

Edinburgh Research Explorer

Analysing UML 2.0 activity diagrams in the software performance
engineering process

Citation for published version:
Canevet, C, Gilmore, S, Hillston, J, Kloul, L & Stevens, P 2004, 'Analysing UML 2.0 activity diagrams in the
software performance engineering process'. in Proceedings of the 4th international workshop on Software
and performance. ACM, New York, NY, USA, pp. 74-78., 10.1145/974044.974055

Digital Object Identifier (DOI):
10.1145/974044.974055

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of the 4th international workshop on Software and performance

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28969339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/974044.974055
http://www.research.ed.ac.uk/portal/en/publications/analysing-uml-20-activity-diagrams-in-the-software-performance-engineering-process(93c4c74f-ef2b-4a25-a7c1-23d5ef9489d6).html

Analysing UML 2.0 activity diagrams in the software
performance engineering process

C. Canevet, S. Gilmore, J. Hillston, L. Kloul
�

and P. Stevens
Laboratory for Foundations of Computer Science, The University of Edinburgh, Scotland�

ccanevet,stg,jeh,leila,perdita � @inf.ed.ac.uk

ABSTRACT
In this paper we present an original method of analysing the newly-
revised UML2.0 activity diagrams. Our analysis method builds
on our formal interpretation of these diagrams with respect to the
UML2.0 standard. The mapping into another formalism is the first
stage of a refinement process which ultimately delivers derived an-
alytical results on the model. This process highlights latent per-
formance problems hidden in the high-level design, allowing soft-
ware developers to fix these design flaws before they are concre-
tised in implementation code. We exercise our analysis approach
on a substantial example of modelling a multi-player distributed
role-playing game.

1. INTRODUCTION
Complex software necessitates the use of a systematic software de-
sign process in which initial high-level designs and blueprints are
methodically refined towards an efficient and reliable implemen-
tation of the system. In addition to the programming language or
languages which will ultimately be used to code the system, one
or several modelling languages are usually deployed for design
and analysis purposes. In this paper we explain how a general-
purpose modelling language (the UML) can be used together with
a special-purpose modelling language for performance analysis of
distributed and mobile computing systems (the language of PEPA
nets).

The Unified Modelling Language (UML) is an effective diagram-
matic notation used to capture high-level designs of systems, es-
pecially object-oriented software systems. The UML is now con-
sidered to be the de facto standard for the high-level description of
software systems, even in those cases where the primary interest in
building these models is to undertake a performance analysis of the
system under study [4].

�
On leave from PRISM, Université de Versailles, 45, Av. des Etats-

Unis 78000 Versailles, France.

A UML model is represented by a collection of diagrams describing
parts of the system from different points of view; there are seven
main diagram types. For example, there will typically be a static
structure diagram (or class diagram) describing the classes and in-
terfaces in the system and their static relationships (inheritance, de-
pendency, etc.). State diagrams, a variant on Harel state charts,
can be used to record the dynamic behaviour of particular classes.
Other dynamic diagrams, such as activity diagrams and sequence
diagrams, show how the overall behaviour of the system is realised.
As usual we expect that the UML modeller will make a number of
diagrams of different kinds. Our analysis here is based on activ-
ity diagrams and complements our earlier work on mapping UML
state diagrams and collaboration diagrams to PEPA [1].

In this paper we apply the UML and PEPA nets languages to the
problem of modelling a complex distributed application, a multi-
player online role-playing game. The game is one of the case
studies from one of our industrial partners on the EC-funded DE-
GAS project (Design Environments for Global ApplicationS). The
game is a characteristic “global computing” example, encompass-
ing distribution, mobility and performance aspects. The representa-
tional challenges in modelling the game accurately include captur-
ing location-dependent collaboration, multi-way synchronisation,
and place-bounded locations holding up to a fixed number of to-
kens only. All of these are directly represented in the PEPA nets
formalism. Due to lack of space we do not describe PEPA nets in
detail here but refer the reader to [2].

2. UML 2.0 ACTIVITY DIAGRAMS
One of the major changes introduced in UML2.0 is a radical over-
haul of activity diagrams. UML 1.x actually regards activity di-
agrams as special syntax for hierarchical state machines. A fork
pseudostate indicates entry into a submachine consisting of several
parallel regions, and a join pseudostate indicates exit from such
a submachine. Therefore there are many activity diagrams which
have an obvious interpretation which are not in fact legal in UML
1.x. In practice, users of UML have often not obeyed the rules gov-
erning the structure of activity diagrams, and have informally used
a Petri net semantics. In UML 2.0, this has been made official.

