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DYNAMIC RELATIONAL CONTRACTS WITH CREDIT
CONSTRAINTS

BY JONATHAN P. THOMAS AND TIM WORRALL

March 2010

This paper considers a long-term relationship between two agents who undertake costly actions
or investments which produce a joint benefit. Agents have an opportunity to expropriate some of the
joint benefit for their own use. The question asked is how to structure the investments and division
of the surplus over time so as to avoid expropriation. It is shown that investments may be either
above or below the efficient level and that actions and the division of the surplus converges to a
stationary solution at which either both investment levels are efficient or both are below the efficient
level.

KEYWORDS: Credit constraints · relational contracts · self-enforcement · limited commit-

ment

JEL CLASSIFICATION: C61 · C73 · D86 · D91 · L14

1. INTRODUCTION

It is often difficult to enforce contracts. This may be because the terms of the contracts are

difficult to specify precisely or because they are difficult to specify in a way verifiable to a court.

It may be that there is no legal authority to enforce a contract. When relationships are repeated it

is possible to include an element of self-enforcement in the contract by designing terms so that

any short-term incentive to renege is offset by a long-term benefit from adhering to the contract.

Non-stationary contracts can do better in this regard as the future benefits from the contract can

be tailored to the current situation, favoring the agent who has most temptation to renege in the

current period.
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We consider such a self-enforcing or relational contract in the case where two risk-neutral

agents make repeated costly relation-specific investments or actions ai that produce a joint

output y(a1,a2,s) to be shared at each date (where s denotes the current state of nature). Agents

observe actions and output and have a common discount rate. Initially we assume that agents

can neither borrow nor save so that current consumption depends only on the division of current

output although later we maintain the borrowing constraint but allow agents to save. Contracts

cannot be enforced and in the event of disagreement agent i receives a current gross breakdown

payoff of φi(a1,a2,s).1 We assume that the breakdown payoff of agent i is increasing in the

investment of agent j (whenever j has a productive investment). In this case if say, agent 1’s

investment is increased, more must be offered to agent 2 to prevent him reneging. Thus although

the joint surplus may be increased, agent 1 may have no incentive to increase her investment

or action as there may be no division of the surplus which simultaneously prevents agent 2

from reneging and compensates agent 1 for the increased investment: agents will face a hold-up

problem and investment may be inefficiently low.

One-sided-action versions of this model or variations on it, have been recently studied in

a growing literature (see, e.g., Albuquerque and Hopenhayn 2004, Kovrijnykh 2009, Sigouin

2003, Thomas and Worrall 1994). This literature has for the most part considered the case

where the side taking the action can commit to a greater or lesser extent,2 and the action is

assumed to be observable to the agents in the relationship (but see Footnote 3 for exceptions to

the latter). Results have shown how payments to one agent may be backloaded and consequently

allow the action or investment of the other agent to be increased in the future thus generating

dynamics in the agents’s actions as well as in monetary payments. This approach has been

usefully applied in a number of different contexts (such as international capital flows, firm

dynamics, borrowing and lending, international trade and formal and informal sectors etc.). It

has been extended in a number of directions, for example, Cooley et al. (2004) embed a model

of this type in a general equilibrium context to make the default option endogenous; Hopenhayn

1 The breakdown payoffs are assumed to be feasible, φ1(a1,a2,s)+ φ2(a1,a2,s) ≤ y(a1,a2,s). Details of the
model will be specified in Section 2 and discussed further in Section 6.

2 Typically, if agent 1 is the party undertaking a repeated investment, then φ2(a1,s) = y(a1,s), that is, agent 2
(who cannot commit) is able to expropriate current output.
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and Werning (2008) consider unobservable outside options; Atkeson and Cole (2008) allow for

private information about output within each period; Özgür (2004) allows for lumpy investment;

Popov (2008) considers a costly enforcement technology; Hauser and Uysal (2006) consider

one-sided provision of a public good; Quintin (2008) has a two sector model with formal and

informal sectors and Board (2008) considers the case of multiple agents where the principal,

the party taking the action that is subject to hold-up, can trade with only one agent in a period.

(Other references are discussed below and in Section 6.)

There is also a broader literature on relational contracts (see, e.g., Doornik 2006, Levin 2003,

Rayo 2007) which builds upon the work of Macleod and Malcomson (1989), has studied models

with more general ingredients (including two- or many-sided actions, enforceable payments,

and also such features as moral hazard, hidden information, and endogenous property rights),

but has restricted attention to stationary equilibria, either because they are optimal due to

assumed unlimited liability, or because the focus is on organizational structures under which

full efficiency can be achieved, thus eliminating any interesting dynamics in investments.3 Our

paper bridges these two literatures in examining the two sided action case (although our model

also encompasses the one-sided action case when there is limited commitment on both sides).4

As in the one-sided action models we impose limited liability or borrowing constraints. As in

3 Some recent work has considered the implications of introducing a limited liability constraint into a moral
hazard model with self-enforcement constraints. Fong and Li (2009) do this for the model of Levin (2003). The
characterization of equilibria changes substantially. They show that if the principal extracts most of the surplus, the
backloading of the agent’s utility can lead to a probationary contract in which the agent’s consumption is initially at
the lower bound, and incentives are provided by the threat of termination; at some point this threat is removed and
pay increases to a higher level. Likewise, Yang (2009) assumes limited liability in a model with both moral hazard
and adverse selection, and shows that backloading occurs, although adverse selection provides an additional reason
for backloading pay.

4 There is a literature on risk-sharing and two-sided limited commitment and no actions (which are subject to
hold-up) in which the optimum contract evolves toward a stationary but typically non-degenerate distribution of
future expected utilities (see, e.g., Kocherlakota 1996, Ligon et al. 2002, Thomas and Worrall 1988). For this result
the two-sided lack of commitment is crucial as if there is only one-sided lack of commitment utilities will also
converge to a degenerate distribution. This is in contrast to the results of the current paper where convergence
occurs even in the two-sided case. Moreover, we show that if efficiency cannot be sustained in the stationary phase
then both agents are simultaneously constrained and this feature again makes our results qualitatively distinct from
the risk-sharing models with no actions where in any non-degenerate contract at most one agent’s constraint will
bind at a time.
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much of the relational contracting literature we allow for both sides to the contract to undertake

repeated investments.

We establish three main results. Firstly we derive a backloading result (Theorem 1). In general

it is well known that optimum self-enforcing contracts are often subject to the backloading

principle.5 This is easiest to see in the case where both agents are risk-neutral and discount the

future at the same rate, and one agent is able to commit to the contract. Then the backloading

principle says that transfers to the agent who cannot commit should be backloaded into the

future.6 The intuition is the following. Suppose that of the two agents, agent 1 can commit to

the contract but agent 2 cannot. Further, suppose that agent 1 has most of the ex ante bargaining

power, so that agent 2 is getting a relatively low discounted utility from the contract. This may

impose an efficiency cost on the contract if the investment of agent 1 needs to be kept low

to limit the gains to agent 2 from expropriation, who has little to lose. Since both agents are

risk-neutral they are concerned only with the discounted value of utility (transfers net of action

costs) and not the actual timing of utility received. Thus backloading transfers to agent 2 as

much as possible, whilst keeping the discounted sum of transfers unchanged, costs nothing, but

provides a carrot in the future which would be forgone if agent 2 reneged. Such a change doesn’t

worsen current incentives but improves future incentives by increasing agent 2’s continuation

utilities—they rise as the backloaded payments phase is approached—and hence this allows

5 Ray (2002) has established the most general backloading result. He considers a very general (non-stochastic)
principal-agent model in which both parties can potentially take actions, but the principal can commit within each
period, so the self-enforcement constraint only applies to the agent. He shows that an efficient contract has terms
that move in favor of the agent, converging in finite time to the efficient self-enforcing continuation that maximizes
the agent’s payoff. Strikingly, this is true even with non-transferable utility. In our two-sided limited commitment
case we have an analogous result with convergence to a continuation which maximizes the sum of payoffs across
the two agents. (In fact, in the transferable utility case that we consider, maximizing the agent’s payoff in the
one-sided case also maximizes the sum of payoffs.)

6 If the agent who cannot commit has a lower discount factor than the other agent then this can work against
backloading (see Aguiar and Amador 2009, Aguiar et al. 2009, Opp 2010). Acemoglu et al. (2008) consider a model
in which there are atomistic agents who invest/supply labor each period, and a government which can expropriate
output; nevertheless it shares a similar structure with the one sided models discussed above—the government which
expropriates more than it should is punished by not being reelected. They show that backloading and convergence,
as in Ray (2002), may not occur depending on the discount factor asymmetry, but that risk-aversion and capital
accumulation also play a role in this result.
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future increases in agent 1’s investment.7 In our context where both agents make investments

and neither agent can commit, the operation of this principle is less clear. For example, agent 1

herself may be constrained later, so this backloading could worsen future incentives. We show,

however, that the backloading principle remains partially valid and that we have backloading

of consumption for at most one of the agents (whose identity depends on the initial split in the

surplus from the relationship).

Furthermore it is shown that as the backloading principle applies to utilities and not simply

consumption it might be optimal to increase investment beyond the efficient level. This allows

more output to be allocated to the other agent and thus more backloading. Of course there is an

efficiency loss in overinvesting so it will always be desirable to backload transfers as much as

possible before backloading utility by altering actions. The result however, has the implication

that an optimum self-enforcing contract may involve overinvestment in the initial periods by

one of the agents, despite the hold-up problem suggesting that there will be underinvestment.

Nevertheless we shall show that it will never be the case that both agents overinvest—even at

different dates—in any equilibrium. Equally we are able to show that in the case where only

one agent takes an action (as in the literature mentioned above) there is never overinvestment

(Theorem 4).

