

Edinburgh Research Explorer

Autotuning Skeleton-Driven Optimizations for Transactional
Worklist Applications

Citation for published version:
Goes, LFW, Ioannou, N, Xekalakis, P, Cole, M & Cintra, M 2012, 'Autotuning Skeleton-Driven Optimizations
for Transactional Worklist Applications' IEEE Transactions on Parallel and Distributed Systems, vol 23, no.
12, pp. 2205-2218. DOI: 10.1109/TPDS.2012.140

Digital Object Identifier (DOI):
10.1109/TPDS.2012.140

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
IEEE Transactions on Parallel and Distributed Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28969472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TPDS.2012.140
http://www.research.ed.ac.uk/portal/en/publications/autotuning-skeletondriven-optimizations-for-transactional-worklist-applications(dc21021d-67a8-4bc2-992a-8379a58d749f).html

Autotuning Skeleton-Driven Optimizations
for Transactional Worklist Applications
Luı́s Fabrı́cio Wanderley Góes, Member, IEEE, Nikolas Ioannou, Member, IEEE,

Polychronis Xekalakis, Member, IEEE, Murray Cole, Senior Member, IEEE, and

Marcelo Cintra, Senior Member, IEEE

Abstract—Skeleton or pattern-based programming allows parallel programs to be expressed as specialized instances of generic

communication and computation patterns. In addition to simplifying the programming task, such well structured programs are also

amenable to performance optimizations during code generation and also at runtime. In this paper, we present a new skeleton

framework that transparently selects and applies performance optimizations in transactional worklist applications. Using a novel

hierarchical autotuning mechanism, it dynamically selects the most suitable set of optimizations for each application and adjusts them

accordingly. Our experimental results on the STAMP benchmark suite show that our skeleton autotuning framework can achieve

performance improvements of up to 88 percent, with an average of 46 percent, over a baseline version for a 16-core system and up to

115 percent, with an average of 56 percent, for a 32-core system. These performance improvements match or even exceed those

obtained by a static exhaustive search of the optimization space.

Index Terms—Concurrent programming, transactional memory, parallel patterns and application-transparent adaptation

Ç

1 INTRODUCTION

LEADING processor manufacturers have recently shifted
toward the multicore design paradigm [1], [2]. As devices

continue to scale we can expect future systems to be
comprised of an even larger number of cores. Unfortunately,
this means that to sustain performance improvements the
programmers/compilers now have to exploit the available
cores as much as possible through coarse-grain parallelism.
Although parallel programming is not a new concept, the vast
majority of programmers still find it a hard and error-prone
process, especially when based on low-level programming
approaches, such as threads with locks [3].

One alternative to simplify the development of parallel
applications is to employ parallel algorithmic skeletons or
patterns [4], [5], [6]. Skeleton-based programming stems
from the observation that many parallel algorithms fit into
generic communication and computation patterns, such as
pipeline, worklist and MapReduce [7]. The communication
and computation pattern can be encapsulated in a common
infrastructure, leaving the programmer with only the
implementation of the particular operations required to

solve the problem at hand. Thus, this programming
approach eliminates some of the major challenges of parallel
programming, namely thread communication, scheduling
and orchestration.

Transactional Memory (TM) [8] is another alternative
parallel programming model. From a different perspective,
it simplifies parallel programming by removing the burden
of correctly synchronizing threads on data races. This model
allows programmers to write parallel code as transactions,
which are then guaranteed by the runtime system to execute
atomically and in isolation regardless of eventual data races.
Although removing the burden of correctly synchronizing
parallel applications is an important simplification, the
programmer is still left with the tasks of thread scheduling
and orchestration. These tasks can be naturally handled by a
skeleton framework.

Another opportunity provided by skeletons in addition
to the simplification of programming is the enabling of
performance optimizations. The skeleton framework can
exploit pattern, application and/or system information to
perform optimizations such as communication contention
management and data prefetching. Moreover, such optimi-
zations can be performed transparently, that is, without
requiring any additional programming effort from the
application programmer. Nevertheless, the decision of
which optimizations should be enabled and how to adjust
them for a given application is still a daunting task. This
issue is commonly tackled by the use of online autotuning
mechanisms [9], [10], [11].

In this paper, we combine the worklist parallel skeleton
with software transactional memory into a single frame-
work which enables performance optimizations to be
transparently selected and applied according to the
application behavior. It is based on a novel hierarchical
autotuning mechanism that dynamically selects the best
performing set of optimizations for each application. This

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012 2205

. L.F.W. Góes is with the Pontificia Universidade Catolica de Minas Gerais,
Rua Salinas 2216, Santa Tereza, CEP: 31015-190 Belo Horizonte, Minas
Gerais, Brazil. E-mail: lfwgoes.inf@ed.ac.uk.

. N. Ioannou is with the IBM Zurich Research Lab, Säumerstrasse 4, 8803
Rüschlikon, Switzerland. E-mail: nikolas.ioannou@ed.ac.uk.

. P. Xekalakis is with the Intel Barcelona Research Center, Intel Labs
Barcelona, C/Jordi Girona 29, Nexus II, 08034 Barcelona, Spain.
E-mail: polychronis.xekalakis@intel.com.

. M. Cole and M. Cintra are with the University of Edinburgh, Informatics
Forum, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom.
E-mail: mic@inf.ed.ac.uk, mc@staffmail.ed.ac.uk.

Manuscript received 13 Feb. 2012; revised 12 Apr. 2012; accepted 17 Apr.
2012; published online 2 May 2012.
Recommended for acceptance by M.E. Acacio.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-02-0096.
Digital Object Identifier no. 10.1109/TPDS.2012.140.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

mechanism incrementally enables and tunes optimizations
following their performance impact and abstraction level
order. Additionally, it automatically tunes the thread
concurrency level.

In order to evaluate our Open Skeleton (OpenSkel)
autotuning framework, we ported five STAMP benchmarks
to conform to its API. Our results on the STAMP benchmarks
show that OpenSkel can achieve performance improve-
ments of up to 88 percent, with an average of 46 percent, over
a baseline version for a 16-core system and up to 115 percent,
with an average of 56 percent, for a 32-core system.

This paper makes the following contributions:

. We propose a skeleton framework based on a novel,
dynamic autotuning mechanism that successfully
achieves performance improvements that are close
to, and sometimes surpass a static oracle.

. We adapt and enable skeleton-driven performance
optimizations to be applied transparently and
analyze their combined performance impact on the
standard, well known, TM benchmark STAMP.

. We combine skeleton-based and transactional pro-
gramming into a new framework, inheriting the
programming and performance benefits of both
models.

The rest of this paper is organized as follows: Section 2
describes how skeletons can improve the performance of
TM applications. Section 3 describes the proposed skeleton-
based framework. Section 4 presents the performance
optimizations. Section 5 presents our proposed autotuning
mechanism. Section 6 outlines our experimental methodol-
ogy while Section 7 presents results. Finally, Section 8
discusses related work and Section 9 concludes the paper
and points out future work.

2 BACKGROUND

2.1 Skeletal Parallel Programming

Skeletal programming [5] is a pattern-based approach
which proposes that parallel programming complexity
should be addressed by extending the programming model
with a small number of architecture independent con-
structs, known as algorithmic skeletons. Each skeleton
specification captures the behavior of a commonly occur-
ring pattern [12] of computation and interaction, while
packaging and hiding the details of its concrete implemen-
tation. This both simplifies programming, by encouraging
application and combination of the appropriate skeletons,
and enables optimizations, by virtue of the macro knowl-
edge of application structure that is provided.

Essentially, the skeleton “knows what will happen next”
and can use this knowledge to choose and adjust imple-
mentation details. For instance, skeleton implementations
may be able to place threads that communicate frequently
on cores that share some level of cache memory, to prefetch
data for the next step of a thread computation, and so on.

