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SUMMARY

The statistical language R is favoured by many biostatisticians for processing microarray data. In recent
times, the quantity of data that can be obtained in experiments has risen significantly, making previously
fast analyses time consuming or even not possible at all with the existing software infrastructure. High
performance computing (HPC) systems offer a solution to these problems but at the expense of increased
complexity for the end user. The Simple Parallel R Interface is a library for R that aims to reduce the
complexity of using HPC systems by providing biostatisticians with drop-in parallelised replacements
of existing R functions. In this paper we describe parallel implementations of two popular techniques:
exploratory clustering analyses using the random forest classifier and feature selection through identification
of differentially expressed genes using the rank product method. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The introduction of microarray-based technology to biology has established a new generation of
highly parallel and high throughput experiment platforms [1]. These can measure tens of thousands
of gene transcripts or millions of other genomic sequences in a given biological sample in a very
short time. This allows researchers to study which parts of a human (or other) genome are active in,
or affected by, a given treatment or phenotype in a population. These data sets are characterised by
large size, unbalanced dimensionality and analytical complexity [2]. Following image processing
and initial data processing, an example small analysis-ready transcriptomic data set may consist of
anNg�Ns data matrix of size 25 000 (genes) by 20 (samples). A large genotyping data set may con-
sist of 2 million single-nucleotide polymorphism probes (SNPs) by 2000 samples. Dimensionality
is of concern to most analysis approaches, with the number of variables (genes, SNPs, sequences)
vastly outweighing the number of observations [3].

In addition to analyses focusing on the behaviour of individual genes or genomic sequences,
exploratory analyses are typically rooted in machine learning algorithms. These can be subdivided
into unsupervised and supervised clustering. Unsupervised clustering aims to cluster groups of genes

*Correspondence to: Lawrence Mitchell, EPCC, School of Physics and Astronomy, University of Edinburgh, Edinburgh,
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or samples that exhibit strong similarities, as this may indicate genomic co-regulation or patient phe-
notype sets. Supervised clustering aims to classify the genomic features of a previously classified
data set to predict the class (diseased or healthy, at risk or not, affected or unaffected) of a previously
unknown patient sample.

If we perform these analyses on the complete data, it may be difficult to identify patterns in the
data due to the (potentially millions) of variables in each observation. Before clustering analysis, we
may therefore decide to restrict ourselves to clustering on a subset of the measured variables. But
which ones? Feature selection methods allow us to identify an important subset of variables from
our microarray data. For example, in microarray transcription studies, we are looking for strongly
differentially expressed genes. A popular, biologically motivated metric for feature selection is the
rank product method [4], of which we describe a parallelisation in this paper.

As the data sets get larger, analyses of this post genomic data are increasingly running up against
limits in serial computational power [5, 6]. Although existing computational techniques are no less
valid than for smaller data sets, the time to perform analyses has risen significantly. Exploiting
parallel architectures to speed up analyses is possible but often requires domain specific knowledge
and programming experience from the user.

The SPRINT [7] project aims to implement a library that biostatisticians can use to exploit
HPC systems while requiring only minimal changes to their existing analysis workflows.
SPRINT provides drop-in replacements for a number of computationally expensive R func-
tions that were identified as important in a user requirements survey of the bioinformat-
ics community [8]. These drop-in replacements are parallelised using the Message Passing
Interface (MPI) [9], with data distribution carried out transparently from the end-user’s point
of view. For a more detailed description of the SPRINT architecture, see [10]. Users of
SPRINT write R analysis scripts as they would have performed previously for serial analy-
sis. To compute in parallel, the R script must be executed like any other parallel MPI task
(e.g. mpiexec -n 16 R -f script.R)

In this paper, we describe the parallelisation of two analysis tools identified through this survey:
the random forest classifier [11] for clustering analysis and the rank product method [4] for feature
selection. An R implementation of the former is provided in the randomForest package [12], the
latter is available in the RankProd package [13].