Secondly, we establish that the contract converges to a stationary phase in finite time with

probability one (Theorem 2). It is shown that this stationary phase corresponds to the self-

enforcing contract which maximizes the current net surplus and hence the joint utility of the two

agents.8 Our result is general: it holds even when the default payoffs and production technologies

fluctuate through time and our stochastic structure is general enough to encompass cases where

the action choices are made sequentially at alternative periods rather than simultaneously.

Furthermore we show that in the stationary phase for a given state either both agents are

investing efficiently (which happens if this is feasible given the self-enforcement constraints) or

7 A limited liability constraint, typically imposed as no borrowing, is needed to prevent the backloading taking an
extreme form in which agent 2 receives a large negative payment in the first period which would allow efficiency to
be attained from the second period.

8 In fact we also establish the converse that any self-enforcing contract which maximizes the joint utility of the
two agents also maximizes the current surplus at each date.
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both are underinvesting. Likewise in this stationary state, unless the first best is attainable, we

show that both agents are simultaneously constrained in the sense that they are both at the point

of reneging on the contract and taking their default payoffs.

Thirdly we show that if the optimum contract is non-trivial with positive investment by both

agents at each date then it will exhibit a two-phase property (Theorem 3).9 In the first phase

there is backloading with zero consumption and overinvestment by one of the agents. Although

this first phase may not exist depending on the initial split of overall surplus and discount factor

we present an example in which it does. In the second phase (which occurs with probability one)

there will be no overinvestment. In this second phase, there can be first a one-period transition

in which one of the agents is investing efficiently, and thereafter either both actions are efficient,

or both actions are inefficient and both agents are indifferent to reneging on the contract. The

subsequent part of this phase is stationary and joint utility maximizing as explained above.

Finally we show (Theorem 5) that the if the interest rate at which agents can save is no greater

than the discount rate then the set of efficient self-enforcing contracts is independent of the

interest rate. In principle it might be possible to use savings to relax the incentive constraints. For

example, if agent 1 saves some of her early transfers and then makes a transfer out of savings to

agent 2 at a later date, the increase in the payoff to agent 2 may, if the transfer is credible, allow

agent 1 to increase her action towards the efficient level. However, as the backloading result

suggests, this will not be desirable because in the backloading phase only the unconstrained

agent can save so that any subsequent transfer is likely to lead to default or not improve the other

agent’s continuation payoff.

Although this paper significantly extends existing results it does so by adopting a different

method. The literature cited above typically uses a dynamic programming approach to charac-

terize optimum self-enforcing contracts. In our context the dynamic programming approach has

the disadvantage that the resulting problem may be non-convex and, even when it is convex, it is

known (see, e.g., Thomas and Worrall 1994) that the value function may not be differentiable.

9 Again, this is reminiscent of the result established by Ray (2002).
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Thus the use of first-order conditions is typically problematical.10 We avoid these issues by

deriving results from more straightforward variational methods and our main results will not

require that the set of constrained efficient contracts be convex.11 This allows us to derive our

results in more generality whilst avoiding some of the technical requirements of the dynamic

programming approach.

The paper proceeds as follows. The next section describes the model and optimum self-

enforcing contracts. Section 3 provides the main results of the paper. Section 4 considers the

special case where only one agent contributes to production. Section 5 allows for agents to save

subject to borrowing constraints. Section 6 discusses how our results generalize to different

assumptions about the breakdown and punishment payoffs and Section 7 concludes.

2. MODEL

We consider a dynamic model of joint production where agents repeatedly undertake some

action or investment that generates a joint output. Agents can agree on the actions to undertake

and how to divide up the output but can also default on any agreement and receive an alternative

breakdown payoff. In this section we shall describe the economic environment, the joint

production and action sets, the breakdown payoffs and the set of self-enforcing contracts. In

addition we shall define a game played by the two agents and identify self-enforcing contracts

with the subgame perfect equilibria of that game. Our interest will be in optimal self-enforcing

contracts or equivalently the Pareto-efficient subgame perfect equilibria.

2.1. Economic environment

Time is discrete and indexed by t = 0,1,2, . . . ,∞. The environment is uncertain and at the

start of each date a state of nature s is realized from a finite state space S = {s1,s2, . . . ,sn}.
10 If both agents are investing, the value function will be differentiable if it is concave. If only one agent is investing
the value function will not be differentiable in general even if it is concave. These points of non-differentiability can
also be an important part of the solution so that even with concavity a sub-differential analysis must be used. This is
in contrast to the dynamic moral hazard problem analyzed by Pavoni (2009) who is able use a first-order approach
despite points of non-differentiability by showing that such points are almost never reached at the optimum.
11 Although it would be possible to convexify the problem by allowing for random contracts, we prefer to concentrate
on pure strategy equilibria, partly because our results show that even in this case strong convergence results can be
established.
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The state evolves according to a time homogeneous Markov process with transition matrix [πsr]

with ∑r∈S πsr = 1, all s ∈S , and we assume some initial state s0 has probability one. We shall

assume that the Markov chain is irreducible so that every state communicates with every other.12

This structure is general and encompasses the case with no uncertainty where n = 1 and the

possibility that some πsr = 0. We shall denote the state at date t by st and the history of states

will be denoted st = {s0,s1,s2, . . . ,st}.13

There are two agents, i = 1,2, and at each date both agents choose an action or investment

ai from ℜ+
14 Actions are taken simultaneously after the state is realized. Actions lead to an

output y(a,st), where a≡ (a1,a2), that may depend upon the current state. Output, actions and

states are observed by both agents.

In Section 5 we shall allow agents to save subject to borrowing constraints in which case the

division of the surplus need not correspond with the consumption. However, we shall show

in that section that provided the interest rate is below the discount rate savings will not affect

the set of efficient contracts. Thus it is useful to start with the assumption that each agent’s

consumption does correspond to their division of the joint output. Exactly how this division

is determined is described in the next sub-section. For the moment we shall simply think

of a consumption and action plan for each agent that depends on the history st . Denote the

consumption of agent i at history st by ci(st) and the action by ai(st). Consumption is assumed

non-negative so the feasible set of consumptions at time t in state s satisfies ci(st) ≥ 0, for

i = 1,2 and c1(st)+ c2(st)≤ y(a(st),st) for all st .

12 A number of these assumptions are inessential and made for convenience and simplicity. The important property
is that the stochastic process is Markovian. Irreducibility is made for convenience as it is used for the later
convergence results. Equally we could we specify a distribution over the set of initial states rather than assuming
there is a fixed initial state. For many results it is possible to assume that there is some finite time horizon T
although we shall be interested in convergence properties of optimum contracts and these results will require an
infinite time horizon.
13 Where we write st we shall assume this is a positive probability event unless otherwise stated, as zero probability
events play no role here.
14 We shall use the notation ℜ+ to denote the non-negative orthants of the real numbers and ℜ++ to denote its
interior.
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We assume that agents have time separable utility functions, are risk neutral and that action

costs are linear:15 agent i’s utility at t is given by

wi(st) = ci(st)−ai(st).

We assume that both agents discount the future by a common factor δ ∈ (0,1) and that agents

are interested in maximizing expected discounted utility

E

[
∞

∑
t=0

δ
twi(st) | s0

]
.

For a given pair of actions the current net surplus generated at history st is y(a(st),st)−(a1(st)+

a2(st)). The feasible set of per-period utility payoffs satisfies wi(st)≥−ai(st) for i = 1,2 and

∑i wi(st)+ai(st)≤ y(a(st),st) for all st .

We make the following assumption about the production function.

ASSUMPTION 1: The function y(·, ·,st) : ℜ2
+→ℜ+ satisfies the following conditions: (i) Out-

put at zero: y(0,0; ·) = 0; (ii) Continuity: it is continuous in a on ℜ2
+; (iii) Differentiability: it is

twice continuously differentiable in a on ℜ2
++; (iv) Monotonicity: either there exists i ∈ {1,2}

such that it is constant in ai for all a j ≥ 0 and strictly increasing in a j, j 6= i, or strictly increasing

in (a1,a2) on ℜ2
++; (v) Diminishing marginal product: ∂ 2y/∂a2

i < 0 whenever ∂y/∂ai > 0;

(vi) Boundedness: limα→∞ y(αa1,αa2,st)/α < a1 +a2 for all a ∈ℜ2
++;

These are standard assumptions on the production function. The monotonicity assumption we

make allows us to cover the case where only one action matters for production. In this situation

although we formally allow both agents to choose an action, this will be equivalent, in an efficient

equilibrium, to imposing the restriction that the action is zero. We impose Assumption 1(vi) so

15 As is fairly standard this linearity assumption is made for convenience and the analysis will carry through if
actions costs are convex. Thus suppose wi = ci−gi(ai) where gi is strictly increasing and convex and g(0) = 0.
Letting hi denote the inverse of gi we have ai = hi(gi) where hi is strictly increasing and concave. Hence agents can
be viewed as choosing gi and the reduced-form production function is f (g1,g2,st) = y(h1(g1),h2(g2),st) which
will satisfy Assumption 1 (below) on the production function with gi replacing ai and f replacing y. In this case the
net surplus is f (g1,g2,st)−g1−g2.
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that in conjunction with the other conditions the set of action choices that yield non-negative

surplus, Ã(st) = {(a1,a2) ∈ R2
+ | y(a1,a2,st) ≥ a1 + a2}, is compact. Since all assumptions

apply state-wise we shall often be able to drop the notational dependence on the state where this

is convenient.

REMARK: The production technology and stochastic structure is sufficiently general to encom-

pass a situation where in some states only agent 1 takes an action and in other states only agent 2

takes an action. For example, one agent takes an action in even periods and the other agent

takes an action in odd periods. With some minor modifications of the proofs our monotonicity

assumption can easily be relaxed to cover the case where in some states neither agent takes an

action and output is always zero.