A key benefit of skeletons is that the optimizations can be
applied transparently and architecture-sensitively, without
user intervention to any application for which the pro-
grammer has used the corresponding skeleton. Skeletons
form a key component of the Berkeley ParLab software

strategy [4], where they are known as “program frame-
works,” are present in Intel’s Threading Building Blocks
(TBB) library software [13] in the form of the pipeline and
scan operations, and are exemplified by Google’s MapRe-
duce paradigm [7].

2.2 Programming with Transactional Memory

For at least the short and medium term, many-core
processors will present shared address space programming
interfaces. If a conventional approach is followed, these will
present complex, weakened memory models, synchroniza-
tion built around locks and condition variables. In contrast,
the TM model [8], [14] offers both conceptually simplified
programming and potential for competitive, or even im-
proved, performance against traditional approaches. In
essence, TM requires the programmer to express all
synchronization through transactions: blocks of code that
must appear to execute atomically. The core aim of a TM
implementation is to allow as many transactions as possible
to proceed concurrently, in potential conflict with the atomic
semantics, backtracking (or “aborting”) on one or more
transactions only when the memory accesses actually conflict.

2.3 How Skeletons Can Improve the Performance of
Transactional Applications

In order to apply the skeletal programming methodology
within the context of TM, we must answer three questions:
What are the relevant skeletons?, Which optimization opportu-
nities can be exploited by these skeletons? and How can these
skeletons be automatically tuned? The focus of this paper is a
TM oriented worklist skeleton, for which we have investi-
gated a number of performance optimizations and pro-
posed a novel autotuning mechanism to select and adjust
them. The skeleton was derived from a study of TM
applications from the STAMP benchmark suite.

A skeleton for transactional applications. Applications
that exhibit the worklist pattern are characterized by the
existence of a single key operation: process an item of work
known as a work unit from a dynamically managed
collection of work unit instances, the worklist.

The algorithm in Fig. 1 sketches the generic behavior of
worklist algorithms. The worklist is seeded with an initial
collection of work units. The worker threads then iterate,
grabbing and executing different work units potentially in
parallel until the worklist is empty. It is important to note
that there is no guarantee about the order in which work

2206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 1. Generic behavior of the worklist skeleton.

units are executed. As a side effect of work unit execution, a
worker may add new work units to the worklist.

Typically, work units access and update common data
and require mutual exclusion mechanisms to avoid conflicts
and ensure correct behavior. Applications in areas such as
routing, computer graphics, and networking [15], [16] are
fertile territory for TM programming models, because the
number of conflicts which might occur is often much higher
than that which actually does occur in typical runs. Our
transactional worklist skeleton ensures correctness by execut-
ing all concurrent computation of work units protected by
transactional memory barriers. In Section 3, we present the
implementation of this skeleton.

Performance optimization opportunities. The proposed
transactional worklist skeleton provides many performance
optimization opportunities. These opportunities derive
from pattern and Software Transactional Memory (STM)
information. First, the worklist pattern carries the important
semantics that there is no required ordering on execution of
available work units. This allows the implementation to
radically alter the mechanisms by which the worklist is stored

and accessed.
Second, we observe that the worklist pattern does not

specify lockstep progression by workers through itera-
tions. This means that an execution in which some worker
commits the effects of several work units in sequence,
without interleaving with other workers is valid. This
gives us freedom to experiment with the granularity of our

transactions.
Another opportunity stems from the fact that the

proposed skeleton deals with transactional applications.
Centralized worklists may cause aborts by leading threads
to focus activity within small regions of the application data
space. These are often unnecessary, since many other
potential work units are available which were better distrib-
uted across the data space can be executed. Transactional
applications that present high abort ratio may experience
inherent scalability constraints, leading to poor returns for
the use of additional cores. This observation creates an
opportunity to exploit the assignment of additional cores to do

some other useful computation that would help to boost the
execution of the application as a whole.

These opportunities are exploited in Section 4.
Autotuning skeletons. As mentioned earlier, skeletons

have full control of the communication behavior of an
application. In particular, for the worklist transactional
skeleton, this is done by communicating directly with the
underlying TM system and adjusting the worklist structure
accordingly. More specifically, the skeleton collects runtime
performance measurements such as work unit aborts and
commits, the number of stalls to access the worklist and
work units throughput. This information, coupled with the
current parameters with which the measurements are
collected, are then used to drive decisions on how to adjust
the behavior so that performance improvements are
attained. Adjusting the behavior is done by enabling or
disabling performance or even by fine-tuning internal
parameters for specific optimizations. In Section 5, we
propose a novel online dynamic autotuning mechanism

that allows skeletons to automatically adjust to the applica-
tion behavior.

3 THE OPENSKEL SYSTEM

This paper introduces OpenSkel, a C runtime system library
that enables the use of the transactional worklist skeleton. It
provides an API to handle transactional worklists and
implements skeleton-driven performance optimizations
with autotuning. OpenSkel exploits existing word-based
STM systems to deal with transactions. As shown in Fig. 2,
the programmer is provided with three basic primitives so
as to allocate, run, and free a worklist. Additionally, the API
provides a function, namely oskel_wl_addWorkUnit(), with
which the programmer can dynamically add work units to
the worklist.

The OpenSkel API allows the programmer to mainly
focus on the kernel implementation to process a work unit in
the oskel_wl_processWorkUnit(void* workUnit, oskel_wl_priva-
te_t* p, oskel_wl_shared_t* s) user function. This function
requires as input shared global and private local variables
that are declared in the oskel_wl_shared_t and oskel_wl_priva-
te_t data structures, respectively, which in turn are initialized
and terminated in the oskel_wl_initWorker(oskel_wl_private_t*
p, oskel_wl_shared_t* s) and oskel_wl_destroyWorker(oskel_wl_
private_t* p, oskel_wl_shared_t* s) user functions. Addition-
ally, it provides the oskel_wl_update(oskel_wl_private_t* p,
oskel_wl_shared_t* s) function that allows the programmer to
implement any kind of operation to update the global data
when a worker thread is just about to finish.

Once the worklist is loaded with work units, the
OpenSkel runtime system takes care of the application
execution through the oskel_wl_run() call. This function
starts all worker threads and waits in a barrier. Fig. 3
shows OpenSkel’s internal implementation of each worker
thread. Each one coordinates the execution of the afore-
mentioned user functions. After initialization, each worker
thread grabs work units with oskel_wl_getWorkUnit() and
calls the oskel_wl_ processWorkUnit() function until the

G �OES ET AL.: AUTOTUNING SKELETON-DRIVEN OPTIMIZATIONS FOR TRANSACTIONAL WORKLIST APPLICATIONS 2207

Fig. 2. The main function of a typical transactional worklist application on
OpenSkel.

worklist is empty. Although the oskel_wl_getWorkUnit() is
within a transaction, its variables are not protected by
transactional barriers. Instead, this function internally uses
locks to access OpenSkel’s worklist and internal state. This
is essential to decouple the worklist management from the
transactional memory system, avoiding extra transaction
conflicts and contention.

The oskel_wl_processWorkUnit() procedure is executed
within transactional barriers placed by the skeleton library.
This function is then translated to transactional code at
compile time by any existing TM compiler such as Dresden
TM [10]. This process is transparent and completely relieves
the application programmer of the burden of having to
handle transactions explicitly.

4 SKELETON-DRIVEN OPTIMIZATIONS

A skeleton-driven approach makes available useful infor-
mation about the pattern, application, and system at
compile time and runtime. This information allows Open-
Skel to provide a set of performance optimizations. In the
rest of this section, we present the implementation details of
several skeleton-driven performance optimizations to the
transactional worklist skeleton. These optimizations have
been proposed and used in other contexts [13], [17], [18],
[19]. The novelty of our approach is to apply them
automatically in a transactional skeleton framework driven
by an autotuning mechanism that dynamically selects and
adjusts them without user intervention, as we describe in
Section 5. We start by describing the baseline implementa-
tion of our skeleton.