1.1. Exploiting parallelism in R

R [14, 15] itself has no built in parallel features. However, a number of open source packages
add parallel features at different abstraction levels, all are available through the Comprehensive R
Archive Network‡ (CRAN). Rmpi [16] provides wrappers around the MPI message passing libraries
[9]. This approach offers the most flexibility but requires that programmers have good knowledge
of parallel programming: existing analysis scripts require significant modifications to take advan-
tage of parallel features. In addition to these extensions, there are also a number of R packages
that allow for parallelisation of problems that have no data dependence. For example using boot-
strap resampling to calculate statistical properties of a data set. In these latter cases, all calculations
are independent so the work can be carried out in parallel and results gathered together at the end
of the computation. R packages that provide some of this functionality include but are not limited
to R/Parallel [17], taskPR [18] and foreach [19]: the CRAN task view in high performance
computing§ lists many others.

These packages provide a working and often efficient entry route into parallelising R code for
computationally hard analysis problems, but they require a level of programming skill that may
not be matched by growing numbers of statisticians, bioinformaticians and biologists who are now
being presented with easily generated large data sets.

In contrast to the packages providing generic parallel features, the SPRINT framework does
not expose any low-level parallel functionality to the user; instead, it is an R library providing an

‡http://cran.r-project.org/
§http://cran.r-project.org/web/views/HighPerformanceComputing.html
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interface to parallelised statistical algorithms. Adding a new function involves writing the parallel
algorithm (typically in C or Fortran) and an interface function in R [7]. This approach makes
for much better ease of use by bioinformaticians: in most cases, their existing analysis scripts
will need only minor changes. A further benefit of this approach is that individuals can access a
(growing) repository of parallelised functions, rather than recreating the method from scratch each
time. Although only a small number of functions have been parallelised, in our experience, there are
only few stages of typical analysis workflow that require parallel speedup.

2. THE RANDOM FOREST CLASSIFICATION METHOD

The random forest algorithm is an ensemble tree classifier that constructs a forest of classification
trees from bootstrap samples of a data set. The classification of an unseen datum is the modal class
of the datum over all trees in the forest. The random forest classifier is a popular one for microarray
data because it does not just give the classification of a datum but can also indicate to the user which
genes are important for the classification along with an estimate of the classification error [11].

2.1. Building a single tree

The construction of a decision tree is conceptually straightforward. The tree consists of nodes each
of which splits the data set based on the value of some attribute. From the root node (which contains
the full data set), we recursively split into children until some terminating criterion is reached. This
might be that the number of cases at a particular node drops below a threshold value or that all cases
share the same class. Such a terminal node is called a leaf node. Once the tree is constructed, we
can classify an unseen case by sending it down the tree from the root node. The predicted class is
the leaf node it ends up in.

The splitting criterion used in the random forest method is the same as that of the Classification
And Regression Tree [20] algorithm: we minimise the Gini index of the split [20]. This is a measure
of how well the split does in reducing the mixing of classes in the child nodes: a good split will do
a better job of reducing the mixing than a bad split. An alternative to the Gini index is to pick the
split which minimises the information entropy [21, 22].

Most decision tree classifiers are deterministic. That is, for a particular data set, they will always
produce the same tree. The trees grown by the random forest algorithm do not have this character-
istic. This is because of the way variables are picked to split on at each node. Rather than choosing
the best split amongst all variables at each node, a fixed size random subset of all the variables is
chosen at each node. Hence, an identical datum may be classified differently by two trees grown on
the same data set.

2.2. Growing the forest

To construct a random forest, we generate some large number (typically thousands) of bootstrap
samples of our original data set and grow a classification tree for each of these samples using the
method described earlier. The data in the original data set are then classified by sending them down
each of these trees and selecting the modal class. That is, if 100 trees vote that case A is infected,
whereas 900 trees vote that it is a control, case A is classified as a control.