Since actions are chosen simultaneously and independently we define the conditionally

efficient actions a∗i (a j,st) such that

a∗i (a j,st) ∈ argmax
ai∈ℜ+

[y(a1,a2,st)−ai].

We then have the following standard result.16

LEMMA 1: Given Assumption 1 the conditionally efficient actions are single-valued, continu-

ous functions of the other agent’s action.

We define an efficient action pair a∗∗(st) = (a∗∗1 (st),a∗∗2 (st)) where a∗∗i (st) = a∗i (a
∗∗
j (st),st)

for i 6= j = 1,2 and assume17

ASSUMPTION 2: The efficient action pair a∗∗(st) is unique for each st .

As we have not imposed a profitability condition that there exists a vector a such that

y(a1,a2,st)> a1 +a2 it may be that a∗∗(st) = (0,0) in some state or indeed in all states.18

16 All proofs are given in the Appendix.
17 It would be possible to derive this assumption by additionally assuming that the function y(a1,a2, ·) is strictly
concave if it is increasing in both its arguments. However, we do not require this strict concavity elsewhere, so it is
simpler to directly assume that the efficient action pair is unique.
18 Our results will apply (trivially) in this case.
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2.2. The breakdown game

In this and the following sections we specify how agents agree on the division of the surplus

and what happens in the event of disagreement. In each period agents must decide how to act

and how to divide up the subsequent surplus. We shall suppose that a period is split into two

stages with actions being determined at the first stage and the division of the surplus/recourse

to breakdown taking place at the second stage after output is known (recall that uncertainty is

resolved before the action decision).

We start by defining breakdown payoffs. These represent what an agent can guarantee herself

given the actions taken by both agents, and are given by

φi(a1,a2,st)−ai

for agent i in state st . They may reflect the property rights of the two agents over output, for

example, specifying a fixed percentage split. An agent can always take the option of receiving

her breakdown payoff. Analogous to Assumption 1 we shall assume that the breakdown payoffs

satisfy:

ASSUMPTION 3: The function φi(·, ·,st) : ℜ2
+→ℜ+ is twice continuously differentiable on

ℜ2
++, with ∂φi(a,st)/∂ai≥ 0. Whenever ∂φi(a,st)/∂ai > 0 then ∂ 2φi(a,st)/∂a2

i < 0. Moreover

∂ 2φi(a1,a2)/∂a1∂a2 ≥ 0 (complementarity). In addition, the φi are feasible, i.e., φ1(a,st)+

φ2(a,st)≤ y(a,st) for each a and st ; ∂y(a,st)/∂ai > 0 implies ∂φ j(a,st)/∂ai > 0, j 6= i (hold-

up); and

(1)
∂φ1(a,st)

∂ai
+

∂φ2(a,st)

∂ai
≤ ∂y(a,st)

∂ai
∀ st and i = 1,2.

The assumption of complementarity is general enough to cover almost all cases studied in

the existing literature, while implying that the reaction functions in the breakdown game are

(weakly) upward sloping, something that simplifies the arguments below. Equation (1) requires

that the increase in the total breakdown payoff cannot exceed the marginal product. If it is
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assumed that φi(0,0, ·) = 0 for i = 1,2, then equation (1) together with y(0,0, ·) = 0 (from

Assumption 1) implies that the breakdown payoffs are feasible, φ1(a,st)+φ2(a,st)≤ y(a,st).

REMARK: Assuming ∂y(a1,a2,st)/∂ai > 0 implies that ∂φ j(a1,a2,st)/∂ai > 0 reflects our

hold-up assumption. It is made to avoid the case where agent i’s contribution to output does

not increase agent j’s claim on output. In such a case hold-up and underinvestment by agent j

cannot occur in any efficient equilibrium. Situations with hold-up are our primary focus, and the

assumption allows us to streamline the arguments below.

Assumption 3 places relatively few restrictions on the breakdown payoffs. They must be

feasible and satisfy equation (1) but we do not require that they exhaust available output. For

example, disagreement may incur a cost, such as lawyers’ fees, which leads to a loss of output.

We mention two special cases which satisfy Assumption 3. First, we may have that each

agent can extract a fraction (possibly state-dependent) of output in the breakdown. In this

case φi(a1,a2,st) = θi(st)y(a1,a2,st) and Assumption 3 is satisfied provided θi(st)> 0, i = 1,2,

and ∑
2
i=1 θi(st)≤ 1. Secondly, suppose that output is an additive function of inputs such that

y(a1,a2,st) = f1(a1,st)+ f2(a2,st) and φi(a1,a2,st) = θi1(st) f1(a1,st)+ θi2(st) f2(a2,st). In

this case agents make separate contributions to joint output and can capture some of their own

and some of the other agent’s contribution in the breakdown.19 Then Assumption 3 is satisfied

provided θi j(st) ≥ 0 with this being strict for i 6= j, and ∑
2
i=1 θi j(st) ≤ 1, j = 1,2. This latter

additive structure includes the case which has been predominantly studied in the literature where

only the action of one agent is productive and the other can extract the entire output in the

breakdown; for example, f2 = 0 and θ21 = 1 and this case is considered in Section 4.

An important part of the analysis will be related to the best response in the breakdown

game. Denote the best-response functions (functions because of the strict concavity the function

φi(a1,a2, ·) in its own argument made in Assumption 3) as

aN
i (a j,st) = argmax

ãi∈ℜ+

{φi(ãi,a j,st)− ãi}.

19 This proportional formulation has also been studied in the relational contracting literature (e.g., Halonen 2002).



DYNAMIC RELATIONAL CONTRACTS 13

LEMMA 2: Given Assumption 3, aN
i (a j,st) is continuous and weakly increasing in a j. More-

over we have aN
i (a j,st)≤ a∗i (a j,st) for each a j and every state st with strict inequality whenever

a∗i (a j,st)> 0.

A Nash equilibrium of the breakdown game occurs where the best-response functions intersect

(existence follows by standard arguments). As with the efficient action pair a∗∗i (st), without

further assumptions the Nash equilibrium need not be unique. However, the potential non-

uniqueness is not critical as the Nash equilibria can be Pareto-ranked (as the best-response

functions are non-decreasing). Henceforth we let (aNE
1 (st),aNE

2 (st)) denote the dominant Nash

equilibrium and all our results apply relative to this dominant Nash equilibrium.20

2.3. Equilibria

Here, we formulate equilibria as action and consumption plans (or equivalently action and

utility plans) which are immune to deviations in which an agent takes her breakdown payoff.

Given that we allow for current surplus to exceed the sum of breakdown payoffs, it is necessary

to specify a mechanism for splitting the surplus at the division stage of the game. We suppose

for simplicity that the agents play a Nash demand game.21 In this Nash demand game both

agents simultaneously announce utility claims (w1,w2). If these claims are feasible, as defined

above, then this determines the split of the surplus.22 If they are not feasible, then agents receive

their breakdown payoffs.

To specify what happens in the dynamic game played by the agents we shall consider

punishments where the breakdown game is triggered as soon as there is any deviation, and

thereafter play remains there (i.e., the breakdown game is triggered in every subsequent period).

Although the other agent cannot change her action immediately in response to the deviation,

20 See Section 6 for a discussion of this assumption.
21 What we want to capture is that there is an ex ante agreement on what actions should be taken and how the
resulting output should be split, and that failure to abide by it will lead to the breakdown payoffs. The Nash demand
game is a simple way of implementing this idea, but we stress that our results are not sensitive to the way it is
operationalized. See Section 6 for further discussion and how this relates to the existing literature.
22 We shall henceforth ignore equilibria such that less than available output is claimed, as these are Pareto-dominated
and our interest will be in Pareto-efficient equilibria. (Alternatively we could specify that breakdown is triggered
whenever the sum of demands is unequal to output; the efficient equilibria are the same in either case.)
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the breakdown is triggered in the period of deviation to determine payoffs in that period—the

action of the non-deviator will still be at the equilibrium level, and from the next period the

Nash equilibrium of the breakdown game is played. We compute equilibria relative to these

punishments. Specifically, suppose that a is the current recommended action vector. If agent i is

to deviate then the best the agent can do is to choose the best response action aN
i (a j,st).23 She

will be punished thereafter by Nash reversion in which both agents choose their best responses

and hence both will play the (dominant) Nash equilibrium of the breakdown game.24 Write

Di(a j,st) to denote the corresponding best non-cooperative discounted payoff that agent i can

get starting from agent j’s action a j in state st . We refer to Di(a j,st) as the deviation payoff . It

is defined recursively as

Di(a j,st) = φi(aN
i (a j,st),a j,st)−aN

i (a j,st)+δ ∑
st+1∈S

πstst+1Di(aNE
j (st+1),st+1)

where Di(aNE
j (st+1),st+1) is the deviation continuation payoff from the play of the Nash equilib-

rium. Given our hold-up assumption (see Assumption 3) it follows that the deviation payoff is

strictly increasing in the action of the other agent when the other agent’s action increases output.

This and other properties of the deviation payoff are stated in the following lemma.

LEMMA 3: The deviation payoff Di(a j,st) is a continuous, non-decreasing function of a j; it

is differentiable for aN
i (a j)> 0 and Di(a j,st)≥ 0. If ∂y(aN

i (a j),a j)/∂a j > 0 then Di(a j,st) is

strictly increasing in a j.