UML 2.0 also revises the concept of object flows in models. Object
flows already existed in UML 1.x, but were so imprecisely defined
that few practitioners made use of them. In UML 2.0 the situation
has been improved. Essentially there are two kinds of flows, the
normal control flows and object flows. The presence of a control
token in an activity indicates merely that the activity is enabled,

ttotterd
Typewritten Text
Canevet, C., Gilmore, S., Hillston, J., Kloul, L., & Stevens, P. (2004). Analysing UML 2.0 activity diagrams in the software performance engineering process. In Proceedings of the 4th international workshop on Software and performance. (pp. 74-78). New York, NY, USA: ACM. doi: 10.1145/974044.974055

and flow of control tokens shows the enabling and disabling of ac-
tivities. Object tokens, on the other hand, represent objects in the
software system being defined. As such, they have state, behaviour
and identity which may be used by the activities where they con-
tribute. The flow of object tokens shows part of the data flow of
the application being designed. Control tokens flow along control
flows, object tokens flow along object flows. For example, Figure 1
shows a control flow from activity reachRoom to activity fightNP,
and an object flow from object NPlayer to activity fightNP. In the
vocabulary of the UML 2.0 specification, an activity may require
both control tokens and object tokens in order to be activated. For
example, the activity fightNP cannot begin until both the activity
moveP has been completed – so that a control token is passed on to
fightNP – and the object NPlayer is available. Notice that UML2.0
tokens are not identical with basic Petri net tokens, since there is a
notion that they have identity which is preserved through flows. If
an activity requires two tokens to begin, it then possesses (those
same) two tokens whilst it is active. As we shall see, this corre-
sponds sensibly with the treatment of tokens in PEPA nets. We
may thus view activity diagrams as a particular kind of coloured
Petri net with two kinds of tokens: indistinguishable control tokens,
and object tokens. UML2.0 appears to assume a sensible type dis-
cipline for object tokens, although this is not made formal. It will
be an assumption of our translation that our UML activity diagrams
are well typed.

3. FROM UML 2.0 ACTIVITY DIAGRAMS
TO PEPA NET MODELS

In this section, we demonstrate the translation between UML 2.0
activity diagrams and PEPA net models. We consider activity dia-
grams in which there is choice, looping, control and object flows,
but no synchronisation.

As a first step we identify the components of the PEPA net, dis-
tinguishing tokens and static components. The context object of
the activity diagram is a token of the PEPA net, as is each object
token involved in an object flow. The behaviour of the context ob-
ject component closely reflects the structure of the activity diagram
respecting sequence and choice: each activity of the diagram be-
comes an activity in the PEPA definition of the component. When
a choice in the activity diagram is labelled by guards, the guards
are elevated to the status of activities offered in competition in the
PEPA token component.

The behaviour of the context object is partitioned into a number of
different subcontexts, according to the interactions with other com-
ponents which are required, i.e. according to which activities re-
quire cooperation with an object token. These joint activities must
occur within a place of the PEPA net, thus we make these activities
transitions, and the immediately preceding activities firings. Thus
there is a distinct place in the PEPA net for each activity which
involves an object flow.

For each object token we define a PEPA token component. As well
as the activity on which it cooperates with the context token, it is
given activities to bring it into the place of interaction and remove it
from the place of interaction. These transitions will be firings, rep-
resenting the object becoming available for interaction, and leaving
the subcontext of interaction.

Since the objective of a PEPA net is to carry out performance analy-
sis based on an underlying Continuous Time Markov Chain (CTMC),
an exponential delay must be associated with each activity, whether

it is a transition or a firing. We assume that these rates are added,
by a performance analyst, at the time of translation.

We observe that, in general, in order to carry out performance anal-
ysis, we would aim for a PEPA net that is more abstract than the
general purpose UML activity diagram which describes the activi-
ties of a system in detail. Thus at the end of the section we discuss
the process by which the translated PEPA net is refined into one
more suitable for performance modelling.

First in order to demonstrate the translation, we show it on an ex-
ample, which represents of fragment of the MMPORG which con-
stitutes our case study presented in the next section. This fragment
is represented as a UML 2.0 activity diagram; this is translated into
a PEPA net model at the same level of abstraction.