3. THE PARALLEL IMPLEMENTATION

We have two options for parallelising generation of random forests, either parallelising the boot-
strap phase or the generation of a single tree. The former is a task parallel approach, distributing the
bootstrap samples amongst parallel processes and combining results at the end. The latter option
of parallelising single tree growth is more complicated, a number of existing algorithms for grow-
ing decision trees in parallel do exist [23–25]. All these approaches are designed for the data one
encounters in the social sciences. That is, very many cases (hundreds of thousands or millions) but
only a small number of variables (tens or hundreds) describing each case. The algorithms exploit
the parallelism available in the cases, dividing them between parallel processes.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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Unfortunately, these algorithms do not map well onto microarray data, because the number of
cases is low (typically tens or hundreds) whereas the number of variables is large (typically thou-
sands or millions). Furthermore, because each split in a tree only considers a subset of all the
variables, if we were to parallelise across variables (rather than cases), the load balance would be
poor.

As a result of these issues, and because the typical microarray data set is easily small enough to
fit in the memory of a single R process, we decided not to pursue a data parallel approach. Instead,
we have implemented a task parallel random forest generator for SPRINT.

Having decided on a task parallel implementation, and because one of the aims of the SPRINT
project is to provide a drop in parallel replacement for a serial code, we decided to reuse the exist-
ing R code for serial random forest generation. Our implementation therefore exactly mimics the
calling conventions of the serial code. Because of the nature of the random bootstrapping, we cannot
reproduce serial results exactly in parallel. Our implementation does, however, produce statistically
identical results to the serial code.

A typical call to the serial random forest package in R is something like

result<-randomForest.x=data, y=classes,

ntree=5000, : : :/.

The parallelism we are exploiting is in the ntree argument, the size of the forest. We distribute the
trees evenly amongst all available parallel processes. The subforests are generated in parallel and
then combined into a larger forest that is returned on the master process for further analysis. The
modification required to an existing analysis script is minimal. We must load the SPRINT library
and then just replace calls to randomForest by calls to prandomForest.

3.1. Combining the results

Subforests generated on each worker process are combined at the end of the run into one large forest
that is returned on the master process for further serial analysis. Our first implementation of this used
a simple linear algorithm. We gathered all the data onto the master process and combined it there.
Benchmarking this algorithm on more than 32 processes demonstrated that a significant amount of
time was spent in the combination stage, limiting scalability. Interestingly, sending the data was not
the bottleneck but rather the linear complexity algorithm used to combine the results.

The combine operator is associative, and so we would like to take advantage of the reduction
algorithms available through MPI. Within MPI libraries, these are typically implemented using a
binary-tree-like communication pattern, requiring logN steps for N processes. Unfortunately, this
does not work for our purposes. The object we wish to combine changes size at each level, which
means we do not know what value to give as the count argument to MPI_Reduce.

Because we cannot use built-in MPI reductions, we have implemented a specialised binary-tree
reduction within SPRINT that can combine objects of varying size. We use a function signature
similar to that of MPI, although the count and datatype arguments are unnecessary, because R
objects are tagged with a type.

void reduce.void � in, void � out,

void � .�combine_fn/ .void�, void�/,

int root, MPI_Comm comm/.

For our use case, the important factor is to minimise the computational cost of combining results,
rather than the number of messages. Because of combining the partial random forest objects in R
code, the time spent in this step is linear in the number of combine operations we carry out. With a
gather-to-master approach, this is O.N / as opposed to O.logN/ for the tree-reduction case.

We can imagine extending this technique to all reduction-style operations in a putative future MPI
implementation. For programming languages with introspection capabilities, the restriction that pro-
cesses involved in reduction operations must agree on the count and datatype arguments [9]
is unnecessary. As we have described earlier, in some cases, we would like to carry out a reduction
across data of the same type but different sizes.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe



PARALLEL CLASSIFICATION AND FEATURE SELECTION USING SPRINT

3.2. Comparison with previous work

The original implementation of random forest is a serial Fortran 77 code [11]. The R implemen-
tation available in the randomForest package [12] is a faithful transliteration of the original
Fortran 77 sources into C with wrappers to the functionality in R. Generation of forests in parallel
within R is possible using the foreach package [19], and the methods exposed to combine sepa-
rately generated random forests. More recently, work has been carried out to implement task parallel
versions of the algorithm as stand-alone executables. The parf project [26] is a task parallel imple-
mentation in modern Fortran 90. Other recent work has focused on efficient implementations of
the random forest algorithm for the analysis of microarray data—in which the number of variables
describing each case is very large, but the number of cases is small. A Java implementation that
can deal with very large data sets (in serial) is described in [27]. The randomjungle package
[28] is another task parallel implementation in C++ expressly designed for microarray data. None
of these parallel implementations carries out combination of results in parallel; instead, they all use
a gather-to-master approach. As we show later, using a gather-to-master approach for combining
subforests introduces a significant bottleneck to parallel performance that is avoided by using a
tree reduction.

4. THE RANK PRODUCT METHOD

As previously discussed, in addition to clustering of replicated microarray data, biostatisticians are
also interested in feature selection methods to determine or classify ‘important’ genes. For exam-
ple, is there a statistically significant variation in the gene expression level under two different
experimental conditions (e.g. treated or untreated samples)? Early approaches used a fold-change
criterion [29], the ratio of the expression level in sample A to that in sample B. However, this
method does not allow calculation of significance levels nor is it obvious what the cutoff value for
the fold change should be. The rank product method builds on the fold-change criterion but applies
it to replicated experiments. That is, rather than just a single sample representing each experimental
condition (class), we have many samples in each class.

The rank product method is applicable to experiments comparing two different experimental
conditions (class A and class B, say). For each gene, we compute a rank product by ranking the
fold-change value of that gene in all pairwise comparison of class A against class B; we then take
the product of these ranks across all samples. The second step is to compute a null distribution
for the rank products. This is the expected distribution if there is differentiation between neither
genes nor samples. The experimentally observed rank product for each gene can be compared
with the null distribution that allows accurate measures of the significance level and estimation of
cutoff values [4].

R users can perform rank product analyses with the RankProd bioconductor package [13].
These analyses can be performed in parallel using the R packages described in Section 1.1. How-
ever, there is no built-in facility to combine separate result objects from the code. If a user wishes
to perform the bootstraps in parallel across available processes on their machine, they can but must
write code to correctly combine the resulting partial R objects. Our approach in SPRINT parallelises
both the bootstrap resampling step and combination of results transparently, returning the combined
object to the user for further analysis in serial.

4.1. The algorithm in detail

Consider some microarray data that we may represent by an Ng �Ns matrix measuring the expres-
sion levels of Ng genes in Ns different samples. There are Na samples from class A and Nb from
class B (Ns D Na CNb). We construct a matrix containing the fold-changes for all pairwise com-
parisons of class A samples against class B samples (there are NaNb of these). Giving us a matrix

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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of fold-changes

F D

0
BBBB@

f1,1 f1,2 : : : f1,NaNb

f2,1 : : : : : :
...

... : : : : : :
...

fNg ,1 : : : : : : fNg ,NaNb

1
CCCCA

, (1)

where fi ,j is the fold-change of gene i in the pairwise comparison j . We note that this step is neces-
sary only for single-channel microarrays. Two-colour arrays measure fold-changes directly (rather
than expression levels). These latter data are described as one-class as opposed to two-class and we
analyse them in a similar way. The only difference is that we use the input data as the fold-change
matrix directly.