We consider pure-strategy subgame perfect equilibria of the above game. Let the putative

outcome path of an equilibrium be represented by {a(st),w(st)}∞
t=0, where a(st) and w(st) are

the respective actions and actual payoff divisions (not demands) at time t along the equilibrium

23 We need only consider deviations at the choice of action stage since if an agent were to contemplate deviation at
the surplus division stage, the breakdown payoff would be the same except that her action would not be optimized
to maximize the breakdown payoff. (Recall we are restricting attention to equilibria where all output is claimed in
the demand game, and given that only an increased demand could be profitable, this must trigger the breakdown
game.) Thus an agent can do no worse than deviate at the action choice stage, choosing the best-reply action.
24 Punishment by immediate triggering of the breakdown game, followed by repeated play of the (dominant) Nash
equilibrium of the breakdown game is a subgame perfect equilibrium of the overall game (each agent just demands
the whole output from the point of deviation on); see the proof of Lemma 4.
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path. This includes the possibility that breakdown has occurred in any period, in which case

w(st) = φ(a(st),st)−a(st). The outcome path {a(st),w(st)}∞
t=0 is feasible if w(st)+a(st)≥ 0

and ∑i wi(st)+ai(st)≤ y(a(st),st) for every history st .

As has been stated we assume that there is Nash-reversion after any deviation and compute

equilibria relative to these deviation payoffs. Then necessary and sufficient conditions for this

path to be equilibrium relative to Nash-reversion is that it is feasible, and that for every st and

i = 1,2,

(2) Vi(st)≡ wi(st)+E

[
∞

∑
τ=t+1

δ
τ−twi(sτ) | st

]
≥ Di(a j(st),st).

The payoff Vi(st) is the discounted payoff to t that agent i anticipates from the equilibrium,

while the right hand side of (2) is the deviation payoff she would get from deviating from the

recommended action a(st) after the history st . We shall refer to the Vi(st) as the continuation

utilities. Whenever (2) holds with equality we say that agent i is constrained — any reduction in

her on-equilibrium path payoff would lead her to deviate at st ; otherwise we say that agent i is

unconstrained. We refer to the inequalities (2) as the self-enforcing or incentive constraints.

The following is standard. A contract or agreement Γ, specifies history contingent actions

and utilities a(st) and w(st) at each date in each state, Γ = {a(st),w(st)}∞
t=0. It is self-enforcing

if it is both feasible and satisfies the self-enforcing constraints. A self-enforcing agreement then

corresponds to a pure strategy subgame perfect equilibrium of the game. We shall denote the

restriction of a contract after the history st by Γ(st) where this corresponds to an action-utility

profile sequence {a(sτ | st),w(sτ | st)}∞
τ=t ; it is self-enforcing if it satisfies both feasibility and (2)

for every date and history τ ≥ t succeeding st . We define the set of self-enforcing agreements

as G . Because of our Markov assumption and because all the self-enforcing constraints are

forward looking and the time-horizon is infinite the set of self-enforcing agreements depends

only on the current state s at a particular date t and is independent of the history st . We shall

denote this set of self-enforcing agreements given current state s by Gs. Associated with each

Γ(st) ∈ Gst are the discounted payoffs to the two agents (V1(st),V2(st)) given in equation (2).
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We shall let V denote the set of payoffs (V1,V2) which correspond to self-enforcing agreements

Γ, and Vst denote the set of equilibrium payoffs (V1(st),V2(st)).

The sets G and V are not necessarily convex because of the presence of a(st) on the right

hand side of equation (2). This potential non-convexity does not affect our main characterization

results and therefore we do not impose further restriction on the model to guarantee convexity.25

We define the Pareto-frontier of the payoff Λ(V ) in the obvious way as the set of payoffs

in V which are not Pareto-dominated and use Λ(Vs) to denote the Pareto-frontier in state s.

As our objective is to characterize the set of Pareto-efficient self-enforcing agreements (when

looked at from the outset of the game) we shall be interested in the set Λ(V ). We shall say that

agreements that correspond to this Pareto-frontier are optimum or optimum contracts and refer

to the corresponding actions as optimum actions.

3. RESULTS

This section provides the main results of the paper. The existence of optimum contracts is

established in Section 3.1. Section 3.2 considers the relationship between the optimum and

Nash and conditionally efficient actions and Section 3.3 proves the backloading principle. The

long-run properties are examined in Section 3.4 and Section 3.5 which show convergence

to a stationary phase which maximizes surplus amongst all self-enforcing contracts. Finally

Section 3.6 will consider an example with no uncertainty to illustrate our results. The case where

only one agent contributes to output is considered in Section 4.

3.1. Existence

We first establish that optimum self-enforcing contracts do exist. This follows from a straight-

forward argument showing that the equilibrium payoff set is compact.

LEMMA 4: The set of pure-strategy subgame perfect equilibrium payoffs V is non-empty and

compact. Hence optimum contracts exist.

25 There are special cases where the sets are convex. The additive production technology case is one such example.
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We shall say that a self-enforcing contract is trivial if a(st) = 0 for all st .26 From Assump-

tion 1(i) on the production function, it follows that this corresponds to a point (0,0) ∈ V .

Lemma 4 does not imply the existence of an optimum non-trivial contract so that it is possible

that Λ(V ) = (0,0) and all our results will apply (trivially) in this case.

3.2. Actions at a particular date

We shall consider the dynamic path of actions in sections 3.3 and 3.5 but in this section we

consider actions at a given date and how they relate to the Nash best-response and conditionally

efficient actions. Our method is to argue by contradiction, changing an assumed optimal contract

at a particular date after a particular history. If this change satisfies the self-enforcing and

feasibility constraints for both agents at that date, and a Pareto-improvement has been generated,

then all prior self-enforcing constraints also hold as by construction the future utility entering

these constraints has not been decreased. Equally all future constraints must continue to hold.

Hence this leads to a Pareto-superior contract—contrary to the assumed optimality of the original

contract.

As we are considering only a particular date we shall, in what follows, suppress the history

st or state st where there is no ambiguity, and we shall refer to the current state as s and use r

to index the state next period where necessary. We first show that actions cannot be below the

Nash best-response functions, aN
i (a j) of the breakdown game. The intuition is that if any agent’s

action is below the Nash best-response action, that agent’s action can be increased and surplus

divided in such a way that neither agent has an incentive to move to the breakdown and that

the increase in action will increase output and utility. Specifically, suppose that a2 is below the

reaction function (but a1 is not). As agent 2’s action is increased, because of the hold-up nature

of the problem, this will increase agent 1’s deviation payoff; suppose however we give agent 1

extra consumption equal to the increase in her deviation payoff to stop her reneging. Since this

will be approximately that part of extra output she can appropriate, giving the remainder to

agent 2 gives him at least what he would get from increasing his action in the breakdown game.

26 In the next section it is shown that in any optimum self-enforcing contract the actions are never below the Nash
equilibrium actions of the breakdown game. Thus if the latter are positive a non-trivial contract will exist although
it may be trivial in the sense that it is equal to the repetition of the Nash equilibrium of the break-down game.
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Because he is below his optimal breakdown action this will increase his utility too. Hence both

agents can be made better off. In the following statement, recall that aNE is the dominant Nash

equilibrium of the breakdown game.

LEMMA 5: In any optimum self-enforcing contract, after any positive probability history st ,

ai ≥ aN
i (a j), and (a1,a2)≥ aNE .

We would also like to say how the optimum actions relate to the conditionally efficient

actions. This is less clear cut as we shall show that optimum actions can be above or below the

conditionally efficient actions. We can, however, show that an agent only ‘underinvests’ (action

below the conditionally efficient level) if the other agent’s self-enforcing constraint binds and

only ‘overinvests’ if she is at her subsistence consumption (of zero).

LEMMA 6: In an optimum contract after any positive probability history, (i) If agent i is

unconstrained (i.e., Vi > Di(a j)), then a j ≥ a∗j(ai); (ii) If agent i has positive consumption

(ci > 0), then ai ≤ a∗i (a j).

REMARK: Lemma 6 relates the optimum actions to the conditionally efficient level. It is, unlike

Lemma 5, independent of the default structure we have specified (requiring only that deviation

payoffs are continuous and non-decreasing in the action of the other agent).

The intuition behind the proof is straightforward. If, say agent 1’s, self-enforcing constraint

is not binding then there is no cost (but a surplus gain) to increasing agent 2’s action up

to the conditionally efficient level. Equally if an action, say agent 1’s action, is above the

conditionally efficient level it will be profitable to reduce it (surplus will increase). This cannot

tighten agent 2’s self-enforcing constraint, and agent 1 is better off since her action has been

reduced, so provided agent 2’s consumption can be held constant this will lead to a Pareto-

improvement. But aggregate output has fallen so aggregate consumption must be cut. If agent 1

has positive consumption it will be possible to reduce her consumption to compensate agent 2.

However, if agent 1 already has zero consumption then she cannot compensate agent 1 and a

Pareto-improvement may not be possible.
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There are two straightforward implications of Lemma 6(ii). Firstly it is impossible in an

optimum contract that both agents overinvest (they cannot both have zero consumption given

output is positive). Secondly an agent cannot be permanently overinvesting (i.e., with probability

one) as this would imply that her consumption is always zero, which cannot be self-enforcing.

3.3. Backloading

As discussed in the introduction there is a well known backloading principle that applies when

commitment by one agent is limited. This principle says that ceteris paribus transfers to the agent

who cannot commit should be backloaded into the future if the commitment constraint is binding,

to provide a carrot in the future that would be forgone if the agent reneged. The operation of this

principle in our environment where both agents undertake an action or investment and neither

can commit is more subtle, as discussed earlier. Nevertheless we shall show that backloading

does apply in a way we make precise below and moreover has the additional implication that

one agent may overinvest in the early periods of an optimum contract.