3.1 Example Activity Diagram
In the MMPORG (Massive Multi-Player Online Role-playing Game)
there are players (users) and non-playing characters (such as mon-
sters, witches, etc) which interact as they play the game, evolving
from room to room. When players and non-players are within the
same room they may meet and fight. If the player wins the fight,
he may either obtains a new skill card or some objects belonging to
the non-playing character. If the player is defeated, his number of
points decreases.

The activity diagram on Figure 1 depicts a scenario in which a
player moves to a room and interacts with a non-playing character.
The result of the fight is reflected in the subsequent state of both
the player and the non-playing character. As we will see in the
next section, this is a simplification and each room offers several
such possible scenarios. The player is the subject of the diagram.
In UML2.0 terms this means that the class Player is the classifier
context for each activity in the diagram; see [5] for discussion.

fightNP

decrPts

 moveP

getNPobj

getNewCardNPlayer

NPlayer’
[PlossNP]

[PwinNP]

Figure 1: UML 2.0 Activity Diagram

As described earlier, the specification of object flows has been en-
hanced in UML2.0. It allows us to model the non-playing character
generated by the room as an object NPlayer, which is used as an
input to the fightNP activity. The object NPlayer’ is the output of
this object flow — the result of the fightNP activity on the object
NPlayer. If the player wins the fight, items belonging to NPlayer
are given to the player. In this case, NPlayer’ is a modified object.
If the non-playing character wins the fight, NPlayer’ is simply a
non-playing character object which can be involved in other fights
or moved to other rooms of the game.

3.2 The PEPA net model
Figure 2 depicts the PEPA net translation of the activity diagram
shown in Figure 1. The activities of the UML diagram represent
the behaviour of the player, which is represented explicitly as a to-
ken (mobile component) in the PEPA net. Each of the activities is
mapped to a PEPA activity which is either a transition (local) or a
firing (global). This is determined by considering the different con-
texts in which the player finds himself: these are before, during and

after interaction with the non-playing character. These correspond
to the places of the PEPA net: ��� , ��� , and ��� . The non-playing
character is represented by another token of the PEPA net and its
possible contexts are represented by places ��� , ��� and ��	 respec-
tively.

P1

P2 P3

P5

P4

(moveP,r1)

(removeNP, s2)

(createNP,s1) (getNewCard,s2)

(decrPts,s4)

(getPobj,s3)

Figure 2: PEPA net corresponding to Figure 1

3.2.1 Component Player
When the player is in the room, they may be attacked by a non-
playing character (fightNP). The result of the fight may be either
a defeat of the player (PlossNP) or his victory (PwinNP). In the
former case, he loses points (decrPts). In the latter case, the player
gets cards (getNewCard).

Player
def
 �

moveP �������� Player �
Player � def
 �

fightNP ������� Player �
Player � def
 �

PwinNP ��� ������� ��� Player � � � PlossNP �!�"� ��� �#�!� Player $
Player � def
 �

getNewCard �&%'�#�!� Player � � � getNPobj �!% � ��� Player �
Player $ def
 �

decrPts �!% � ��� Player �
3.2.2 Component NPlayer

Once a non-playing character has been created by a room, it may
meet a playing character. A fight may then follow and as explained
before, if the non-playing character is defeated (PwinNP), it has to
give objects to the player. Moreover, it vanishes from the system
(the room), via action type destroyNP. If it wins (PlossNP), it just
continues its progression in the rooms of the current game level.

NPlayer
def
 �

createNP ��(!�)�!� NPlayer �
NPlayer � def
 �

fightNP �&*+�!� NPlayer �
NPlayer � def
 �

PlossNP ��,-�!� NPlayer ./� � PwinNP �!,-��� NPlayer .
NPlayer . def
 �

removeNP ��(!�)��� NPlayer

3.2.3 Markings
The places of the PEPA net are defined as follows.

(NPlayer 0 NPlayer 12� Player 0 Player 12� Player 0 143�56 NPlayer 0 12�
Player 0 12� NPlayer 0 1)

where 798 �
fightNP : PwinNP : PlossNP � .

3.3 Level of abstraction of a PEPA net model
In a more complete model of the MMPORG the activity diagram
shown in Figure 1 would be embedded within a larger diagram
showing the player’s progression through a number of rooms. When
a sequence of interactions are encountered, the subcontexts repre-
senting after one interaction and before the next may be merged.
A PEPA net model of this could look like the model shown in Fig-
ure 3. This provides a more abstract view than Figure 2. We make
a direct correspondence between ��� , ��� , and ��	 , and the new

ROOM_1

ROOM_2

ROOM_6

ROOM_5

ROOM_3

(moveP, s)

(moveNP, s) (moveP, r)

(moveNP, r)

NPlayer

Player

Figure 3: PEPA Net model of Figure 2 at a higher level

places ROOM 1, ROOM 2, and ROOM 5 respectively. As the re-
sultant activities of a fight (getNewCard, getPobj,decrPts) do not
need to be firing transition activities, we use ROOM 3 as a place
where the fight occurs and its result consumed. So places � � and
� $ of Figure 2 become a unique place ROOM 3.