Baseline. There are two important implementation
issues to be addressed in the baseline version: 1) the data
structure with which to implement the worklist and 2) how
to access it.

The worklist data structure can be implemented in many
ways. Our priority was to find a simple, efficient, and
flexible enough structure to hold different optimizations.
Based on that, we have chosen to implement the OpenSkel
worklist as a stack under a work sharing scheme, as shown
in Fig. 4a. First, work sharing provides a centralized
worklist and promotes load balancing. Second, a stack is a
fast structure to insert and remove elements since there are
no search operations for elements. In our particular case,
because OpenSkel does not execute any search operations in
the worklist, there is no need for a more complex structure.
Additionally, if consecutive elements in a stack are memory
correlated, the stack may improve data locality because
workers would work within the same memory region.
However, this very property is a double-edged sword. Poor
exploitation of this behavior could lead to high contention
as workers will start competing for the same data.

Access to the worklist can be protected by a transaction
or a lock. Since an access to the worklist is short and
transactional concurrent accesses to the worklist usually
lead to a conflict, we chose to use locks. OpenSkel’s baseline
version thus uses compare-and-swap-based locks with busy
waiting instead of transactions to access the worklist. We
expect that under high abort ratio, this synchronization
strategy will lower contention for the worklist.

Stealing work units. The first optimization is “work
stealing” (WS), employed in many systems such as Intel TBB
[13] and Cilk [20]. It tackles the contention to access the
worklist which occurs with increasing number of work
units and worker threads. It exploits the knowledge that
work units can be executed in any order and by any core in
the system.

We implemented a set of private worklists, with the
initial number of work units being split among workers in a
round-robin fashion. As shown in Fig. 4b, each worker has
its own privatized worklist in which it inserts and removes
work units. When a local worklist runs out of work units it
steals work units from another worker. This stealing policy
is implemented using busy-waiting locks that synchronize
the victim and the thief workers, selects a victim in a
random fashion, copies half of the work units to the thief
worker, removes them from the victim worker and frees
both worker threads. This optimization tries to reduce the
contention to the worklist and also alleviates aborts.

Coalescing work units. The second optimization ex-
ploits the fact that two work units executed in a single
transaction are as semantically correct as if executed in
separate transactions. We call this optimization “work
coalescing” (WC) based on the technique proposed in [18].
It executes two work units that would be executed in
different transactions, within the same transaction. Fig. 4c
exemplifies how this optimization works. The main benefit
expected from coalescing work units is to reduce the
contention to the worklist and improve cache affinity if
consecutive work units are memory correlated. As worker
threads grab two work units at once, they take more time to
access the worklist again. This reduces the contention over
the worklist. As a side effect, these longer transactions may
increase the number of conflicts.

Swapping work units. “Swap retry” (SR) is our third
implemented optimization. This is based on the steal-on-abort
technique proposed in [17]. Usually, when a transaction

2208 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 3. The OpenSkel internal worker pseudocode.

aborts, a STM reexecutes the transaction hoping that the
conflict will not reoccur. The other common available
alternatives to the STM are to assign a higher priority to the
transaction or wait for a time interval before reexecuting it.
Nevertheless, a STM does not have an alternative to try to
execute a different transaction, unless explicitly implemented
by the programmer through a retry function [16].

In a transactional worklist skeleton, it is possible to try a
different work unit since the skeleton has full control over
the worklist and work units can be executed in any order.
This optimization takes advantage of this high-level
information. As shown in Fig. 4d, when a transaction
aborts, this optimization swaps the current work unit with
another one before it reexecutes. The stack-based worklist
was extended to support the swap operation. In this
operation, OpenSkel randomly selects one work unit based
on the size of the stack, and swaps the top or current work
unit of the stack with this selected work unit.

In this way, transactions that keep aborting can be
postponed and executed later. Swap retry is employed to
reduce aborts. However, one side effect is to eagerly swap
work units and discard the data prefetching made by
aborted executions of the same transaction. To alleviate this
problem, we introduce a parameter for the number of retries.
The swapping is only actually done after a transaction
reaches a particular number of retries.

Employing helper threads (HTs). Another optimization
that we employ is to perform data prefetching using
automatically created “helper threads.” They are auxiliary
threads that run concurrently with a main thread. Their
purpose is not to directly contribute to the actual program
computation, which is still performed in full by the main
thread, but to facilitate the execution of the main thread
indirectly. Typically, modern multicores have at least one
shared level of cache among the cores, so that HTs may try to
bring data that will be required by the main thread into this
shared cache ahead of time. Helper threads have previously
been developed in software [19] and hardware [21].

TM applications have a number of characteristics that
render the use of HTs appealing. First of all, some
transactional applications do not scale up to a large number
of cores because the number of aborts and restarts increases.
If more cores are available, we can use them to run HTs
instead of more TM threads and thus improve the
performance of our applications. Another characteristic of

STM applications is the high overhead and cache miss ratio
of transactional loads and stores. This suggests that HT can
more easily stay ahead of the main thread while effectively
prefetching for it.

Unfortunately, a STM does not have the required

information to implement HT on its own. The worklist

skeleton, on the other hand, provides two key pieces of

information to make HTs feasible: when to start a HT and

which data to prefetch. As we observe in Fig. 4e, every time

a worker thread starts computing a work unit, a HT should

start computing the next work unit assigned to the worker

in the worklist.
Helper thread code is generated and instrumented in

the same way compilers like Dresden TM compiler would
do for STM systems. However, instead of function calls to
the STM system, they use modified functions for reading
and writing shared variables. In contrast to normal TM
threads, every time a HT has to access a shared global
variable it has to use special functions to redirect accesses
to the internal metadata structures managed by the
OpenSkel runtime system.

As HTs do not change the state of the application, each
write to a global variable is done in its local entry in a hash
table rather than in the actual memory location. If the same
variable is read after being written, the value will be
extracted from the hash table instead of the actual memory
location. This enables HTs to hopefully follow the correct
path of control and prefetch the correct data. However, if a
transaction modifies shared data, the HT may go down the
wrong path, possibly prefetching wrong data or even
worse, raising exceptions (e.g., a segmentation fault) that
could crash the whole application. OpenSkel HT thus
implements a transparent mechanism to deal with excep-
tions. If an exception is raised, the OpenSkel library aborts
the helper thread and restarts it in a barrier waiting for the
next work unit.

To ensure that a HT is prefetching data to the right place,

the OpenSkel checks whether there are cores that share any

level of cache memory. If so, it schedules each pair of

worker thread and helper thread to cores that share the

same level of cache. To reduce cache pollution due to

inefficient prefetching, we employ a lifespan parameter (i.e.,

number of words prefetched per work unit) and limit the

hash table size.

G �OES ET AL.: AUTOTUNING SKELETON-DRIVEN OPTIMIZATIONS FOR TRANSACTIONAL WORKLIST APPLICATIONS 2209

Fig. 4. Skeleton-driven performance optimizations and the baseline version.

5 AUTOTUNING OPTIMIZATIONS

Although enabling many skeleton-driven optimizations
transparently in a single framework is an important step,
the application programmer would still be left with the
daunting task of choosing the most profitable set of
optimizations. If the programmer chooses the wrong set of
optimizations, he could potentially degrade the peformance
of the applications. In order to tackle this issue, we propose a
novel hierarchical autotuning mechanism. In addition to
enabling the most efficient set of optimizations, it also
adjusts each optimizations internal parameters. Addition-
ally, this mechanism also tunes the number of concurrent
threads automatically.

