
detail, showing how two existing elements can biokd, as well as two new elements,

one of which shows good numerical behaviour in micaétests.

KEYWORDS: finite elementsC' continuity; shape functions; triangular element;

gradient elasticity

1 INTRODUCTION

A displacement-only discretisation of continuum tmeacs problems involving

fourth-order partial differential equations intrags the need for finite elements with

continuous interpolation of the displacements. Elets of this type were developed
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initially mostly for use in modelling bending ofithplates, while more recently they have

been succesfully employed for modelling strain-gratidependent materials. Among

others, Argyriset al. [1] presented & triangular element with polynomial interpolation
and 21 degrees of freedom (named TUBA 6), from Wwhisimpler element with 18
degrees of freedom (named TUBA 3) has also beawnedkiThe shape functions for these
elements were not given explicitly at first, buéyhare available in more recent
publications (see for example [2, 3]).

In a recent paper [4] we presented an algorithndif@ctly deriving the shape
functions of elements like TUBA 3, thus creatingeav family of “TRF” elements. In that
algorithm, the interpolation is obtained by deterimg a priori the location and type of the

degrees of freedom. This restriction is relaxeehby presenting a method that allows us

to derive formulae for all possibIg* continuous polynomial shape functions for triarmgul
elements without first prescribing the type of tlegrees of freedom.

The generic formulae thus derived for the shapetfans are expressed in terms of
a number of unknown functions of the element geoma&hese unknown functions can be
determined by considering the way individual shiagpetions are combined in specific
elements. We discuss here the general problemtefrdiming appropriate combinations of
shape functions to obtain elements with specifapprties and then consider in detail the
simplest case in which fifth-order polynomial shdypections are used. As expected, the
generic approach described in this paper allows abtain in this case all known elements

(such as TUBA 3 and TUBA 6), while we also obtauo tadditional new elements.

Since C' continuity is a necessary, but not sufficient,ditian for correct



numerical behaviour of the resulting elements, g the newly obtained elements using
two benchmark problems of gradient elasticity aochpare their behaviour to that of
existing elements. We thus see that while one@htw elements fails to perform
adequately, the second one exhibits a good nunhéebtaviour, comparable to that of the

existing elements.

2 ELEMENT GEOMETRY

We consider finite elements which are trianglefwitaight sides, like the one
shown in Figure 1. The only additional constraietimpose is that the elements must have
“rotational symmetry”, so that cycling the vertendaside numbers does not affect the

interpolation.

Figure 1: Geometry of a triangular element

The geometry of the side from vertbxto vertexa, wherea andb can take a

value of 1, 2 or 3, is given by the quantities



Xap = X3 = %y, Yo =Ya~ Yo (1)
so thatx,, =y, =0, X, ==X, andy,, =Y,,. In general only four quantities are needed
to define the element geometry, for example thentities x,,, Y,,, X;; and y,, obtained

by singling out vertex 1 suffice.

To obtain simpler expressions we use the areabavatesL , L, andL,, related
to the Cartesian coordinates y through the equations
X=Lx +LXx,+Lx,
y=Lyi+ LY+ Ly, (2)
1=L+L,+L,
Using the quantitiex,,, Y,,, X;; andy,,, the relation between Cartesian and areal

derivatives is written as

o v [ (o o) (o 2
OX X51Y31~ Yo . 0L2 oL “ 0L3 oL

i;[xg [i_iJH (i_iﬁ @)
ay X1Y317~ YorXa ' 0L2 oL “ 0L3 oL

A different set of quantities that can be usedafing the element geometry is the

lengthl, = /x5, + y3, and the three angles , €, and 6, shown in Figure 1. Setting

— XXt Ya¥ 1o (4)

K, = coté
? ? X32Y12~ ¥YaX12

and similarly forx, and x; by cycling the indices, we obtain the followingngile

expressions for the tangential and normal derieaton side 1
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3 SHAPE FUNCTIONS

The interpolationw within an element is given by the linear combioati
|
W= Z¢(a)d(a) (6)
a=1

wheren, is the number of degrees of freedogtf; are the shape functions adé” are
the values of the degrees of freedom.

To obtain aC" interpolation, we must ensuf@" continuity of w both within an

element and at the boundary between elements wittimon sides or common vertices.

Since the degrees of freedom can assume any v@luegntinuity is required for all
individual shape functions. Thus we can examiné shape function separately.