This PEPA net model does not explicitly show the result of the fight
at the net level but note that it is still implicitly defined in the Player
and NPlayer components. The level of abstraction reflects a choice
of what constitutes a separate context for the Player and therefore
needs to be represented as a distinct place at the net level. When
focused on a single room the presence or absence of the NPlayer
was considered to define a fresh context. When the game as a whole
is considered the current room provides a more appropriate context,
where both the more detailed contexts may be subsumed.

4. THE MASSIVE MULTI-PLAYER ONLINE
ROLE-PLAYING GAME

Assuming that ; is the number of levels in the game and <>= is the
number of rooms at level ? , the PEPA net model of the game con-
sists of three types of places: ROOM=)@ , SECRET R= and INIT R=
where ?A8B�DC+C+C#; and EF8G� CHC+C�< . Respectively, these model
room E , the secret room and the starting point at level ? (Figure 4).
We use place OUT to represent the environment outside the game.
Moreover we consider components Player, NPlayer and Room to
model the behaviour of the playing character, the non-playing char-
acter and the room respectively.

Component Player
Once connected (firing action connect), the player starts by choos-
ing one of the rooms of the current level. This is modelled using
firing action select @ with rate I @KJML'N , E being the room number at
the current level and IO@ the probability to select this room number.

Once the player receives an image of the room, they may do dif-
ferent things: observe, walk, talk to another character (playing or
non-playing). They may also try to use one of the objects they have
with action type useobj or to take a new one (takeobj) from the room.
In this last case, the system, through the room character, may accept
or refuse to let the player take the object using action type acceptobj
or refuseobj. Here the rate of these actions is not specified by the
player because the decision is made by the room.

When the player is in the room, they may be attacked by another
player (fightP) or a non-playing character (fightNP). The result of
the fight may be either a defeat of the player (PlossP or PlossNP)
or their victory (PwinP or PwinNP). If defeated, they lose points
(lesspts) and some objects (getPobj) if the fight is against another
player. If they have no more points (zeropts), they are transferred
to the starting point of the current level. This is modelled by firing

ROOM 12

1SECRET_R

ROOM L2

INIT_R L

INIT_R 1

INIT_R 2

L−1SECRET_R

SECRET_R L

moveP 1

moveNP 1

moveP 2

moveNP 2

moveNP 2

moveP 2

moveP 3

moveNP 3

moveNP 1

moveP 3

moveP 1

select 1
select 2 select 3

moveNP 3

moveP 3

moveNP 2

moveP 2

moveNP 2

moveP 2

moveP 1

moveNP 1

moveP 1

moveNP 1

moveNP 3

moveP 3

select 1 select 2 select 3

ROOM 13

ROOM 11

ROOM L3ROOM L1

Level 1

reachS

success

Level L

reachS

success

reachS

failure

success

failure

failure

reachS

failure

failure

failurefailure

reachS

reachS

failure

stop stop

stop

OUT

stop

connect

moveNP 3

Figure 4: PEPA net model for < = 8 � : ? 89�DC"C+C�;

action failure. If victorious, the player gets objects (getNPobj) or
cards (newcrd) if they defeated a non-playing character.

The player may decide to move to another room E with action type
moveP @ and probability � @ , or reachS if they find the secret room.
The player may also decide to stop the game at any moment as long
as they are in the starting point INIT R= of a level. This is modelled
using activity � stop :���� .