Next, we rank the fold changes in each sample from largest to smallest (for up-regulation) or
smallest to largest (for down-regulation). Finally, we compute the rank product of gene i by taking
a suitably normalised product of the rank of that gene across all samples

ri D

NaNbY
kD1

r
1=.NaNb/

i ,k , (2)

where ri ,k is the rank of gene i in comparison k.
To obtain significance levels for the experimentally observed rank products (say to determine

which genes are statistically strongly up-regulated), we now need to compare this experimentally
observed value with the expected distribution of rank products under the null hypothesis. Our null
hypothesis is no differential expression of genes— expression levels of individual genes are inde-
pendent of one another and drawn from the same distribution—and that all samples are independent
(the expression level of gene i in sample A is uncorrelated with the level in sample B). Unfor-
tunately, it is not possible to construct an analytic form for the null distribution; we therefore
construct it numerically using a bootstrap procedure. We create a random experiment by indepen-
dently permuting each sample’s gene expression vector and calculate the rank product of all the
genes in this random data. We repeat this many times to build a distribution of rank products for the
null hypothesis.

4.1.1. The null distribution in the large-sample limit. The rank product .ri / under the null
distribution looks suspiciously like the product of independent random variables, and we may
therefore be tempted to apply the central limit theorem to its logarithm to construct an approx-
imate analytic distribution. We note that this approach does work for data obtained from two-
colour arrays that measure fold changes directly. For a large number of samples, we expect the
logarithm of ri to be distributed normally with mean � D 1=Ng

PNg
iD1 log i and variance �2 D

1=Ns

�
1=Ng

PNg
iD1 log2 i ��2

�
. We note that this approximation is only really useful in the

Ns� 1 limit and as such our implementation just bootstraps the two-colour array distribution in the
same way as the single-channel data, because this approach does not work for single-channel arrays
anyway. Although the gene expression levels in the null hypothesis are independent, computation of
the pairwise fold changes introduces correlations which mean that the ri ,k are not independent. See
also [30] for a different approach to obtaining the null distribution for two-colour microarray data.

4.2. Parallelisation approach

The computationally expensive part of rank product analysis is the generation of the bootstrapped
null distribution. This is not a memory bound problem because we are only ever interested in sum-
mary statistics of the form

R ri
�1 P.x/dx, where ri is the observed rank product of gene i and P.x/

is the bootstrapped null distribution. In parallel, rather than first computing the full bootstrapped
P.x/ and subsequently evaluating the integral, we can instead keep a running count for each gene.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe



PARALLEL CLASSIFICATION AND FEATURE SELECTION USING SPRINT

The memory requirements of this latter approach are O.Ng/ rather than O.NgB/ (B the num-
ber of bootstrap samples). This deviates from the existing serial implementation in RankProd
package, which first computes the full boostrapped distribution P.x/ and then the summary statis-
tics. Our approach is more memory efficient and therefore performs approximately twice as fast as
the RankProd package in serial.

Our implementation takes a task parallel approach and divides up the requested number of
bootstrap samples between available processes. The input data set is broadcast to all processes,
bootstraps are calculated independently and the results are then collated and returned to the master
process for further analysis. As long as the input data set fits in the available memory, this approach
works well. For very large data sets, a data parallel approach is probably necessary. We describe one
possible approach in Section 4.3.

4.3. Dealing with large data

Our parallel implementation of the rank product method assumes that the data can be analysed seri-
ally (it is just time-consuming). Although this is true for current generation microarray data, future
sequence data may not meet this restriction. Where microarray platforms reach millions of mea-
surements and thousands of samples, the data may no longer fit in RAM. We would then have to
parallelise across a single data set, just to perform the analysis. In this section, we describe a possible
implementation strategy for this case.

Recall that our data is a matrix withNg rows (each one corresponding to a single expression mea-
surement) and Ns columns (each column being one sample). We can choose to distribute the data
either by assigning contiguous rows or contiguous columns to parallel processes. Dividing the data
by row is the better option, typically Ng � Ns and we can therefore divide the problem between
more processes if we parallelise across Ng . Furthermore, calculation of fold changes requires that
we have access to all data in a row. If we parallelise across columns, we must communicate all the
row data for every bootstrap sample.