Each pattern-oriented optimization commonly tackles
different performance bottlenecks. This creates an oppor-
tunity to combine more than one optimization to improve
performance even further. Additionally, the presented
pattern-oriented optimizations are orthogonal. As a result,
the OpenSkel framework can enable multiple optimizations
simultaneously. However, the dynamic selection of the best
performing set of optimizations is still dependent on the
order in which these optimizations are activated. This stems
from the fact that enabling a specific optimization can
influence the performance of a subsequent optimization.
For instance, if the number of concurrent threads are
adjusted before the worklist stealing optimization, it may
lead to poor performance since an application may scale to
a higher number of cores after enabling the work stealing
optimization. Additionally, there are some particular con-
straints that have to be taken into account in the selection of
an autotuning strategy. First, the optimization space is
significantly large since some optimizations also have
internal parameters to be tuned (e.g., swap retry). Second,
transactional applications usually exhibit short execution
times [22]. The autotuning mechanism thus has limited time
to converge to a set of tuned optimizations. Finally, as
mentioned before, some optimizations have more perfor-
mance impact than others, meaning that the order in which
optimizations are enabled is important.

In this paper, we thus propose an online autotuning
mechanism that boots optimizations in a specific order
determined by their performance impact on scalability. On
each iteration of the mechanism, it dynamically improves
the selected current set of optimizations based on dynamic
information about the application behavior. This one-
factor-at-a-time method simplifies the design and improves
the interpretability of the autotuning mechanism. Addi-
tionally, this method allows the autotuning mechanism to
be easily extended with new optimizations. Backed by the
results presented in Section 7, it was possible to evaluate
the performance impact of each optimization individually
and determine a predominance order between these
optimizations. Fig. 5 illustrates the autotuning mechanism

in the form of a state diagram that takes into account this
predominance order.

The initial state is the start state (SST), which initializes the
autotuning mechanism and triggers a collection of statistics
such as number of aborts, stalls, and commits. Then the
autotuning mechanism moves onto the worklist sharing
state (SWS). In this state, it decides to enable or not the Work
Stealing (WS) optimization.

The proposed autotuning mechanism also tunes the
number of concurrent threads. The aforementioned results
showed that the most profitable number of threads changes
if the WS optimization is activated. This means that the
enabling of the WS optimization affects the application
scalability potentially allowing more threads to run con-
currently without degrading performance. For this reason,
SWS precedes the thread counting state (STC). Once SWS is
finished, the autotuning mechanism then adjusts the
number of concurrent threads in STC .

The other optimizations do not affect scalability, allow-
ing them to be enabled in a more flexible order. It was
decided then that the next natural step was to check if there
are any cores still available in order to enable and adjust
helper threads in the helper thread state (SHT). In particular,
the autotuning mechanism fine-tunes HTs by adjusting
their lifespan parameter. Fig. 9 in Section 7 shows that HTs
are not sensitive to application phases. As a result, it would
be too costly and inefficient to continuously tune HT.
Additionally, the buffer size internal parameter does not
make a significant enough impact to justify its inclusion in
the tuning process. For these reasons, the autotuning
mechanism adjusts only the lifespan of the HTs during
the SHT state and uses a fixed buffer size.

If there are no idle cores left, then the mechanism moves
directly to the work coalescing state (SWC). The work
coalescing optimization is only enabled in a very specific
scenario since the WS optimization has already tackled the
same performance bottleneck (i.e., contention to access the
worklist) for most scenarios in the SWS state. Finally, the
mechanism enables and keeps tuning the swap retry

optimization in the swap retry state (SSR), until the program
ends. It is assumed that swapping work units is always
beneficial since contention to access the worklist has been
already alleviated by the preceding optimizations.

All the pattern-oriented optimizations could be continu-
ously tuned throughout the application execution. It is
known that some applications have multiple transactional
phases [11], [22]. In this case, an application can benefit
from a continuous tuning mechanism. Among the available
optimizations in OpenSkel, SR requires a small runtime
overhead and is more sensitive to the application execution
phases (i.e., to the variation in the STM contention
measured by the transaction abort ratio). Some of the
optimizations that we tune, however, are not very depen-
dent on the transactional behavior. This is true for the
thread count and helper thread optimizations. Moreover,
the tradeoff between the overhead of tuning these optimi-
zations versus the gains of dynamically adapting to the
phases favors the former. We thus chose a hill-climbing
approach in tuning the thread count and helper thread
optimizations, while we dynamically tune the SR one.

2210 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 5. Flow diagram of our autotuning mechanism. Each state accounts
for the tuning of a single optimization.

The main algorithm of the autotuning mechanism is
shown in Fig. 6. It implements the state diagram depicted in
Fig. 5. First, the application starts with the default baseline
version with an optimistic number of threads, that is, the
maximum number of available cores. This avoids the case
where the application loses any available parallelism in its
first iterations. However, as a side effect, this approach
increases the contention and may slowdown applications
with low parallelism. Additionally, the state variable S is
initially set to the initial state SST . Then, on each iteration,
the main worker thread (i.e., thread id ¼ 0) calls the main
algorithm before grabbing a new work unit. The frequency
at which the tuning process actually happens is propor-
tional to the number of initial work units I and cores P , as
depicted on line 2 in Fig. 6. On every

ffiffiffi

I
p

=P committed work
units, defined as an epoch, the autotuning mechanism
reevaluates its current state. This usually results in a change
of state and/or the enabling of an optimization. The latter is
represented by the assignment of true to the corresponding
optimization variable. For instance, line 9 shows when the
WS optimization is activated. In particular, some states take
several epochs to switch to the next state. This is the case for
the STC and SHT states in which the autoTuningTC() and
autoTuningHT() functions, on lines 13 and 16 in Fig. 6,
implement, respectively, the hill-climbing strategies to tune
the number of threads and the lifespan of helper threads.
These functions are presented in detail in Figs. 7 and 8.
Finally, the � and � thresholds, on lines 8 and 18 in Fig. 6,
are determined at design time by a sensitivity analysis that
is discussed in Section 7. The rest of this section describes
the implementation details to tune each of the pattern-
oriented optimizations.

G �OES ET AL.: AUTOTUNING SKELETON-DRIVEN OPTIMIZATIONS FOR TRANSACTIONAL WORKLIST APPLICATIONS 2211

Fig. 6. The main algorithm of the proposed autotuning mechanism.

Fig. 7. The algorithm to autotune the thread concurrency level in the
autoTuningTC() function.

Fig. 8. The algorithm to autotune the lifespan of helper threads in the
autoTuningHT() function.

After the initial SST state, the autotuning mechanism
moves to the SWS state. In this state, it evaluates if there is
high contention to access the worklist as a condition to
enable the WS optimization. In order to do this, it checks if
the ratio between the number of stalls to access the worklist
and the number of committed work units is above a
threshold � as shown on line 8 in Fig. 6. Each time a thread
access the worklist and has to wait in a lock, this is counted
as a stall. Low stall ratio means that the worklist is not
under contention. In this scenario, the work sharing should
be maintained since it provides optimal load balancing.

The next step is to adjust the number of threads in the
STC state. The proposed mechanism uses a hill-climbing
heuristic implemented in the autoTuningTC() function as
depicted in Fig. 7. It is based on the ratio between work
units aborts and commits. If this ratio is below a threshold �
this means that the actual number of threads exploits
parallelism efficiently. However, this has to be confirmed in
one more epoch through a counter R before fixing the
number of threads. In particular, this counter R can assume
only three values +1, 0, and -1. This double checking avoids
making a wrong decision based on a biased interval. The
same is valid when the ratio is above �. The algorithm waits
for a consecutive confirmation before halving the number of
threads. This process ends when consecutive epochs
present a ratio below �. In Section 7, a sensitivity analysis
is performed in order to choose and understand the
performance impact of these thresholds. In particular, it
shows that there is small performance variation on most of
the investigated space. It means that even when the
mechanism uses nonoptimal threshold values, it still makes
the right choices.