We consider here the case of polynomial shape itumecdf arbitrary orden,,. The

generic form of the shape functigncan then be written as

n.n_—i

p P i—k

$=> >t L LY 7)

i=0 k=0
where the coefficient§, depend only on the geometry of the element. NuieBezier

polynomials can also be used [5, 3], instead ofdh@ in equation (7). In the present case,

however, they would result in more complex exp@sswithout providing any actual



benefit.

The use of polynomial shape functions ensures@atontinuity is obtained within

the element, thus it must only be enforced at thenary between adjacent elements. To

determine the coefficients, which yield C' continuity for a given shape functigh

associated with a given node, we distinguish betvike sides which include the node
(“near” sides) and those that do not include ia*fsides). The value g and its normal
derivative must be zero on the far sides and thast match the respective values of the
shape function on neighbouring elements on neasggke Figure 2 and the description in
subsections 3.2 and 3.3). It is important to nb#, tsince the normal on each side is
defined as pointing outside the triangle, the ndmheaivatives for two adjacent elements

are matched on the common side when they have afjsalute value and opposite sign.

3//

2//

1// 1/

—_

1///

3///
2///

Figure 2: A triangle element with its neighbourglgments

The value ofg on the three sides is easily calculated as



¢ |L1:0: Zti i Liz(l_ Lz)np
#lo= Yl (1L, ®)

¢ ||_3:0: Zti ,oLrlpii (1_ Llj

while the values of the normal derivativegfon the three sides are

3 (1) ZLJ (1- Lz) P (Kz(n )tjnp—j+K3(j+1)tj+mp—}j_(K2+K?)tj np—-lj)

8 (2) anp - J(l L)’ (res(ny — Dty +x4(J + D, = (e g it ) 9)

an(3) Zan - J(l Ll) (rco(ny = It oty (J+ 1, 16— (it )

In equations (8) and (9), as well as in the oéshis paper, the free indicésand |

always take the valués=0,...,n, and j =0,...,n, - 1

Equation (7) shows that a polynomial shape funatibordern, has
(n, +2)(n, +1) /2 coefficientst,, . As will be seen later, nG' polynomial functions exist
for n, <5. Forn, >5, it can be verified from equations (8) and (9)aly 6n, — 9 of

thet;, coefficients have an influence on the valuesabr its normal derivative at the

boundary, and have thus a role to play in ensu@hgontinuity. These are called here the

“boundary coefficients”. The remainin@, —4)(n, —5)/2 of thet,, coefficients do not

affect the existence a&* continuity and are called here the “internal cioeghts”.

A given shape function (and respective degreeesfdom) of an element is



associated with a node that can be located ontexyem a side (excluding the vertices) or
in the interior of the element. We can then digiisg betweewertex shape functionsde

shape functions andternal shape functions.

An important assumption, which is often only imgliehen discussing*
continuity, is that the elements are part of a l@gmesh, where two elements having two
points in common must share a whole side. An isterg implication is that all side nodes
on a given side can be replaced with a single netlere all degrees of freedom of the
original nodes are transferred to the new node.sBEinge holds for all internal nodes, thus

we can consider only vertex, midside and centroudes.

3.1 Internal shapefunctions
For internal nodes, all three sides are far sithesefore the shape function and its
normal derivative must be zero on all sides. Frgo¢ions (8) and (9) this means that all

6n, — 9 boundary coefficients must be zero, i.e.

b =t Tto=00 4

=t,, =t ,=C (10)

For n, <5 all coefficientst,, are zero, therefore there exist no intei@alshape

functions, while forn, > 5 the resulting shape functions ai@" bubble functions”.

3.2 Side shapefunctions

We consider a node on side 1 of the trianglen Figure 2, and the adjacent triangle

T' whose side 1 coincides with side 1Tof Due to the rotational symmetry of the element,



this is enough to cover all possible combinatioinsides of T and matching sides af' .
On the far sides 2 and 3 of triandglethe value of¢ and its normal derivative must
be zero, therefore
t =t ,=0, t; =t 1=0 (11)
The value ofgp on side 1 must only depend on the geometry of Eide
i = F O Vo) (12)
The value of the normal derivative gfon side 1 must also depend only on the geometry

of the side, so we can write the first of equati(9)sas

|1% = ]Zsz(l— L)" ' G, (Xe Y a0) (13)
where we have set
G, (Xeps Yap) = 55N, = )F; + 0 (j + DF, = ( o+ 5 1, Y (14)
so that
iy = (610 Y £ 0, = DF Y o (4 DF (Y ) 19

Matching the value of and its normal derivative on side 1 Dfand T' yields
Fi(%2 Y22) = Fy i (X30=Y 3)
G (X2 ¥s2) = —an_H (—X32—Y 2) (16)
Using the above equations we also obt@ir- G, = an_2 = an_l =0 and

b 2=t 20 F,= Ifnpf ,=0. Therefore fom_ < 4 there exist no sid€" shape functions.