We begin by showing (in the next lemma) that, under certain conditions, if an agent is allocated

all the current output then this is sufficient to guarantee that the self-enforcing constraint of that

agent is not violated. The basic idea is straightforward: if an agent is getting all of current output

then there is no short-run gain to defaulting as no matter how big a portion of output can be

claimed in breakdown. However, care has to be taken with this argument because the agent may

be able to choose a more advantageous action in the breakdown. Thus, in more detail, suppose

agent 2 gets allocated all the current output. Consider starting from agent 2’s best-response (in

the breakdown game) to agent 1’s action, and hold the latter fixed; by definition agent 2 cannot

benefit by deviating at this point; if agent 2’s action is increased and he is still being allocated

all output, then his utility will be rising until his conditionally efficient action is reached, where

his payoff is maximized. So provided a2 is above or equal to his best-response, but not higher

than the conditionally efficient action, he is weakly better off at a2 getting all consumption than

best responding—no matter how much he can claim of the output in the breakdown. Hence

the self-enforcing constraint is satisfied, even if deviating leads to no future losses (i.e., even if

agent 2’s future payoff is as low as it can be). This property is important for our backloading
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result as it will enable us to verify that the self-enforcing constraint for an agent is satisfied

by checking that that agent is receiving all the available output.27 Recall that the deviation

continuation payoff D2(aNE
1,r ,r) is the payoff agent 2 gets from Nash-reversion starting in state r.

LEMMA 7: If in state s (but suppressing s in the notation) c2 = y(a1,a2), aN
2 (a1)≤ a2≤ a∗2(a1)

and V2,r ≥ D2(aNE
1,r ,r), all r ∈S , then

(3) c2−a2 +δ ∑
r∈S

πsrV2,r ≥ D2(a1);

moreover the inequality is strict if a2 > 0. Likewise with the agent indices swapped.

We now present our main backloading result. For notational convenience we will treat actions

and consumptions at a particular date as random variables and write at
i and ct

i for ai(st) and

ci(st) etc.

THEOREM 1: (i) If at t̃ in an optimum contract (after positive probability history st̃), agent 1,

say, is unconstrained and at̃
1 < a∗1(a

t̃
2), then at all previous dates t < t̃ along the same history,

ct
2 = 0; (ii) If at t̃ in an optimum contract (after positive probability history st̃), agent 2, say, has

at̃
2 > a∗2(a

t̃
1), then at all previous dates t < t̃ along the same history, ct

2 = 0.

The claim of Theorem 1(i) is that if in any optimum contract agent 1 is under-investing but

unconstrained then agent 2 will have been held to his subsistence consumption level (zero) in all

previous periods along the history to that point. (Recall that if agent 1 is underinvesting, this

is because agent 2 is constrained and any further investment by agent 1 will lead to agent 2

preferring to take the increased deviation payoff.) The idea is that if agent 2 has positive

consumption earlier, agent 1’s current action can be increased (increasing current surplus) and

at the same time consumption can be transferred at the current date to agent 2 to stop him

reneging; agent 1 may be worse off currently but can be compensated for her increased effort by

agent 2 transferring consumption at the earlier date. Essentially, the backloading of agent 2’s

27 Note this result does not refer to optimum contracts but is a statement about the properties of the deviation payoff
function Di(·).
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consumption allows his later constraint to be relaxed. Since agents are risk neutral they do not

care about the timing of consumption flows (keeping the action plans fixed) if the expected

discounted value is the same, but the backloading has permitted current surplus to be increased,

leading to a Pareto-improvement. It is important though that agent 1 is unconstrained for this

result to hold and we will show later that it may not apply if agent 1 is also constrained at the

later date.

Theorem 1(ii) demonstrates that if ever agent 2 is overinvesting then consumption has already

been backloaded to the maximum extent possible in all previous periods. This makes it clear

that the backloading principle extends to actions as well as consumption and that actions may be

above the conditionally efficient levels. This however involves an efficiency loss not incurred by

backloading consumption. So reducing consumption is more efficient than increasing the action.

Nevertheless it may be optimal on the margin to increase the action as for a small increase

starting from the efficient level the loss will be of second-order and it will enable the action of

the other agent to be increased without violating the self-enforcing constraint and thus actions

of one agent may be above the conditionally efficient levels in the early periods of the optimum

contract

3.4. Second-Best Surplus Maximization

In the next section we shall show that an optimum contract converges to one that maximizes

joint utility. In this section we shall first show that the maximization of joint utility involves

choosing the actions that maximize current surplus subject to the self-enforcing and feasibility

constraints. We begin by defining such actions and also a joint utility maximizing contract.

DEFINITION 1: An action pair a in state st at date t is current surplus maximizing if a ∈
argmaxa∈ℜ2

+
{y(a1,a2,st)− a1− a2: ∃ a self-enforcing contract Γ(st) ∈ Gst starting at date t

with a(st) = a}.

DEFINITION 2: A self-enforcing contract Γ(st) ∈ Gst at date t in state st is joint utility

maximizing if the sum of the corresponding continuation utilities from t onwards is maximized

across all possible self-enforcing contracts: (V1,V2) ∈ argmax(V1,V2)∈Vst
(V1 +V2).
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Note that a current surplus maximizing a is found by looking across all self-enforcing contracts

starting from s and picking one that maximizes the surplus in the first period of the contract,

irrespective of what happens later. If a self-enforcing contract can be constructed with current

surplus maximizing actions at every date, then it is clearly joint utility maximizing. The next

result asserts that joint utility maximizing contracts always have this property.

LEMMA 8: Any joint utility maximizing self-enforcing contract starting at date t from st ,

Γ(st), has with probability one current surplus maximizing actions at each date τ ≥ t.

Changing actions away from the current surplus maximizing ones will lower utility at that

particular date and hence overall utility. What the lemma shows is that there is no additional

benefit in terms of relaxing one of the self-enforcing constraints.

We show next that if at any point the self-enforcing constraints bind for both agents and

there is no over-efficiency of actions, then the optimum contract always involves joint utility

maximization from the next period onward. Hence from Lemma 8 this involves the surplus

maximizing actions at every subsequent date.

LEMMA 9: If in an optimum contract st has positive probability, both self-enforcing con-

straints bind at t, and at
i ≤ a∗i (a

t
j), i, j = 1,2, i 6= j, then the contract must specify joint utility

maximization from t +1 (i.e., in every positive probability successor state).

The idea behind Lemma 9 is that if it were the case that in some successor state r joint utility

was not maximized, then it would be possible to replace (V1,r,V2,r) by (V̂1,r,V̂2,r) ∈ Vr such that

V̂1,r +V̂2,r >V1,r +V2,r and demonstrate a Pareto-improvement. To show this it is necessary that

both agents were previously constrained. If either agent were unconstrained then replacing Vi,r

with V̂i,r might lower utility for one agent.

3.5. Convergence

We now present the result that an optimum contract has actions which converge almost surely

to current surplus maximizing actions (and, a fortiori, the contract converges to a joint utility

maximizing one). To show this, we first show that there exists a stopping time which is finite
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almost surely such that both c1 > 0 and c2 > 0 at some point before this time. The argument is

intuitive: provided at least one agent has a strictly positive payoff, then one agent, say agent 1,

must take a positive action at some point. Thus agent 1 must receive positive consumption at

some point not too far after the action was taken, or else her overall payoff would be negative,

something which is inconsistent with self-enforcement (an agent can always guarantee herself

at least zero by taking a null action each period). Likewise, by the fact that agent 1 took a

positive action, agent 2 can get a positive share of that output by the hold-up assumption on the

breakdown payoffs, and hence must have positive continuation utility at this point. Thus agent 2

must also anticipate positive consumption. This situation happens repeatedly in an optimum

contract, and thus positive consumption for both agents occurs with probability one (the proof is

only complicated by the need to ensure that the number of periods before positive consumption

is received is bounded independently of the current continuation utility is divided). Next, once

both agents have had positive consumption, our backloading results imply that there cannot

be overinvestment, and if either agent is unconstrained then actions are at the efficient level.

Alternatively, if both agents are constrained, we know that joint utility maximization occurs

thereafter by the previous lemma.

THEOREM 2: For any optimum contract, with probability one there exists a random time T

< ∞ such that for t ≥ T , at is current surplus maximizing.

Suppose that both agents have had positive consumption at some date prior to date t̂. Then

from Theorem 1(ii), for t ≥ t̂, at
i ≤ a∗i (a

t
j) for i = 1,2. However, if agent i is unconstrained at

date t, then it follows from Theorem 1(i) that at
i ≥ a∗i (a

t
j), otherwise the consumption of agent j

could not have been positive prior to date t̂. Equally from Lemma 6(i), at
j ≥ a∗j(a

t
i) as there is

no need to hold agent j’s action below the efficient level if agent i is unconstrained. So if one

agent is unconstrained, both actions are efficient. We can conclude that inefficiency can only

occur after date t̂ when both agents are constrained. We thus have the following corollary.

COROLLARY 1: For any optimum contract, with probability one there exists a random time

T < ∞ such that for t ≥ T , and for any state st ∈S in which efficiency a∗∗ is not achievable for
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any division of the surplus (i.e., for which the current surplus maximizing actions are inefficient),

then both self-enforcing constraints bind and there is no overinvestment by either agent.

The next theorem considers the canonical two-sided action case in which both actions are

always positive. This allows us to present the sharpest results in terms of optimum action levels

relative to unconstrained efficient levels. It shows there will be two phases, one (which may not

exist depending on how ex ante surplus from the relationship is divided) is a backloading phase

with zero consumption and overinvestment by one of the agents (the same agent throughout the

phase), and the other phase (which exists with probability one) will have no overinvestment, but

consists of a possible initial transition period which is then followed by either efficient actions,

if they can be sustained in equilibrium in that state, or otherwise by both constraints binding and

positive consumption.

THEOREM 3: Whenever the Nash actions aNE
i,s are positive, i = 1,2, all s ∈S , then there

exists i ∈ {1,2} and a random time t̃, ∞ > t̃ ≥ 0 with probability one, such that an optimum

satisfies a.s.:

Phase 1: ct
i = 0, at

i > a∗i (a
t
j) and at

j ≤ a∗j(a
t
i), for 0≤ t < t̃ , j 6= i;

Phase 2: at
1 ≤ a∗1(a

t
2) and at

2 ≤ a∗2(a
t
1) for t ≥ t̃ , and after the first period of phase 2, if st is

such that a∗∗ is current surplus maximizing (i.e., can be sustained in equilibrium) then at = a∗∗;

otherwise for both agents, i = 1,2, the incentive constraint binds, at
i < a∗i (a

t
j)≤ a∗∗i , j 6= i, and

ct
i > 0.