Next, the algorithm switches to the SHT state if there are
idle cores or goes straight to the SWC state. The autotuning
strategy to determine the lifespan of helper threads follows a
similar approach to the STC state. As shown in Fig. 8, it
also uses a hill-climbing strategy but in the opposite
direction. In contrast, it starts with a pessimistic lifespan
equal to one and moves toward a maximum lifespan.
Basically, if the current throughput with HT enabled is
higher than without them, it multiplies the lifespan by a
factor of 10. Once the lifespan is determined, the algorithm
switches to the SWC state.

The SWC state is implemented on line 17 in Fig. 6. Since
the WC optimization also tackles the contention problem in
the worklist, it is only enabled if the number of stalls is high
and the ratio between aborts and commits is very low, a
tenth of �. Then, it switches to the SSR state.

Finally, in the last state, the SR optimization is enabled
and adjusted continuously. It uses an exponential function
based on the abort ratio to adjust the number of retries before
a swap as described on line 23 in Fig. 6. The intuition behind
it is that as the abort ratio increases, work unit swaps become
expensive and inefficient. This stems from the fact that under
high abort ratio, when a work unit is swapped it will end up
aborting anyway and the thread may also lose the natural
prefetching of the previous execution. On the other hand, it is
also assumed that aggressive SR (i.e., swap on every abort) is
not beneficial since in the next execution the work unit can
execute and commit faster using the prefetched data. Thus,
the number of retries is limited to a minimum of one retry
before swapping.

6 EVALUATION METHODOLOGY

6.1 Experimental Setup

We conducted tests both on a 16-core Uniform Memory
Access (UMA) machine with Intel Xeon E7320 CPU clocked
at 2.13 GHz, 64 GB of RAM, 16 MB of L2 cache (2 MB shared
per core pair), running Linux kernel version 2.6.18, and on a
32-core Nonuniform Memory Access (NUMA) machine
with Intel Xeon x7560 CPU clocked at 2.27 GHz, 64 GB of
RAM, four nodes each with a 24 MB L3 cache memory
shared by eight cores, running Linux kernel version 2.6.32-5.
All code was compiled using GCC version 4.1.2 (16-core)
and 4.4.5 (32-core) with the -O3 option enabled.

We selected TinySTM [10] as the STM platform. It can be
configured with several locking and contention manage-
ment strategies. We configured TinySTM with encounter-
time locking, write-back memory update and a commit
suicide contention strategy.

6.2 Analyzing the STAMP Benchmark Suite

To investigate performance tradeoffs of the optimizations
for transactional worklists under the OpenSkel system, we
selected five applications from the STAMP benchmark suite
[22] that matched the worklist pattern: Intruder, Kmeans,
Labyrinth, Vacation, and Yada. Other applications from
STAMP present an irregular behavior with specific char-
acteristics which make them hard to generalize to a single
skeleton, such as an arbitrary number of synchronization
barriers and very fine-grained transactions. We executed all
selected STAMP applications with the recommended input
data sets. Kmeans and Vacation have two input data sets,
high and low contention. As Intruder and Yada only have
high contention input data sets, we chose the low conten-
tion inputs for Kmeans and Vacation to cover a wider range
of behaviors. We profiled these five applications using
TinySTM according to four criteria: scalability, transaction
abort ratio, L3 cache miss ratio, and transaction execution
time (i.e., average time to execute a transaction).

The results are summarized in Table 1, which demon-
strates that our applications span a varied range of points
in the implied space, and so provide a sound basis for
evaluation.

6.3 Porting to OpenSkel

To port the selected applications, we decomposed single
worker functions into the ones required by OpenSkel,
grouped global, and local variables into the new declared
structures and declared a work unit structure when it was
not already there. The code transformation was straightfor-
ward for all five applications. We believe that implementing

2212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

TABLE 1
Summary of STAMP Application Runtime Characteristics on

TinySTM for the 32-Core NUMA Machine

an application from scratch under the OpenSkel philosophy
would be even more intuitive.

Regarding the transactional code transformation, we
decided to use the manually instrumented transactional
code available in the STAMP benchmark suite, since [23]
showed that the code generated by the OpenTM compiler
achieves very similar performance. As helper threads
require the same kind of code transformation, we used a
script to copy and transform the instrumented transactional
code into a helper thread version. It basically substitutes
each call to the STM system to a corresponding one in
OpenSkel’s internal helper thread API.

Some compromises have to be made when existing
transactional applications are ported to OpenSkel. These
implementation decisions may impact the performance of
the OpenSkel version compared to the original application.

First, the worklist data structure in OpenSkel is im-
plemented as a stack. This will influence the ordering and
amount of time to access work units. For instance, the
original Yada and Intruder implement the worklist as a heap
and as a queue, respectively. Second, as mentioned before,
the application has to have work units declared as a
structure. Vacation and Kmeans do not have an explicit
worklist in the original benchmark, although they match the
worklist pattern. Allocating and handling these work units
may introduce some overhead. Particularly in the original
Vacation, each thread has a fixed number of requests
generated randomly in a distributed fashion. The introduc-
tion of this new explicit worklist centralizes the generation
and access to all work units, which in turn may become a
bottleneck.

Transactional applications may split the processing of a
work unit into a few phases. Each phase is executed within a
fine-grained transaction to reduce the number of aborts. For
example, Yada and Intruder use more than two transactions
to process each work unit. On the other hand, to free the
programmer from the burden of handling transactions
explicitly, each work unit in OpenSkel is processed within
a single coarse-grained transaction. However, a single
coarse-grained transaction may increase the number of
aborts, since each transaction becomes longer. Fortunately,

if the majority of aborts are concentrated into a single phase,

combining multiple transactions into a single transaction

does not become a bottleneck. This is the case for Intruder

and Yada. Since the other applications use only a single

transaction to process each work unit then their perfor-

mance is not affected. Another issue is thread mapping and

scheduling. STMs do not manage threads and thus they are

left with the operating system default scheduling strategy.

The Linux scheduling strategy in the selected platforms and

applications tends to map threads initially following the

scatter mapping strategy. Scatter distributes threads across

different processors avoiding cache sharing between cores

in order to reduce memory contention. However, at runtime

the Linux scheduler migrates threads trying to reduce

memory accesses and I/O costs. The baseline version

employs a static scatter mapping strategy in which threads

are not allowed to migrate at runtime, guaranteeing a more

predictable performance.
In the next section, we show results of the original

version for all applications. These results on the STAMP
applications show that the baseline version can achieve
similar performance, on average, compared to the TM
original version on both machines. However, we focus our
analysis on the skeleton baseline version since all optimiza-
tions are built on top of it.

7 EXPERIMENTAL RESULTS

In this section, we analyze the performance of our skeleton

framework. In Fig. 9, the speedup is calculated based on the

execution time of the sequential (hence transactionless)

version of each application. For all transactional worklist

applications, the input work units are shuffled before we start

computing them. This is done to avoid benefits from a

particular input order. For the helper threads optimization half

the cores run transactional threads and the other half run

helper threads. Due to this, we present results from two to the

maximum number of cores for helper threads. Nevertheless, we

expect them to be profitable only for eight or more cores,

depending on when the baseline version stops scaling. All the

G �OES ET AL.: AUTOTUNING SKELETON-DRIVEN OPTIMIZATIONS FOR TRANSACTIONAL WORKLIST APPLICATIONS 2213

Fig. 9. Speedup on STAMP applications for the skeleton-driven performance optimizations.

results presented (i.e., speedups, performance improve-
ments, etc.) are based on an arithmetic mean of 10 runs.

In the rest of this section, we first analyze the
performance benefits of individually applying each optimi-
zation. Then, we analyze the performance of our autotuning
mechanism compared to the best single optimization and a
static oracle extracted from exhaustive space search of all
the possible combinations of available optimizations.
Finally, we investigate even further the autotuning mechan-
ism behavior by performing a sensitivity analysis on its
internal parameters and showing its execution details.