For n, >5 there aredn, border coefficients equal to zero, while the rerimgy (2n, - 9)

border coefficients are given by equations (12) @#%). Due to the “symmetries” (16),

only n,—4 indeterminate function@,...,ﬁnp/ﬂ and GZ""’G\_(np—l)IZJ (which depend only

on the geometry of the side) are needed.

3.3 Vertex shapefunctions

Exploiting once more the rotational symmetry of &ement, we can consider only
the case of a shape functignfor vertex 1 of the triangl& in Figure 2, with sides 2 and 3
of T coinciding respectively with side 3 of triangl¢ and side 2 of triangl@"’.

The value ofg and its normal derivative on side 1 is zero, tfogee

t =0, t =0 (17)

iyt
The value ofp on the near sides 2 and 3 must depend only ogabmnetry of the side and
must be equal to the value computed on the adjacangle, therefore

to=F(%uYa) ta =F (XY ) (18)

A similar procedure for the normal derivative pfyields, after some computations,

1 - A . A
t,= (_Gj (X3 y3])+K3(np - J)Fj (XapY s+ x (] +1)Fj+ X 5Y 3)
K1+K3
1 ~ 2 . ~
t,= ( G, (X1, y21)+K2(np - J)Fj (XopY )+ {j+ 1)Fj+ Xy ) (19
K+ K,

where Ifj and Gi are indeterminate functions.

Equations (17), (18) and (19) are partly coupledvifg them we obtain

10



Fo, =Fy2=F »=G, ,=G, ,=0 (20)
and
Fo(x ) =G,
Ifl(x, y) =n,C, +Cx+Cy
(X, Y) =4n,(n,—-1)Cy+ (N, —1Cx+ (N, — 1C,y+4Cx* +4C y*+Cxy (21)
éo(x, y)=C,x-Cy
Gy(%,¥) = (0, ~1)(Cx~Ciy)+ (C, = Cy + C(x* ~ y?)

whereC,,...,C, are arbitrary constants. From these values werotita values of the

coefficients
b, 207 tor 2= 0 (22)
and
tho=Co
t,=n,Co+CxX5+Cy 4
to=n,Cot+CXp+Cy
ty, =2n, (N, —1)Co+ (N, ~1)C X5+ (N, —1C y ;+2C X5+ 2C ¥y C % y . (23)
to = 2N, (N, ~1)Co+ (N, = 1)CXp0+ (N, — Ly i+ 4C ¥+ 3C ¥+ C X ¥

t,= np(np -1)Cy+ (np —1)C, (Xay+ X o)+ (np —1C (Y st Y )+
CoXgXo1t C Y oy st CAX Y st X Y X

It should be noted that the consta@s...,C, which are dimensionless, must be

11



combined so that there is dimensional consistemelya terms added in each one of the
equations (23).

For n, <5 all coefficients will be zero, therefore 1@ shape functions exist. For
n, >5 out of the6n, — 9 border coefficient2n  + 3 must be zerob coefficients are

given by equations (23) and the remain(@n, — 9) coefficients are computed using the

A

2n, -9 functions Ifs,. . Ifnrf3 and éz,. .. ,anfs.

4 COMBINING SHAPE FUNCTIONS

4.1 Possible combinations of shape functions

In Section 3 we presented general formulas whachle used to derive all possible
C' polynomial shape functions over the triangle. \We that such shape functions only
exist forn, > 5 (see also [6]). Note thal' continuity is ensured only if the element has
rotational symmetry, therefore for each shape fonawve must also use the two shape

functions obtained by cycling the indices of theahicoordinates in the polynomial (7).

This means that shape functions can only be usgobiurps of three, with the exception of

internal shape functions such @sL,L.)” , with g > 2.

Any combination ofC' shape functions that respects rotational symnveity
therefore result into €' element. However, not all such elements will offegood, or

even acceptable, numerical behaviour. It is theeefi@cessary to consider h@v shape

functions can be combined to produce finite elesmearnth appropriate properties.