Having divided up the rows between processes, we can compute the fold changes for our row
locally. Ranking the genes requires that we sort the columns. This must be carried out in parallel.
Parallel sorting is a well-studied research topic (see [31] for an early overview, and [32, 33] for
more modern methods). Once the columns have been sorted, the rank product for each row can be
obtained without further communication. Construction of the bootstrap sample also requires com-
munication: we must permute columns in parallel. This can be implemented using a parallel sort on
a random key. The parallel implementation would therefore be

� Distribute the input data row-wise.
� Sort each column in parallel to rank the actual data.
� Locally compute the rank product for each row.
� Construct a bootstrap sample by permuting each column in parallel.
� Sort each column to rank the bootstrap data.
� Compute the bootstrapped rank product.
� Repeat bootstrap step as necessary.

This method should work irrespective of the data size, although it will doubtless be slower than a
task parallel approach.

5. PERFORMANCE OF THE PARALLEL IMPLEMENTATIONS

5.1. Benchmark system

The parallel functionality was tested and benchmarked on the UK national supercomputing service,
HECToR. Both the Cray XT4 (quad core AMD Opteron nodes) and Cray XT6 (24 core AMD
Magny-Cours nodes) incarnations were used. We found essentially no variation in performance
between the two systems; as a result, graphs only show results from the XT4 system.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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Figure 1. Speedup (solid lines) and parallel efficiency (dashed lines) for two-class rank product analysis,
blue (solid) lines show theoretical peak efficiency (Equation 3). Data set has 23 292 genes and 35 + 27

samples, leading to 945 pairwise comparisons.

5.2. Rank products

Parallelisation of the bootstrap starts with a broadcast of the input data to slave processes.
Calculation of the partial distribution of rank products requires no communication. Finally, further
communication is required to gather the partial counts to the master process. We therefore expect
that the scaling performance should be good: we should only see a drop-off in scaling when the
number of bootstrap samples per process becomes very low. The wall clock timings we report here
include a serial section: calculation of the empirical rank product values from the input data. The
maximum possible parallel efficiency on p processes relative to a serial calculation is therefore

�p D
bC 1

bC p
, (3)

where b is the required number of bootstrap samples. We compare the expected parallel efficiency
with that obtained by our parallelisation scheme in Figure 1. Execution time on a single core is
26 000 seconds for 1024 bootstrap samples and estimated at 434 000 seconds for 16 384 samples.
In comparison, the original RankProd code requires 42 300 seconds for 1024 samples.

5.3. Random forests

In our implementation of a parallelised random forest algorithm, we used a data set from a
biological study within the Division of Pathway Medicine, University of Edinburgh. In order to test
the hypothesis that blood-borne infection in young infants can be identified via gene transcription
profiling, this study consists of blood samples from 62 infants, 27 of which have a confirmed bacteri-
ological infection and 35 are non-infected controls [34]. The blood samples were processed to RNA
level and each sample hybridised to an Illumina¶ human gene expression microarray. Each array
contains approximately 23 000 probe sequences that measure the expression of all known genes
in the human genome. With classification algorithms, the overall goal is to identify sets of genes
that can reliably identify an unknown blood sample as infected or not infected. Larger data sets
were synthesised by replicating (with noise) either the rows or columns (where appropriate) of our
input data.

We first present the effects that implementing a parallel combining step has on the runtime of
our algorithm. Figure 2 shows the fraction of the total runtime spent combining results for both the
serial gather-to-master approach and the parallel tree-reduction. We see that the tree approach gives
significantly better performance. This is not because of communications latency, all the data for the
final result can be gathered to the master process in a fraction of the time spent combining them.

¶http://www.illumina.com
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Figure 3. Speedup (black squares) and parallel efficiency (red triangles) for the generation of a forest with
8192 trees for a data set with 23 292 genes and 62 cases. Dashed lines show speedup and parallel efficiency
if we exclude the cost of gathering and combining the results back to the master process (i.e. compute
only). Overall parallel efficiency is good up to 128 processes after which the costs of communicating and

combining the partial results outweigh gains in computation.