7.1 Analyzing Single Optimizations

In this section, we analyze the performance of each
optimization enabled on top of the baseline version.

Work stealing. As we discussed in Section 4, work stealing
is effective in reducing the contention to access the worklist.
According to Fig. 9, it improves the performance of most
applications, up to 102 percent for Intruder. With the
increasing number of cores, applications that execute small
to medium transactions are bound to stop scaling due to
contention to a centralized worklist. Work stealing signifi-
cantly reduces the contention in the worklist, splitting it
between threads. The exception is Labyrinth, which executes
a small number of long transactions. When the number of
threads increases the time to search for a victim with a
nonempty worklist also increases. This stems from the fact
that work stealing selects a victim in a random fashion. Since
Labyrinth is left with just a few long transactions in the end
of its execution, worker threads may have zero or just one
work unit to be stolen. Thus, this search process takes longer
to converge, that is, to find a suitable target victim.

For Kmeans and Vacation, work stealing significantly
improved their performance over the baseline version.
Furthermore, the internal implementation of the OpenSkel
worklist as a stack enabled the exploitation of a specific
property of Yada. Each new bad triangle added to the
worklist is correlated with the previous one. Since the work
stealing optimization has independent stacks for each
thread, this leads to two beneficial effects. First, threads
stop processing triangles in the same neighborhood,
avoiding conflicts. Second, there is a natural prefetching
mechanism as a thread will keep working in the same
neighborhood. WS was able to reduce the number of aborts
of Yada and achieve performance improvements up to
35 percent over the baseline version.

Work coalescing. This is designed to be efficient in a low
abort ratio scenario. It can reduce contention to the worklist
at the cost of increasing aborts. Despite this side effect, it can
add up to 32 percent performance on top of the baseline.

As expected, Labyrinth had no improvement since
combining long transactions within a single transaction
leads to high abort ratio. On the other hand, transaction
aborts are not an issue for Vacation, the abort ratio being less
than 20 percent on both STMs and machines. This enabled
the work coalescing optimization to perform 32 percent better
than the baseline (Fig. 9d) due to a reduction in the
contention to the worklist.

In the NUMA machine, the contention problem becomes
even worse due to the increase in the number of remote
accesses to the worklist. In this case, work coalescing was
able to add up to 16 percent performance for Intruder since
it presents high contention. This shows that reducing the
contention to access the worklist is as important as

reducing the number of aborts in a transactional worklist
application. Finally, even with an increased abort ratio,
work coalescing performed 7 percent faster than the baseline
for Yada in the 16-core machine.

Swap retry. This is an optimization that tackles transac-
tion aborts by swapping conflicting work units to other
available ones. According to Figs. 9e and 9j, SR improves
the performance of Yada by up to 33 percent. Yada presents
a high abort ratio enabling SR to fit in nicely reducing the
abort ratio. Since new inserted work units are spatially
correlated in Yada, SR also avoids having threads working
on the same region.

The swap retry optimization adds accesses to the global
worklist for each swapping operation. Under high abort
ratio, these extra accesses will contribute to increase the
contention to the worklist. Thus any performance benefit
attained from reducing transaction aborts will be out-
weighed by the contention overhead. Due to this behavior,
SR does not provide any performance improvement to
Kmeans and Intruder.

Vacation has a very low transaction abort ratio, thus swap
retry is rarely invoked and does not impact on performance.
Finally, Labyrinth shows a slight 4 percent performance
improvement in the 16-core machine as we observe in Fig. 9c.

Helper threads. This optimization can be profitable only
when an application stops scaling, leaving idle cores to run
helper threads. Even so, we show helper threads for all
number of cores. In Figs. 9c and 9h, we see that Labyrinth
scales up to the maximum number of cores. Labyrinth thus
cannot be improved by HTs in our machines. For the other
applications, helper threads performed up to 20 percent faster
than the baseline version. Vacation exhibits substantial cache
miss ratio, alleviated with HTs, up to 10 percent.

Yada benefits from the use of helper threads and in fact this
benefit increases as we increase the number of cores in the
UMA machine. As the abort ratio does not increase
proportionally to the number of concurrent transactions,
the abort ratio per thread is actually reduced. On the NUMA
machine, helper threads only increase the memory pressure
over the shared L3 cache memory thus degrading perfor-
mance.Anexception is Intruder that improves12 percentover
the baselineversion. Since it stopsscaling with only four cores,
adding four more helper threads leaves only one main thread
and one helper thread per node. That is, each L3 cache is
shared by nonconcurrent threads, and so avoids having
competing transactions evicting each others cache lines.

7.2 Autotuning and Combined Optimizations

After analyzing the impact of each optimization individu-
ally, we now compare the performance of the autotuning
mechanism that we presented in Section 5 against the best
performing optimization, performed in isolation, and
against the best combination of optimizations. Note that
the best performing single optimization or combination of
optimizations can be different for each workload. The best
performing combination of optimizations per workload
consists our static oracle.

In Fig. 10, we show the performance improvement of the
bestsingle optimization, theautotuning version,andthe static
oracle over the best baseline execution. By best we mean the
fastest execution for a specific benchmark, from all possible
number of cores (i.e., in some cases more cores result in
slowdowns). The static oracle result was obtained through
exhaustive investigation of the search space of all combina-
tions of optimizations. Since it is static, that is, optimizations

2214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

and their parameters are fixed throughout the application
execution, it is possible for the dynamic autotuning mechan-
ism to outperformit. Wefirstdiscuss the performance benefits
ofcombiningoptimizations andthencomparethestaticoracle
with the autotuning mechanism.

Fig. 10 shows that the combined optimizations for the
static oracle deliver significant performance improvements,
when compared to single optimizations. As expected, work
stealing is beneficial for all applications except Labyrinth.
Labyrinth reaches its best performance with the baseline
version for the 32-core machine and with swap retry for the
UMA machine.

As mentioned earlier, under high abort ratio, swap retry
increases the contention to access the centralized worklist.
However, since the work stealing optimization privatizes the
worklist, this undesired behavior is largely negated when
the two optimizations are combined. Since swap retry only
swaps work units within its local worklist, it was able to
deliver performance improvements for many applications.

Work stealing and work coalescing tackle the same
performance bottleneck, namely contention to access the
worklist. Since the work stealing benefits outweigh the ones
of work coalescing, combining them unnecessarily increases
the abort ratio in most cases. An exception to this is Vacation
that has very small transactions and very low abort ratio.
Enabling WC on top of WS, reduces contention even
further. Finally, combining HTs and WS improved perfor-
mance even further in Yada and Kmeans, showing that idle
cores can be utilized for prefetching.

7.3 Investigating the Autotuning Behavior

In order to better understand the behavior of the proposed
autotuning mechanism, we performed a sensitivity analysis for
its internal parameters � and �. As mentioned in Section 5,

the � threshold is related to the ratio between stalls and
commits and it is used in the WS step. The � threshold
defines the desired ratio between aborts and commits and is
used to choose the number of concurrent threads.

In Fig. 11, we show the average normalized speedup of
all the applications with the autotuning enabled running
on the 16-core machine. We observe that the best tuple is
(0.1, 0.1). This means that even under low contention, the
worklist should be split using the WS optimization.
Additionally, the number of threads has to be reduced
until a low ratio between aborts and commits is reached, so
as to achieve the best performance. In contrast, the worse
results are achieved with the (0.9, 0.9) tuple. In this case,
WS is never used and the number of threads is always the
maximum number of cores, which is not profitable for
some applications.