Player
def
 �

connect �&"��� Player N
Player N def
 �	��
@� � � select ����� @ � N ��� � RImage �&, �!� Player �

� �
stop �!%)��� Player N

Player � def
 �
observe ��� �)��� Player � � � walk �&� � ��� Player �

� �
talk �&� � �!� Player � � � fightNP ��� �#��� Player � �

� �
fightP ��� � �!� Player � � � � test ��� � �!� Player �

� �
useobj ��* � �!� Player $ � � takeobj �&* � �!� Player �

� � ��
�� �@� � �
moveP @ ��� @ � '�)�!� Player �

� �
reachS �� � ��� Player �

Player � � def
 �
PlossNP ��,-�!� Player ��� � � PwinNP �&,-�!� Player �!�

Player ��� def
 �
lesspts ��� �)�!� Player � � � zeropts ��� � ��� Player �

Player �!� def
 �
getNPobj �&,-�!� Player � � � newcrd ��� � �!� Player �

Player � � def
 �
PlossP �&,-�!� Player ���D� � PwinP �!,-��� Player ���

Player ��� def
 �
lesspts ��� �)�!� � getPobj ��� � �!� Player � � � zeropts ��� � �!� Player ��$

Player ��� def
 �
getpts ��� $ �!� � getPobj �&,-�!� Player � � � getPobj �&, �!� Player �

Player ��$ def
 �
getPobj ��� � ��� Player �

Player $ def
 �
lesspts ��� �)��� Player � � � getpts ��� $ �!� Player �

� �
zeropts ��� � �!� Player �

Player � def
 �
acceptobj �!,-��� Player � � � refuseobj �&,-��� Player �

Player � def
 �
failure ��� �!� Player N

Player � def
 �
win �!,-�!� Player � � � lose �&,-�!� Player �

Player � def
 �
getpts ��� $ ��� � success ���#��� Player N

Component NPlayer
Once a room has created a non-playing character (generateNP), it
may walk, use its own objects and meet a playing character. A
fight may then follow and as explained before, if the non-playing
character is defeated (PwinNP), it has to give objects to the player.
Moreover, it vanishes from the system (the room), via action type
destroyNP. If it wins, it just continues its progression in the rooms
of the current game level.

NPlayer
def
 �

generateNP �&,-��� NPlayer �
NPlayer � def
 �

walk ��*"�)�!� NPlayer � � � talk �!,-��� NPlayer �
� �

fightNP �!* � �!� NPlayer �
� � ��� �@� � � moveNP � ��� @ �! �)��� NPlayer �

NPlayer � def
 �
PlossNP �&,-�!� NPlayer � � � PwinNP ��,-�!� NPlayer �

NPlayer � def
 �
getNPobj �&* � ��� NPlayer $D� � continue ��* $ �!� NPlayer $

NPlayer $ def
 �
destroyNP �&, �!� NPlayer

Component Room
The room creates and destroys the non-playing characters using the
activities generateNP and destroyNP respectively. When it is cho-
sen by a player, the room clones itself and sends an image to them
(RImage). The room also accepts (acceptobj) or rejects (refuseobj)
any attempt by a player to take an object from the location. More-
over it makes all computations related to the fights and sends the
results to the characters using action types PlossP or PwinP and
also PlossNP and PwinNP.

Room
def
 �

generateNP �#"��)�!� Room � � RImage ��" ��� Room
� �

fightP �&, �!� Room � � � fightNP �&,-��� Room �
� �

takeobj �&, �!� Room � � � useobj �&,-��� Room

Room � def
 �
acceptobj ��$/�)��� Room � � refuseobj ��$ � ��� Room

Room � def
 �
PlossP � � �#�!� � PwinP � ��� �!� Room

Room � def
 �
PlossNP � � � �!� Room � � PwinNP � � $ �!� Room $

Room $ def
 �
destroyNP ��" � ��� Room

Component SRoom
This component models the secret room. It is similar to the other
rooms except that at most one player can be inside and non-playing
characters are not allowed to get in. Once inside, the player has to
pass a different test to get to the higher level.

SRoom
def
 �

RImage ��" ��� SRoom � � takeobj �&,-��� SRoom �
� �

useobj �!, �!� SRoom � � test �&, �!� SRoom �
SRoom � def
 �

acceptobj ��$ ����� SRoom � � refuse %�& = ��$ � �!� SRoom

SRoom � def
 �
lose � � � �!� SRoom � � win � � $ ��� SRoom

The Places
The places of the PEPA net are defined as follows. A typical room
of the game will have storage areas for both players and non-players
and will have some internal logic, encoded in the static component

in the room. The following room is ������� =)@ , where E 89��C+CHC�<>=
is the room number and ? 8 �DC+CHC�; is the game level number.