The requirement of positive Nash actions is a simple way to ensure that optimum actions at

each date are positive by virtue of Lemma 5. We need to assume this to prove Theorem 3 for

two reasons. Firstly, even if both actions are productive, it may be that overinvestment does

not occur in the backloading phase. This might be the case if ai = 0 and a∗i (a j) = 0 and the

marginal product at zero is well below one. In this case the optimum action may be at the corner

solution where the marginal product is below one and the optimum action is zero. Secondly,

underinvestment may not occur in the second phase as it possible that the efficient action levels

are zero.
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If current surplus is not maximized after the first period of Phase 2, then a 6= a∗∗ but by

Theorem 3 this implies both constraints bind, in which case current surplus is maximized

thereafter. Hence we have the following corollary.

COROLLARY 2: With probability one, current surplus is not maximized in at most two periods

of Phase 2.28

3.6. Example with No Uncertainty

We consider a simple example with no uncertainty to illustrate our results and demonstrate that

the backloading phase of Theorem 3 with overinvestment can exist for some initial distribution

of continuation utilities. The example has an additive production technology and is similar to

the model of joint production in Garvey (1995).29 We assume the production function is

y(a1,a2) = f1(a1)+ f2(a2) = 2b
√

a1 +2
√

a2

for a parameter b ∈ (0,1). For simplicity the breakdown payoffs are of the form φi(a1,a2) =

θi1 f1(a1)+θi2 f2(a2) where the parameters are θ11 = θ22 = 0 and θ12 = θ21 = 1. Thus in the

breakdown both agents can grab all of the other agent’s output but if they do so they lose their

own output. The conditionally efficient actions are independent of the other agent’s action

and given by a∗1 = b2 and a∗2 = 1 and maximal efficient surplus is 1+ b2. Given the additive

technology the Nash best-response functions are dominant strategies, aN
1 = aN

2 = 0 so the best

28 In the case of additive production technology this can be strengthened to current surplus being maximized in all
but the first period of Phase 2.
29 Garvey (1995) has linearly additive outputs and quadratic cost functions but this is equivalent to our formulation
with square-root production functions and linear investment costs. His concern is with finding a legal structure,
joint ventures or integration, that is best suited (in terms of a minimum discount factor) to sustaining the efficient
investment levels. He does not therefore examine the main concern addressed here, namely the temporal structure
of investments.
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response is no investment.30 Hence the deviation payoffs are31

D1(a2) = (1−δ )2
√

a2 and D2(a1) = (1−δ )2b
√

a1.

For illustration we consider the special case of δ = 1/3 and b =
√

3/3.32 The solution can be

found by first deriving the efficiency stationary solution and then working backwards from the

stationary solution to construct the entire Pareto-frontier in a similar fashion to that described in

Thomas and Worrall (1994).33 It should be stressed that the procedure used here computes the

exact solution and does not rely on numerical methods.

The solution is illustrated in Figure 1 which plots some of the variables of interest against the

(continuation) utility V1, of agent 1. The stationary solution is indicated by point “S”. Figure 1(a)

illustrates the Pareto-frontier. The left hand endpoint of the frontier is determined at the point

where this function has a zero slope and the right hand endpoint where the slope is infinite and

a1 = 0. The stationary solution is where joint utility, V1 +V2, is maximized so that the slope

of the frontier is −1 at point S. Figure 1(b) illustrates the net surplus for different values of V1

indicating that net surplus is maximized at the stationary solution. Figure 1(d) illustrates that

agent 2 is always underinvesting (a2 < a∗2 = 1) for all V1. Agent 1 is always constrained but as V1

is increased a2 can also be increased without agent 1 reneging. Figure 1(c) shows that agent 1’s

investment is efficient (a∗1 = 1/3) for V1 ∈ [2/27,4
√

21/27] and that agent 1 overinvests (and

has zero consumption) for low values of V1 < 2/27 and underinvests for larger values of V1

and at the stationary solution. If we suppose that the initial distribution of utilities is such that

V1 < 2/27 then the optimum contract evolves in the following way. In the initial period agent 1

has zero consumption and overinvests. In the next period it can be shown that the continuation

30 Strictly Theorem 3 does not apply since the Nash equilibrium actions are zero. However, the importance of the
assumption of positive Nash equilibrium actions was to rule out trivial contracts but such contracts are not optimal
for the parameter values chosen and hence the substance of the theorems does apply.
31 For the purposes of calculating the example all per-period payoffs have been multiplied by (1−δ ).
32 In this example a non-trivial contract is sustainable for any δ > 0 and an efficient stationary solution is sustainable
if δ ≥ 1/2. The value δ = 1/3 is chosen below this critical value so that the efficient outcome is not sustainable in
the the stationary solution but large enough to generate simple but interesting dynamics for the optimum contract.
The value of b is simply chosen for convenience.
33 Details of the calculation are available on request.
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FIGURE 1: EXAMPLE WITH δ = 1
3 AND b =

√
3

3 .

value for V1 will be in the range (2/27,4
√

21/27). Thus next period the action a1 is chosen

efficiently, a1 = 1/3. In the periods thereafter the continuation values are the utility maximizing

ones at the stationary point where both agents underinvest. Thus in this example and for the

parameters we’ve used, and for an an initial distribution where V1 < 2/27, there is at most one

period of Phase 1 where there is overinvestment and after two periods the stationary solution is

reached where both agents are underinvesting.34

4. ONE-SIDED INVESTMENT

In this section we discuss the case where only one of the two agents makes an investment

which has been the subject of most of the previous literature (see, e.g., Albuquerque and

34 For different parameter values there may be more than one period of Phase 1 in which there is overinvestment.
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Hopenhayn 2004, Thomas and Worrall 1994). We shall show that in this case there is no

overinvestment by the contributing agent.35 We suppose that this is agent 1 and assume that

agent 2 never contributes towards output. We therefore write output as y(a1,a2,st) = f (a1,st)

and the breakdown payoff for agent 1 as φ1(a1,st) ≤ f (a1,st). In this case agent 1’s self-

enforcing constraint reduces to a more conventional nonnegative surplus constraint,

V1(st)≥ D1(st) = φ1(aNE
1 (st),st)−aNE

1 (st)+δ ∑
st+1∈S

πstst+1D1(st+1)

and the following can be proved.

THEOREM 4: In the case of one-sided investment where, say, agent 1 is the only contributor

to output, then at any date t and state s, at
1 ≤ a∗1; i.e., overinvestment never occurs in an efficient

self-enforcing contract.

This result is perhaps unsurprising in view of the idea that backloading of utility will only

apply to agent 2, the agent whose self-enforcing constraint can prevent efficient actions by

agent 1. Overinvestment (and hence c1 = 0) implies a negative current utility for agent 1, and as

the future goes against agent 1, this would lead to a negative overall utility, something which

would violate agent 1’s constraint.

5. CREDIT CONSTRAINTS

In this section we shall assume that agents can save in a private account at a fixed net rate of

interest r.36 We shall however assume that agents are credit constrained and cannot borrow. The

issue addressed is whether by using savings it may be possible to achieve utility distributions

at future dates that cannot be achieved without savings. For example, if agent 1 saves some of

her early transfers and then at date t makes a transfer to agent 2 from her savings, agent 2’s

continuation utility at t will be higher by the amount of the savings transfer (holding all future

35 A difference arises in the one-sided and two-sided cases since when only one agent takes any action it is not
always possible to adjust actions to smoothly raise or lower the continuation utilities for both agents as is the case
with the two-sided case.
36 An alternative—leading to different results—would be to assume an escrow account held by a trusted third agent
where agents lose access to the account if they default. We assume here that such accounts are ruled out.
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transfers and actions constant), and agent 1’s utility correspondingly lower. Potentially, provided

this transfer is credible, it may allow more efficient actions to be undertaken at date t, allowing

an ex ante Pareto-improvement. We show that provided δ (1+ r)≤ 1, that is if the interest rate

is less than the discount rate, this is not possible.37 Intuitively, we have seen that at most one

agent has utility backloaded for incentive reasons; this suggests that there is no gain if the other

agent saves.38

We change the model as follows. Let St
i denote agent i’s total saving at the start of period t,

including interest up to period t (in general this depends on the history st−1 but this dependence

is left implicit in the notation). Borrowing is ruled out so St
i ≥ 0, with S0

i = 0.39 At the division

stage, let χi(st) denote the amount of resource transferred to agent i after history st (this need

no longer coincide with consumption ci(st)), subject to the constraints that χ1(st)+ χ2(st)≤
y(a(st),st) and −St

i ≤ χi(st) ≤ St
j + y(a(st),st), for i = 1,2, and i 6= j. Thus it is possible

to receive more than current output if the other agent—whose transfer would be negative—

contributes from their savings. We are assuming then that transfers from savings occur at the

same time that output is divided (although making this subsequent to output division would not

affect the results).40 Thereafter, at a new decision point, each agent simultaneously chooses

consumption ci(st), subject to 0 ≤ ci(st) ≤ St
i + χi(st), so that savings at the start of t +1 are

St+1
i = (1+ r)(St

i +χi(st)− ci(st)). We assume that the consumption decisions are observable

(although it turns out that nothing depends on this). A contract now specifies (ai(st),χi(st),ci(st))

for each history st and i = 1,2. We extend the definitions of equilibrium etc. in the obvious way.