Based on this study, we chose the tuple (0.1, 0.1) to drive
the proposed mechanism. The same tuple was also used for
the 32-core machine, showing that it can be portable across
machines. However, we acknowledge that the choice and
sensitivity of � and � remains an important topic for further
investigation. Fig. 10 shows that the automatic approach can
deliver similar, or in some cases even better, performance
when compared to the best static combination of optimiza-
tions. The proposed mechanism was only 2 percent slower
than the best combination on average for the 16-core
machine and 15 percent faster for the 32-core one. Note
that, however, our autotuning approach performs well—or
better than—the best static choice of a single optimization.
Moreover, the continuous tuning of swap retry proved to
have a significant impact for the NUMA machine, improv-
ing the performance of Yada by 31 percent over the static
oracle combination of optimizations.

In Fig. 12, the behavior of the autotuning component is
analyzed further for all applications, running on the UMA
platform. Each graph shows when each of the states are
activated, how many epochs it takes to finish and the values
for each of the optimization internal parameters. For
instance, Fig. 12c in the SSR state shows that for Labyrinth
the number of retries remains constant across epochs. Note
that it took around 3 percent of Yada’s total execution time
to autotune the application as shown in Fig. 12e. This can
be calculated dividing the tuning time (number of epochs
until the SSR state) by the total number of epochs. This
small tuning time overhead is consistent across all applica-
tions, except Labyrinth which has long transactions. Despite
this fact, it takes a small number of epochs to converge since
it is profitable to make use of all cores.

Another interesting result derived from these graphs is
that they show how the SR optimization exploits the variation

G �OES ET AL.: AUTOTUNING SKELETON-DRIVEN OPTIMIZATIONS FOR TRANSACTIONAL WORKLIST APPLICATIONS 2215

Fig. 10. Performance improvement of the autotuning and static oracle
over the best baseline execution.

Fig. 11. Sensitivity analysis of the autotuning parameters � and �.

of the abort ratio throughout the application execution. For
instance, the number of aborts increases radically by the end
of Intruder’s execution. Since the number of retries is
proportional to the abort ratio, this increase can be observed
in the SSR state in Fig. 12a. SR thus almost stops swapping
work units since it will be probably worthless as aborts
become inevitable.

In Fig. 12e, it is also important to observe that HTs are
enabled and the lifespan is increased until 1,000 words per
work unit which is an intermediate value. This shows that

the autotuning mechanism was able to detect the most
profitable lifespan for Yada in the UMA platform.

Overall, the proposed autotuning mechanism converges
to a set of optimizations that matches the ones of the static
oracle. Additionally, it surpasses the static oracle perfor-
mance benefits when the dynamic tuning of SR is profitable.
Finally, it can achieve performance improvements of up to
88 percent, with an average of 46 percent, over a baseline
version for the UMA platform and up to 115 percent, with
an average of 56 percent for the NUMA platform.

8 RELATED WORK

Autotuning STM systems. In [24], the authors use a history-
based heuristic to dynamically select the most efficient STM
design considering dimensions such as level of indirection
and type of nonblocking semantics. Automatic tuning of STM
systems is considered in [10], which proposes a hill-climbing
strategy to adjust the number of locks, the number of shifts in
a hash function, and the size of the hierarchical array
implemented on TinySTM. In contrast, our work focuses on
the tuning of higher level optimizations rather than STM
internal designs and parameters. Transactional Memory
contention managers ([16], [25]) dynamically react to conten-
tion and try to minimize it by changing the conflict resolution
policy, for example, in order to improve performance. Our
scheme does take contention into account, but targets a
broader range of optimizations. In [11], the authors propose
an adaptive mechanism to transaction scheduling on top of a
STM contention manager. It uses contention feedback
information to adjust the number of available active transac-
tions running in parallel to avoid high contention. In contrast,
our autotuning mechanism follows a hill-climbing strategy to
select the most suitable number of threads in a few intervals
rather than during the whole application execution. In [9], the
authors propose an online autotuner called Perpetuum in the
operating system level for multicores. It improves the
performance of applications as long as they expose their
performance-relevant parameters to the operating system. In
our approach, this information is implicitly provided by the
skeleton framework.

Performance optimizations. Recent work [18] has
exploited structure-driven optimizations for irregular appli-
cations. In fact, they proposed a technique called iteration
coalescing that we adapted to work coalescing in our skeleton
framework. Ansari et al. [17] propose a “steal-on-abort”
mechanism. When concurrent transactions conflict, the
aborted transaction is stolen by its opponent transaction
and queued to avoid simultaneous execution. Multiple local
queues with job stealing for load balancing are also
employed. In contrast, rather than steal a conflicting transac-
tion from another thread, our swap retry optimization tries to
compute a different work unit from its own stack whenever it
aborts. It does not require visible readers and can be applied
to any word-based software transactional memory system.
Moreover, Ansari et al. focus on a single optimization within a
software transactional memory system, where our skeleton-
driven approach has a set of transparent optimizations.

One of the applied optimizations exploits the use of
helper threads to improve performance. Helper threads
have been explored as a means of exploiting otherwise idle
hardware resources to improve performance on multicores
[21]. A compiler framework to automatically generate
software helper threads code for profitable loops in
sequential applications has been developed [19]. As in our

2216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 12. Dynamic behavior of the autotuning mechanism for each
application running on the 16-core platform.

system, it prefetches data to shared cache levels. Finally,
Nikas et al. [26] manually coded helper threads, within
hardware transactional memory barriers, to improve the
performance of a sequential implementation of Dijkstra’s
algorithm. In this case, a helper thread does useful work
rather than just prefetching. In our approach, we employ
helper threads to speedup transactional applications rather
than sequential applications.

High-level parallel programming. One approach to
support parallelism is to extend existing programming
languages with keywords from the parallel programming
domain to spawn and synchronize threads and partition
data. This alternative is well exploited in languages such as
Cilk++ [20] and Charm++ [27]. Particularly, Cilk++ [20] has
extensively employed work stealing in order to overcome
scalability bottlenecks. However, both Charm++ and Cilk++
are designed for nontransactional parallel applications. In
contrast, our approach is based on skeletal programming
for software transactional memory applications. An exten-
sive survey of recent parallel skeleton languages and
libraries is presented in [28]. Although many parallel
skeletons have been proposed, they are efficient only for
regular data and task-parallel applications. In [15], Kulkarni
et al. have identified that new programming abstractions
are required to efficiently use speculative execution on a
particular class of irregular applications that exhibits
amorphous data-parallelism [29]. These applications are
mostly worklist-based algorithms that work within a shared
graph data structure. They have implemented the Galois
system, a Java-based interface that provides a set of iterators
to implement the worklist and a runtime system that
implements speculative execution support.

9 CONCLUSIONS

Although many parallel programming models and systems
have been proposed in the recent past, improving perfor-
mance and programmability of applications is still hard and
error prone. In this paper, we presented a new skeleton
framework for transactional worklist applications. As pre-
sented, in addition to simplifying the programming task, it
enables various performance optimizations transparently to
the application programmer. Its novel autotuning mechan-
ism automatically selects and adjusts optimizations to
provide the best performance for each application. Results
showed that our autotuned skeleton framework achieves
similar or better performance than a static oracle.

As future work, OpenSkel can be extended to accommo-
date more patterns. For instance, the pipeline pattern can be
created by composing a sequence of worklists. Additionally,
the autotuning mechanism can be enhanced by considering
new optimizations and STM configurations. As new TM
worklists become available, it will be also possible to
evaluate the autotuning mechanism using cross validation.
Finally, we intend to integrate OpenSkel to the Dresden TM
compiler and extend it to produce helper thread code.

ACKNOWLEDGMENTS

This work was supported by the Scottish Informatics and
Computer Science Alliance (SICSA), the Institute for
Computing Systems Architecture (ICSA), and the Univer-
sity of Edinburgh. This is work that Dr. Góes performed
while being a PhD student at the University of Edinburgh.

REFERENCES

[1] J. Held, J. Bautista, and S. Koehl, “From a Few Cores to Many: A
Tera-Scale Computing Research Overview,” TR, Intel, 2006.

[2] M.J. Irwin and J.P. Shen, “Revitalizing Computer Architecture
Research,” Proc. Conf. Grand Research Challenges, 2005.