12



We consider here the case®f elements where all shape functions are

polynomials of the same ordey, (by setting some coefficients to zero, this coass the

case where some shape functions have lower osieBlready mentioned, a polynomial of

ordern, hasm = (n,+2)(n, +1)/2 coefficients. Since we require that the shape
functions should be linearly independent, we cantmae at mosm, shape functions.
Indeed, any combination of exactty, linearly independent shape functions will yield an
element that can exactly interpolate any polynowiardern,.

It may however be advantageous to use fewer thashape functions. In this case
the element can provide exact interpolation ontypi@ynomials up to an order, with
n.<n,, wheren, is called the “order of exact interpolation”. Oracgiven combination of

shape functions is selected, it is relatively gindfiorward to determine the order of exact
interpolation of the resulting element. Howeveerthis not currently a simple way to
determinea priori which shape functions should be selected in dalebtain a given order
of exact interpolation. A trial-and-error methodherefore used, as seen in Section 5,
where the order and number of the shape funct®fisst selected, and then the highest
possible order of exact interpolation is soughabgigning specific values to the
undetermined polynomial coefficients of each sHapetion.

Obviously, we want the order of exact interpolatiorbe as high as possible while
the number of shape functions, and thus degrefgsedfom, should be as low as possible.
It is not however possible to determimeriori the optimum balance between these two

contrasting requirements. For this reason, eittieearetical study or a series of numerical

13



tests are required to provide indications as ta¢htaive performance of the resulting

different C' elements.

4.2 Degrees of freedom

Up to now, the nature of the degrees of freedond uséhe element under
consideration has not been discussed. Indeed,s&fal property of the finite element
method is that it isot necessary to know this information in order tolgppe method.
Nonetheless, we are interested in determining &tere of the degrees of freedom
corresponding to each node and shape functiomheligéneral case, this can only be
achieved when considering the combined shape furgtvithin a given element type and
not each one of them individually.

An important special case is obtained when congigehe value of a vertex shape
function and its derivatives when calculated onwbgex. Consider for example a vertex

shape functiory for vertex 1. The value g and its first and second derivatives on vertex

1 are calculated as

o¢ o¢ 0°¢ o°p 0’
=c,, L=c, %=c, L=, L=, L = 24
=G ox ooy oaxd Y oeyr Y ooy 24)

Additionally, the respective values (always cadtedl at vertex 1) for vertex shape
functions of vertices 2 and 3, as well as for @ésand internal shape functions, are all

zero. We can therefore set one of the const@pts,,...,C, equal to one and the others

equal to zero to obtain six shape functions whaseesponding degrees of freedom are the

value at the vertex of the function being interpadeand its first and second derivatives.

14



The nature of these degrees of freedom is nottefidzy the choice of the remaining shape
functions.

The six shape functions mentioned above will depndome indeterminate

functions E and G , whose value however does not appear in equainand thus it

does not affect the nature of the respective degfréeedom.

5 SPECIFIC ELEMENTS

Since noC' polynomial shape functions exist fap <5, the firstC' elements are
obtained forn, = 5. Using the formulae developed in Section 3, wetlatin this case
there exist no internal shape functions, while eaidha and vertex shape functions depends
on a single indeterminate functio®{ and éz respectively).

Side shape functions have only a single non-zeedficent. For side 1 this

coefficient ist,, so that the corresponding shape function is

f=—— G, (Xa Vo)L L2 (25)

K, + K,
whereG,(X,,, ¥1,) = —G,(—X,—Y 5) - By using different function§&, we obtain different

shape functions for side 1, which are however liyedependent. Therefore for each side

we actually obtain only one shape function, footaltof three side shape functions for the
element. These three shape functions are lineadiggendent, provided the, (x, y) = 0.
Vertex shape functions have 8 non-zero coefficidBésh vertex shape function

depends on an indeterminate functép and six coefficient<,,...,C,. By setting one of

15



the coefficientsC,,...,C, equal to one and all other coefficients equaleimzve obtain six

shape functions for each vertex, with the corredpandegrees of freedom being the value
at the vertex of the function being interpolated &s first and second derivatives, as

mentioned in Section 4.2. These six shape functansbe written as
¢® = 13(6L2—15_,+ 101+ 30¢,+V, » g®
42 = L3(4— 3L, )(LaXy+ LX)+ 12K Y #+ X N J+ 9@
B9 = 3(4-3L) Loyt Ly )+ 124/ 3y 5+ Y N )+ g 26)
B9 = (11 2)L3 (LyXay+ L X%+ (B 2)6%Y 4+ X2 J+g®
B0 = (11 2)3 Ly + Ly )+ (31 2)62%y s+ YN H+9®