37 If ρ := (1−δ )/δ is the discount rate, then δ (1+ r)≤ 1 is equivalent to r ≤ ρ . With this assumption savings
cannot change feasible payoffs and if there is any saving it will be for incentive reasons. The previous model
without savings corresponds to the situation where r =−1.
38 A similar result is obtained by Itskhoki (2007) in a general model with one-sided commitment.
39 We can allow initial resources to be positive, S0

i > 0, and the equivalence result established below still goes
through (the equilibrium without savings will however differ slightly from that studied earlier).
40 To be precise, we could spell out the post production timing as follows. First, the Nash demand game takes
place, followed by simultaneous transfers by each agent to the other out of savings (and then finally consumption
decisions are taken). We only need to focus on the net transfer χi(st), however, as if (and only if) the incentive
constraint specified below holds, it will be an equilibrium to implement the transfer. Specifically, i’s Nash demand
is χi(st) whenever 0≤ χi(st)≤ y(a(st),st), and otherwise 0 or y(a(st),st), as appropriate, while the direct transfer
from i to j equals max{−χi(st), 0}. Again, the fine details of the process are unimportant so long as a failure to
adhere to the equilibrium contract triggers breakdown.
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It is useful to let

Ui(st) = χi(st)−ai(st)+E

[
T

∑
τ=t+1

δ
τ−t(χi(sτ)−ai(sτ))|st

]

denote the discounted value of the contracted transfers net of action costs. As before

Vi(st) = ci(st)−ai(st)+E

[
T

∑
τ=t+1

δ
τ−t(ci(sτ)−ai(sτ))|st

]

denotes the continuation utility from consumption.

If agent i chooses to default at t, then she will retain her savings (and can do no better than

consume them immediately) so that St
i is added to the deviation payoff. Thus the incentive

constraint at t will be

(4) Vi(st)≥ Di
(
a j(st),st

)
+St

i.

However, because δ (1+ r) ≤ 1, discounted current and future consumption cannot exceed

expected discounted net transfers from t on plus current beginning of period savings, that

is,41 Vi(st) ≤ Ui(st)+ St
i . Notice that savings per se effectively cancel out of the incentive

constraint, but the issue is whether by allowing flexibility with respect to timing of transfers

better allocations can be attained.

To argue that savings will not matter we start from an optimum contract in the model with

savings and replace it with a contract which has no transfers out of savings. As an example,

suppose a single transfer is made, out of savings, from agent 2 to agent 1 at time t after some

history st (agent 1 also gets all of current output at t). In this case make the following changes:

cut the transfer (i.e., the dissaving) from agent 2 to zero, but leave agent 1 with all of current

output. So at t, agent 1’s continuation utility is lowered by the lost transfer. Next attempt

to compensate agent 1 by increasing her transfer out of output, at agent 2’s expense, at the

41 If all transfers are non-negative then Vi(st) is maximized if they are consumed immediately, and we have
Vi(st) = Ui(st)+ St

i . If there are negative transfers, some earlier transfers must be shifted via saving until later;
moving resources backwards in time cannot increase their discounted value.
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immediately preceding date and history. If agent 1 is fully compensated then there are no further

changes. If she is not fully compensated even when all output is allocated to her at t−1, then

we carry forward the remaining lost utility to t− 2, and so on. Full compensation (in terms

of discounted transfers) must be possible by date 0. This is because in the original allocation,

agent 2 was able to accumulate the savings from the output allocated to him before the period

t transfer to agent 1, so by shifting all output to agent 1 at previous dates, agent 1 must be at

least as well off—she would be directly receiving all the transfers which agent 2 had used to

accumulate his savings. These changes satisfy three important properties: (1) they do not affect

the initial distribution of utility (more precisely, of discounted transfers, the Ui(s0)), (2) transfers

are made nonnegative (so that savings do not need to be used), and (3) at any history, either

agent i is no worse off than in the initial allocation or agent i receives all of current output. The

point of (3) is that even if an agent is made worse off, because she receives all of current output

she will not want to renege (appealing to Lemma 7). Thus the ability to transfer savings is not

needed to support the current actions even though an agent may be worse off at some points in

the future. That is, the same actions and initial utilities can be supported when savings are not

possible.

Generalizing this approach to allow for transfers out of savings at multiple dates and after any

history, the following result can be proved.

THEOREM 5: The Pareto-frontier in the model with savings coincides with that in the model

without savings.

6. DISCUSSION OF ASSUMPTIONS

In this section we discuss to what extent our results generalize to different assumptions about

the way the surplus division, breakdown and subsequent punishments were modeled, and the

relationship to the existing literature.

First, consider the timing of actions, surplus division and breakdown. We assumed that actions

are taken, and observed, before the agents decide on their demands in the Nash demand game;

however this is equivalent in terms of the subgame perfect equilibria to a model in which actions
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and demands are determined simultaneously. More importantly, in our formulation action

deviations can only be punished by triggering the breakdown payoffs at the surplus division

stage. This is consistent with the approach in the existing literature, including where multiple

agents take actions (see, e.g., Halonen 2002, Rayo 2007). An alternative formulation would

be to assume that a deviation at the action stage can be punished independently of going to

the breakdown payoffs after output is realized. The idea would be that an action deviation is

observed immediately by the other agent who may be able to take measures that affect output

or breakdown payoffs (i.e., “putting a spanner in the works”). If this was severe enough, for

example, if output could be credibly reduced to zero, the relevant incentive constraints may

concern only the division stage. Such a formulation, by making a deviation at the action stage

more easily punishable would make it easier to support efficient actions than in the current

setup.42

Secondly, the idea of going immediately to breakdown if there is a deviation (rather than, say,

starting renegotiation) follows most of the literature, and is in the spirit of repeated game analysis

in which deviations from agreed courses of action are punished with severe continuations. In

general, of course, renegotiation-proofness may not be satisfied in our model.43 Note that

because agents can always opt for breakdown, our incentive constraint that equilibrium utilities

can be no lower than breakdown payoffs must be satisfied by any equilibrium approach, so we

are allowing for the widest possible set of equilibria (subject to the third point, below).

Thirdly, we assumed that in periods subsequent to a deviation, the Nash equilibrium of the

breakdown game is played. If there are multiple Nash equilibria, we assumed it is the Pareto-

dominant one that is selected, but this could be any of them, and it is only necessary to assume

that the continuation equilibrium selected is fixed in each state. Likewise reversion to the worst

subgame perfect continuation, which may be more severe than what we are assuming, would

42 A number of papers in the relational contract literature examine the case where actions are unobservable as
well as unverifiable (see, e.g., Baker et al. 2002, Levin 2003, Rayo 2007), so that immediate punishment of action
deviations is anyway not feasible.
43 The few papers which have considered renegotiation-proofness in the one-sided context (e.g., Kovrijnykh 2009,
Opp 2010, Thomas and Worrall 1994) have generally shown that although restricting the set of efficient contracts,
renegotiation-proofness does not change the basic backloading property of the efficient contract. When surplus is
destroyed in going to the breakdown, renegotiation would have more bite than in the existing literature.
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not affect the results,44 although in the existing models in this area the two coincide. Of course,

more severe punishments will allow a larger range of equilibria to be sustained.

Alternatively the deviation payoffs could be derived from different assumptions about the

nature of the breakdown game. For example, if there are state-dependent nonnegative outside

options which can only be taken after the end of the current period t (so agents are locked in for

the current period after observing the state), and they are no better in expectation from st than

the (best) Nash-reversion payoffs Di(aNE
j (st+1),st+1), then the characterization we give will still

apply. See Bond (2003) for a model of this type in a related context.

Fourthly, we used a Nash demand game to model the surplus division stage. In most of the

existing literature the issue does not arise as it is usually assumed that existing property rights

specify claims over, or allocate shares of, total output (in many cases it is assumed that one

agent has control over all the output). There is then a subsequent stage, after output is realized,

where agents decide on transfers to the other agent or agents out of their share. Deviation at

the transfer stage leads to the agents being left with their existing output shares. Expressed in

our framework, this occurs when ∑i φi(a,st) = y(a,st), for all a so that the breakdown payoffs

exhaust the surplus. In this case we do not need the Nash demand game; an equivalent way

(in terms of equilibrium payoffs that arise) of modeling the division stage would be—as in

the existing literature—to suppose that each agent i actually receives her φi(a,st) when output

is realized, and then there is a subsequent stage where agents simultaneously make voluntary

transfers to each other. In general, however, ownership over output may not be so well defined,

and we want to allow for surplus destruction to occur when property rights are enforced, so

that the φi(a,st) sum to less than output. In this case, some mechanism is needed to determine

how output is split. In the spirit of relational contracting, our approach is simply to capture

the idea that a deviation from the implicit contract will trigger breakdown. As we stressed, the

Nash demand game is one simple way of formalizing this, but any extensive form for which

it is credible to use breakdown as a punishment for any deviation will have the same set of

44 Mutatis mutandis, so that all definitions involving future punishment payoffs incorporate the change.
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equilibrium payoffs. This will generally be the case whenever both agents retain the option to

go to breakdown until an agreement on division is struck.45,46

Finally, a difference between our approach and some of the literature is that we treat the

breakdown payoffs as fixed. A number of papers in the relational contracting and property

rights tradition assume that the breakdown payoffs are a consequence of the legal framework or

ownership decision and study the effect of different default structures. For example Halonen

(2002) considers a model where the breakdown payoffs allow either one agent to expropriate the

entire output if there is single ownership or both agents to expropriate half of the output if there

is joint ownership.