[3] E.A. Lee, “The Problem with Threads,” Computer, vol. 39, no. 5,
pp. 33-42, May 2006.

[4] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K.
Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams,
and K.A. Yelick, “A View of the Parallel Computing Landscape,”
Comm. ACM, vol. 52, no. 10, pp. 56-67, 2009.

[5] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press & Pitman, 1989.

[6] M. McCool, “Structured Parallel Programming with Deterministic
Patterns,” Proc. Second USENIX Conf. Hot Topics in Parallelism
(HotPar), pp. 25-30, 2010.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Proces-
sing on Large Clusters,” Proc. Symp. Operating System Design and
Implementation (OSDI), pp. 137-150, 2004.

[8] J. Larus and R. Rajwar, Transactional Memory. Morgan & Claypool
Publishers, 2006.

[9] T. Karcher and V. Pankratius, “Run-Time Automatic Performance
Tuning for Multicore Applications,” Euro-Par: Proc. 17th Int’l Conf.
Parallel Processing, pp. 3-14, 2011.

[10] P. Felber, C. Fetzer, and T. Riegel, “Dynamic Performance Tuning
of Word-Based Software Transactional Memory,” Proc. 13th ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming
(PPoPP), pp. 237-246, 2008.

[11] R.M. Yoo and H.-H.S. Lee, “Adaptive Transaction Scheduling for
Transactional Memory Systems,” Proc. 20th Ann. Symp. Parallelism
in Algorithms and Architectures (SPAA), pp. 169-178, 2008.

[12] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming. Pearson Education, 2004.

[13] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
Core Processor Parallelism. OREILLY, 2007.

[14] K. Fraser and T. Harris, “Concurrent Programming Without
Locks,” ACM Trans. Computer Systems, vol. 25, no. 2, article 5, 2007.

[15] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala,
and P.L. Chew, “Optimistic Parallelism Requires Abstractions,”
Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI), pp. 211-222, 2007.

[16] M.F. Spear, L. Dalessandro, V.J. Marathe, and M.L. Scott, “A
Comprehensive Strategy for Contention Management in Soft-
ware Transactional Memory,” Proc. 14th ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming (PPoPP), pp 32-
40, 2009.

[17] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C.C. Kirkham, and I.
Watson, “Steal-on-Abort: Improving Transactional Memory Per-
formance through Dynamic Transaction Reordering,” Proc. Fourth
Int’l Conf. High Performance Embedded Architectures and Compilers
(HiPEAC), pp. 4-18, 2009.

[18] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M.A. Hassaan,
M. Kulkarni, M. Burtscher, and K. Pingali, “Structure-Driven
Optimizations for Amorphous Data-Parallel Programs,” Proc. 15th
ACM SIGPLAN Symp. Principles and Practice of Parallel Program-
ming (PPoPP), pp. 3-14, 2010.

[19] Y. Song, S. Kalogeropulos, and P. Tirumalai, “Design and
Implementation of a Compiler Framework for Helper Threading
on Multicore Processors,” Proc. 14th Int’l Conf. Parallel Architectures
and Compilation Techniques (PACT), pp. 99-109, 2005.

[20] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y.
Zhou, “Cilk: An Efficient Multithreaded Runtime System,”
J. Parallel and Distributed Computing, vol. 37, no. 1, pp. 55-69, Aug.
1996.

[21] J.D. Collins, H. Wang, D.M. Tullsen, C. Hughes, Y.-F. Lee, D.
Lavery, and J.P. Shen, “Speculative Precomputation: Long-Range
Prefetching of Delinquent Loads,” Proc. 28th Ann. Int’l Symp.
Computer architecture (ISCA), pp. 14-25, 2001.

[22] C.C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford Transactional Applications for Multi-Processing,” Proc.
IEEE Int’l Symp. Workload Characterization (IISWC), pp. 35-46, 2008.

[23] W. Baek, C.C. Minh, M. Trautmann, C. Kozyrakis, and K.
Olukotun, “The Opentm Transactional Application Programming
Interface,” Proc. 16th Int’l Conf. Parallel Architectures and Compila-
tion Techniques (PACT), pp. 376-387, 2007.

G �OES ET AL.: AUTOTUNING SKELETON-DRIVEN OPTIMIZATIONS FOR TRANSACTIONAL WORKLIST APPLICATIONS 2217

[24] V.J. Marathe, W.N. Scherer III, and M.L. Scott, “Adaptive software
Transactional Memory,” Proc. 19th Int’l Conf. Distributed Comput-
ing (DISC), pp. 354-368, 2005.

[25] R. Guerraoui, M. Herlihy, and B. Pochon, “Toward a Theory of
Transactional Contention Managers,” Proc. 24th Ann. ACM Symp.
Principles of Distributed Computing (PODC), pp. 258-264, 2005.

[26] K. Nikas, N. Anastopoulos, G. Goumas, and N. Koziris, “Employ-
ing Transactional Memory and Helper Threads to Speedup
Dijkstras Algorithm,” Proc. Int’l Conf. Parallel Processing (ICPP),
pp. 388-395, 2009.

[27] L. Kale and S. Krishnan, “Charm++: A Portable Concurrent Object
Oriented System Based on c++,” Proc. Eighth Ann. Conf. Object-
Oriented Programming Systems, Languages, and Applications (OOS-
PLA), pp. 91-108, 1993.

[28] H. González-Vélez and M. Leyton, “A Survey of Algorithmic
Skeleton Frameworks: High-Level Structured Parallel Program-
ming Enablers,” Software Practice Experiments, vol. 40, pp. 1135-
1160, 2010.

[29] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Cascaval,
“How Much Parallelism Is There in Irregular Applications?” Proc.
14th ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming (PPoPP), pp. 1-12, 2009.

Luı́s Fabrı́cio Wanderley Góes received the
BSc degree in computer science from PUC
Minas in 2002, the MSc degree in electrical
engineering from PUC Minas in 2004, and the
PhD degree from the University of Edinburgh in
2012. He is currently an associate professor at
PUC Minas. His research interests include
parallel programming patterns, software trans-
actional memory and parallel job scheduling. He
is a member of the IEEE.

Nikolas Ioannou received the Diploma in elec-
trical and computer engineering from the Na-
tional Technical University of Athens in 2008 and
the PhD degree from the University of Edinburgh
in 2012. He is currently a research assistant at
the University of Edinburgh. His research inter-
ests include parallel computer architectures,
many-core systems, thread-level speculation,
and power management. He is a member of the
IEEE and a student member of the ACM.

Polychronis Xekalakis received the Dipl Eng
from the University of Patras in 2005 and the
PhD degree from the University of Edinburgh in
2009. He is currently a senior research scientist
at Intel-Labs Barcelona. His research interests
include co-designed virtual machines, specula-
tive multithreading, and architectural techniques
for low power. He is a member of the IEEE.

Murray Cole is currently an associate profes-
sor of computer science at the University of
Edinburgh. He is a member of the Institute for
Computing Systems Architecture, within the
School of Informatics. His research interests
include parallel programming models, empha-
sizing approaches which exploit skeletons to
package and optimize well-known patterns of
computation and interaction as parallel pro-
gramming abstractions. He is a senior member

of the IEEE.

Marcelo Cintra received the BS and MS
degrees from the University of Sao Paulo in
1992 and 1996, respectively, and the PhD
degree from the University of Illinois at Urbana-
Champaign in 2001. After completing the PhD
degree, he joined the faculty of the University of
Edinburgh, where he is currently an associate
professor. His research interests include parallel
architectures, optimizing compilers, and parallel
programming. He has published extensively in

these areas. He is a senior member of the ACM, the IEEE, and the IEEE
Computer Society. More information about his current research activities
can be found at http://www.homepages.inf.ed.ac.uk/mc.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