Figure 3 shows the speedup of our parallel implementation compared with an optimal (linear
speedup). We see good speedup to 128 cores for this size of problem before the overhead of
communicating the partial results and combining them outweighs any performance gains. As shown
in Figure 2 with an O.logN/ algorithm for combing results, the percentage of the total runtime
spent creating the final complete random forest is almost 50% when utilising 256 processes.

Finally, Figure 4 shows the performance of our code when increasing both the size of the data and
the number of processes (weak scaling). We note in this last instance the poor performance of the
code when the number of genes in the data set becomes very large. This is a previously observed
issue [35,36] with the serial implementation we have used. Although the parallel efficiency for large
numbers of genes is poor, it does significantly reduce the time to solution for large data sets. As an
example, producing a random forest with 8192 trees for data with 51 2000 measurements and 62
cases takes almost 2 hours in serial. With our parallel implementation, we can generate the same
forest in 63 seconds with 512 parallel processes. This allows significantly faster exploratory data
analysis, because the biostatistician no longer needs to wait 2 hours for an analysis to complete.
This becomes especially useful when frequent re-runs are necessary for parameter optimisation or
problem solving.
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Figure 4. Parallel efficiency with increasing total problem size (fixed problem size per processor). Black
squares show the efficiency with increasing forest size (23 292 genes and 62 cases, 128 trees per process).
Red triangles show the efficiency with increasing numbers of genes for a fixed forest size (8192 trees, 1000

genes and 62 cases per process), note significant drop-off in efficiency when the data set gets very large.

6. CONCLUSIONS AND FUTURE WORK

We have implemented a task parallel version of the random forest algorithm for use in R using the
SPRINT library. For typical use cases, we can obtain a speedup of around 40 over the same serial
code on HECToR using 128 processes. Rather than implementing the algorithm from scratch, we
used an existing serial implementation and added a parallel wrapper around it. Unlike other task par-
allel packages for R, we also implemented a tree-reduction algorithm to combine results in parallel
rather than serial. This had a surprisingly large effect on the overall performance. Our interface
exactly mimics the existing serial implementation: modifying existing serial R scripts to take advan-
tage of this functionality is trivial. Because combining trees does not significantly increase memory
use, this parallelisation technique may be sufficient to alleviate the problems using random forest
classification for genome wide association studies reported in [37].

Acknowledging that classification problems on large data sets may be preceded by feature selec-
tion problems within the same data, we have implemented a parallel version of the rank product
feature selection method. For a small number of bootstrap samples, we obtain speedups of around
400 (on 256 processes) over the publicly available RankProd package—approximately half of this
factor coming from the more efficient serial implementation, we have developed, the rest from par-
allelisation of the boostrap resampling. For large bootstrap counts, the obtainable speedup is even
greater (around a factor of 8000 on 8192 processes). We also propose a data parallel implementation
of the rank product method should microarray data become too large to conveniently process even
a single bootstrap sample serially.

Our work shows that adding task parallel functions to SPRINT is quite straightforward and can
provide significant performance gains over serial codes. We do, however, have to pay attention to
all parts of the implementation including distributing the data and gathering the results: it is often
not enough to just speed up the main loop of the code.

6.1. Future work

The serial random forest implementation available in R was written with data from the social
sciences in mind: large numbers of cases and few variables per case. This is the exact opposite
of the type of data seen in microarray analysis. As a result, the code is not very efficient when
dealing with microarray data, especially when the number of variables becomes very large.

These issues with large microarray data have previously been reported in the literature
[27, 35–37]. The random jungle package [28] has been expressly written to avoid these problems.
At present, no R interface exists to this new package. If an R interface to this package were devel-
oped, it could be simply incorporated into SPRINT: we would only require changes to a few
interface functions.
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Similarly, our rank product implementation has been written with an eye to current and next-
gen sequence data, for which we expect that the task parallel approach will be sufficient. Should
future generation sequence data reach multi-GB sizes (millions of measurements and thousands
of samples), our implementation may struggle. We propose a data parallel implementation of the
method in Section 4.3 that should scale irrespective of the data size.
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