���	�	
 =#@ def
��
Room 3�56� (Player 0 143�56�� �#�#��3�56�� Player 0 1) � 3�56���

NPlayer 0 1�� ������� NPlayer 0 1 �
This place uses synchronization sets 7 � :�7 � and 7 � to capture in-

teractions with the room, between the players and with non-playing
characters respectively. The synchronizing sets used in the defini-
tion above are defined as follows:� �
�� takeobj � useobj � acceptobj � refuseobj � RImage � fightP � PlossP �

PwinP � fightNP � PlossNP � PwinNP �� �
�� fightP � getPobj �� �
�� generateNP � fightNP � PlossNP � PwinNP � destroyNP � getNPobj �
getNPobj � talk �

The secret room is different from the other rooms in the game in
that only a single player is allowed in the secret room at a time.
Non-playing characters cannot enter the secret room so no storage
locations are provided for them.

S ��������� � = def8 SRoom 3�56�� Player !
The synchronisation set used in this definition is simpler because it
does not need to cater for non-playing characters.� $
"� takeobj � useobj � acceptobj � refuseobj � RImage � test � lose � win �
Two additional places are used to store player tokens on entry into

the game (# <$#%� � =) and when outside the game (��&'�).

I <$#%� � = def8 Player !)(CHC+C�(Player !
O &'� def8 Player Player !*(C+C+C�(Player Player !

5. MODEL ANALYSIS
We consider the following abstraction of our PEPA net model where
each level ? has one input and two output parameters. The input pa-
rameter denoted by +/= represents the arrival rate of the players to
the level. The first output parameter denoted by + =-, � is nothing
other than the input to the next level ?/. � . This represents the
rate of successful players of level ? . The second output parameter,
noted 0 = , represents the rate of the players leaving the game.

By using flow-equivalent replacement [3] we were able to use the
PEPA Workbench for PEPA nets to investigate how the probability
of any of the players completing the game (compProb) varies as the
rates of progression (+) and rejection (0) are varied. All of the rates
here have been taken to be equal (+ 81+ � 81+ � 82+ � 81+ $ and0 830 � 830 � 840 � 830 $).
The graph below illustrates the expected outcome that the probabil-
ity of completing the game is highest when the rate of progression
from one level to the next is highest (high values of +) and low-
est when the rate at which players leave the game is highest (high
values of 0), and it quantifies this information.

4
8

12
16

20
lambda

4
8
12

16
20

mu

0
0.2
0.4
0.6
0.8

compProb

This technique is very well suited to this application because it al-
lows us to evaluate one of the key performance indices of a game
application: difficulty of completion. If it is possible to progress
too quickly from commencing playing to completing the final level
of the game then the application may be considered unchalleng-
ing. Conversely, if it is very arduous to make progress in the game
then the developers risk losing their target audience and finding
their game consigned to being suitable only for the most commit-
ted game-playing enthusiasts.

6. CONCLUSIONS
In this paper we have demonstrated a mapping between the newly
revised UML diagram type, UML2.0 activity diagrams, and PEPA
nets, a recently defined performance modelling formalism. This
mapping facilitates performance analysis at an early stage of de-
sign, using a stochastic representation consistent with the designer’s
intentions.

One of the lessons which we have learned from the present work
is that the encoding of a UML 2.0 activity diagram as a PEPA net
is not facile and requires careful consideration. In part this is due
to the inherent complexity of UML 2.0 activity diagrams which
arises because they attempt to provide high-level modelling con-
cepts such as control flows and object flows with well-specified
properties. PEPA nets provide similar modelling concepts in the
stochastically timed world of Markovian modelling. Our contribu-
tion here has been to show how UML 2.0 activity diagrams can be
refined into models in this formalism, thereby facilitating efficient
performance analysis.

7. ACKNOWLEDGMENTS
The authors are supported by the DEGAS (Design Environments
for Global ApplicationS) IST-2001-32072 project funded by the
FET Proactive Initiative on Global Computing.

8. REFERENCES
[1] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and

P. Stevens. Performance modelling with UML and stochastic
process algebras. IEE Proceedings: Computers and Digital
Techniques, 150(2):107–120, Mar. 2003.

[2] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Software
performance modelling using PEPA nets. In Proc. of Int.
Workshop on Software Performance Modelling (WOSP 2004),
2004. (this volume).

[3] H. Jungnitz and A. Desrochers. Flow equivalent nets for the
performance analysis of flexible manufacturing systems. In
Proceedings of the 1991 IEEE International Conference on
Robotics and Automation, pages 122–127, Sacramento, CA,
USA, 1991.

[4] C. U. Smith and L. G. Williams. Performance solutions: a
practical guide to creating responsive, scalable software.
Addison-Wesley, 2002.

[5] U2P. Unified Modeling Language: Superstructure version 2.0,
April 2003. Available from http://www.omg.org/uml/ as
ad/03-04-01.