A = (Xt LX)y st Ly J+3(X Y % 4% % W)+ 0"

where
v=PlL, 2 v,y (27)
K tK, K tK,
and
3 (c) 2 (c)
g(c) = LEL§L3GZ (X211 y21)_|_i|_2|_2‘3€‘2 (X311y31), c=1,..,6 (28)
K, tkK, K +tK,

An additional shape function can be obtained fahesgertex by setting all

coefficientsC,,...,C, equal to zero. The resulting shape function fotexel is then

- 1
=~ G(7)(X31, Yol Lo ——— G DXy LD (29)

Kt K 1 TK,

The vertex shape functior&” and the side shape functiogsare not linearly

16



independent (for exampléﬁlm is a linear combination af, and ¢,). Therefore it is not
possible to use both types of shape functions begeMoreover, the functioég) must
satisfy the inequalita{”(x, y) = G (-x,—y), otherwise the three shape functiag,

47 and 4" are not linearly independent (their sum is zero).

Given the above results, we can now proceed to cwnbe individual shape
functions of polynomial orden, =5 to obtain specific elements. Any element with 21
linearly independent shape functions will exactiterpolate any fifth-order polynomial.
There are only two ways to obtain such an elenetiter by using all seven vertex shape
functions ¢®....,4™ or by using the six vertex shape functiafs,...,4® together with
the side shape functions. In the second case we obtain elements like thBATE
element [1], while in the first case we obtain avredement with fifth-order complete
interpolation using exclusively vertex nodes, whigd call TRV21C1. Note that these
elements depend on sev€n functions, but these functions only change theneadf the
seventh degree of freedom on each vertex, whilsithirst degrees of freedom are not
affected.

Elements with fewer shape functions can be obtdoye@quiring a lower order of

complete interpolatiom,. While a fourth-order polynomial has 15 independen

coefficients, it is not possible to obtain an elemaith 15 fifth-order shape functions and

n, =4, as in this case the fifth-order shape functionsilet degenerate to fourth-order ones

which, as demonstrated, do not exist. Since thpeshanctions can only appear in groups

17



of three, an element with, =5 and n, =4 would therefore have 18 shape functions. By
trial and error we see that such an element canlmnbbtained using the vertex functions
#.....4® with specific forms of the function6{’,...,G® so that the resulting element is
actually the TRF254C1 element [4], a special cdsehach is the TUBA 3 element [1].

By trial and error we can also determine that tleist no elements with, = 3 or
n, = 2. There exists however an element with= 1. This element has nine vertex shape

functions, with its degrees of freedom being thieiea@f the interpolated function and its
first derivatives at each node, so it is actuallyRF151C1 element [4].

Indicative numerical results for the elements désgdt in this section are given in
Figures 3 and 4, using the theory of gradient ili&g{7] and the two benchmark tests
described in [4]. It is seen at once that the nicakperformance of the TRF151C1
element makes it unsuitable for practical use. TR¥21C1 element, on the other hand,
performs very well in both tests (though it is arfprmed by the TUBA 3 element)

demonstrating how the method proposed in this pegetead to the formulation of new

C' elements with good numerical behaviour.

18
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6 CONCLUSIONS

By considering individual shape functions and tteysthese match between
adjacent elements, we have derived generic fornfataall possibleC' polynomial shape

functions of a given order. These are then usebeabuilding blocks to constru@" finite

19



elements with given properties. In the simplesecas/olving fifth-order polynomials,
existing C' elements are successfully obtained, as well ag smw elements.

Additionally, since all polynomiaC' shape functions are described by the formulae
presented here, the proposed method also allowsailude the existence of other
elements, once all possible combinations have bramined. For fifth-order elements, for
example, it is seen that we cannot obtain an elemkich does not use second derivatives
as degrees of freedom and yet has good numeribai/imeir.

The formulae presented in this paper can be useghfppolynomial order of the
shape functions. For increasing polynomial ordeessee that the number of indeterminate
functions present in the shape functions increasesell, thus widening the range of
possible elements but also increasing the effatad to consider all possible

combinations of shape functions.
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