7. CONCLUSION AND FURTHER WORK

In this paper we have analyzed the dynamic properties of a relational or self-enforcing contract

between two risk-neutral agents both of whom undertake a costly investment or action which

yields joint benefits. We have shown that there is convergence to a stationary state at which the

net surplus is maximized. An optimum contract exhibits a two-phase property. In the first phase

(which may or may not occur) there is backloading of the utility of one of the agents. In this

phase that agent has zero consumption and will overinvest while the other agent will typically

underinvest. In the next phase (which will occur with probability one) there is no overinvestment

and after the first period of the this phase there will be either efficient investment, if that is

sustainable in that state, or underinvestment by both agents and with both agents constrained.

The analysis presented in the paper is applicable to a wide variety of situations. It will apply to

situations of joint ventures where two partners expend individual effort or investment to improve

profits. It will apply to a labor market situation where both employer and employee invest in

45 The story can be made more compelling by amending the model slightly so that if an agent unilaterally triggers
the default then she does epsilon better than if both do, or if only the other agent triggers default. Thus each has a
strong incentive to “run to the lawyer” if there is a suspicion that the other agent may do so, as there would be after
a deviation.
46 An alternative is to interpret the breakdown payoffs as a reduced form for the outcome of bargaining when
disagreement occurs. For example, if one agent is able to make a binding take-it-or-leave-it offer to the other
about the split of current surplus before recourse to breakdown is possible, then the outcome of this would yield
the appropriate deviation payoffs. Provided that this process satisfies our assumptions on the breakdown payoffs,
φi(a,st), all the results go through.
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improving the productivity of the job match and it could apply to situations of international

trade where trading partners undertake investments to reduce the cost or improve the efficiency

of trade. It can also apply with some re-working to a public good model where agents have to

decide upon their individual contributions to a public good that benefits both agents.

The model can be extended in a number of directions. An obvious extension is to allow for risk

aversion. The assumption that agents cannot borrow introduces some risk aversion but allowing

smoothly concave preferences will be an important extension as it will bring together the strand

of the literature on self-enforcing contracts which concentrates on risk-sharing with the strand

which emphasizes the actions undertaken by agents. It will also broaden the range of applications

to include, for example, household behavior. Other extensions could allow for heterogeneous

discount rates or to treat the actions as real investments with capital accumulation such as in a

model of sovereign debt, or to consider efficient ownership structures when ownership affects

the breakdown payoffs.

APPENDIX

Proof of Lemma 1. By Assumption 1(v) that, holding a j fixed, y(a1,a2,st) is strictly concave in
ai if increasing, the conditionally efficient actions are uniquely defined. From the continuity and
differentiability assumptions a∗i (a j,st) are continuous functions of a j. Q.E.D.

Proof of Lemma 2. We drop the notational dependence on st as it is held fixed. Uniqueness of the aN
i (a j)

follows from Assumption 3 that φi(ai,a j) is strictly concave in its own action if increasing. Standard
results give that these are continuous functions. We have ∂y(a∗i (a j),a j)/∂ai ≤ 1 with equality if a∗i (a j)>

0. By (1) and the hold-up assumption of Assumption 3, ∂φi(a)/∂ai < ∂y(a)/∂ai if ∂y(a)/∂ai > 0. First
consider the case where a∗i (a j)> 0. Then either aN

i (a j) = 0 and we’re done or if aN
i (a j)> 0 we have

1 =
∂φi(aN

i (a j),a j)

∂ai
=

∂y(a∗i (a j),a j)

∂ai
>

∂φi(a∗i (a j),a j)

∂ai
,

where the first two equalities hold from the first-order conditions for aN
i (a j) and a∗i (a j) and the inequality

was argued above. It then follows from the the strict concavity of φi in its own argument (Assumption 3)
that aN

i (a j) < a∗i (a j). Next suppose that a∗i (a j) = 0 and contrary to the lemma that aN
i (a j) > 0. Then

again from the first-order and hold-up conditions

1 =
∂φi(aN

i (a j),a j)

∂ai
<

∂y(aN
i (a j),a j)

∂ai
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but

1≥
∂y(0,a j)

∂ai
≥

∂y(aN
i (a j),a j)

∂ai

by the first-order condition for a∗i (a j) and the fact that the marginal product is non-increasing. Hence we
have a contradiction. Q.E.D.

Proof of Lemma 3. Again we drop the notational dependence on st as it is inessential for the proof.
From Lemma 2, aN

i (a j) is a continuous weakly increasing function of a j. Then φi(aN
i (a j),a j)−aN

i (a j)

and hence Di(a j) is continuous and differentiable for aN
i (a j)> 0 (by the theorem of the maximum). As

ai = 0 is feasible φi(aN
i (a j),a j)−aN

i (a j)≥ φi(0,a j)≥ 0. Likewise setting a j = aNE
j , φi(aNE)−aNE

i ≥ 0.
Hence Di(a j) ≥ 0. By the envelope theorem D′i(a j) = ∂φi(aN

i (a j),a j)/∂a j and so by Assumption 3,
D′i(a j)≥ 0. If ∂y(aN

i (a j),a j)/∂a j > 0 then again from Assumption 3 ∂φi(aN
i (a j),a j)/∂a j > 0 and so

Di(a j) is strictly increasing in a j. Q.E.D.

Proof of Lemma 4. Consider the strategy for each agent of always playing the breakdown Nash
equilibrium actions aNE

i (st), and demanding the entire output. By definition these are short-run mutual
best responses, since for any ai ≥ 0 if i’s demand is positive the game moves to breakdown (as agent j
will demand all output), in which case aNE

i followed by demanding y is by definition optimal, and a zero
demand will lead to a non-positive payoff, which cannot be greater than the payoff from aNE

i followed
by demanding y. Thus a pure-strategy equilibrium exists. Moreover the set of equilibrium payoffs is
compact. Briefly, the action-consumption profiles after any history st must be bounded in equilibrium.
To see this note that assumptions on the action sets and the production function mean that actions can
be restricted to some compact set Ã(st)⊆ℜ2

+ and hence the per-period utility payoffs also belong to a
closed and bounded subset W (st)≡ {w(st) : w(st)+a(st)≥ 0,∑i wi(st)+ai(st)≤ y(a,st)anda ∈ Ã(st)}.
Thus we can restrict the action-consumption pairs after st to a compact subset, say z(st)⊂ℜ4

+. Hence
the product space ∏st z(st) is sequentially compact in the product topology as it is a countable product
of compact spaces. Take any convergent sequence of equilibrium payoffs and the associated sequence
of self-enforcing contracts. The latter has a convergent sub-sequence that converges pointwise to some
limiting contract. Now consider the payoffs after each st associated with this sequence of contracts. By
the dominated convergence theorem the limit must satisfy the self-enforcing constraints (2) since payoffs
are continuous functions of contracts in this topology with δ < 1, and the constraints are weak inequalities.
Thus the limit contract is an equilibrium, and the limiting sequence of equilibrium payoffs has a limit
point which corresponds to an equilibrium. It follows the payoff set V is closed and bounded and hence
compact subset of R2. The existence of optimum contracts then follows by maximizing weighted sums of
utilities, with nonnegative weights, over this set. Q.E.D.

Proof of Lemma 5. The proof proceeds in two parts. The first is to show that one cannot simultaneously
have a2 < aN

2 (a1) and a1 > aN
1 (a2) or vice-versa. Thus the actions must be either above both reaction

functions or below both reaction functions. The next part shows that a < aNE is impossible, ruling out
that both are below the reaction functions since the reaction functions are non-decreasing from Lemma 2.

Step 1: Suppose then that at some date t, a2 < aN
2 (a1) and a1 > aN

1 (a2). Consider a small increase
in a2 of ∆a2 > 0. The consequent increase in output is approximately (∂y(a1,a2)/∂a2)∆a2. Change
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the contract by increasing agent 1’s transfer at tby the increase in her deviation payoff, which is to
a first order approximation D′1(a2)∆a2 = (∂φ1(aN

1 (a2),a2)/∂a2)∆a2 (by the envelope theorem). The
remainder of the extra output (we show this is positive below as agent 2 will be better off) is given to
agent 2. Keep the future unchanged. We now show that these changes meet the constraints and lead to
a Pareto-improvement, contrary to the assumed optimality of the contract. First, agent 1 is no worse
off (in fact better off, given the hold-up assumption) and by construction her constraint is satisfied. For
agent 2, the change in current utility equals the remainder of the output increase less the action cost; to a
first-order approximation this is

(A.1) ∆w2 '
(

∂y(a1,a2)

∂a2
−

∂φ1(aN
1 (a2),a2)

∂a2
−1
)

∆a2.

Since a2 < aN
2 (a1) and ∂ 2φ2/∂a2

2 < 0 on (a2,aN
2 (a1)) (by Assumption 3, given that φ2(a1,aN

2 (a1))> 0),

(A.2)
∂φ2(a1,a2)

∂a2
>

∂φ2(a1,aN
2 (a1))

∂a2
= 1

(where the equality follows by virtue of aN
2 (a1)> 0 so there is an interior solution). Since a1 > aN

1 (a2),
and ∂ 2φ1/∂a1∂a2 ≥ 0, we have

(A.3)
∂φ1(aN

1 (a2),a2)

∂a2
≤ ∂φ1(a1,a2)

∂a2
.

Together (A.2), (A.3) and (1) imply the term in brackets in the right hand side of (A.1) is positive, and
thus for ∆a2 small enough, ∆w2 > 0. Agent 2’s constraint is satisfied as a1 and hence also D2(a1) are
unchanged, while his utility has risen, so a Pareto-improvement has been demonstrated. A symmetric
argument applies if a1 < aN

1 (a2) and a2 > aN
2 (a1).

Step 2: Suppose that (a1,a2)≤ (aNE
1 ,aNE

2 ) with strict inequality for at least one agent, say agent 2, and
consider replacing the actions with the Nash equilibrium actions aNE

i so that output rises from y(a1,a2)

to y(aNE
1 ,aNE

2 ). We give φ1(aNE
1 ,aNE

2 )−φ1(a1,a2) of this increase to agent 1 and the rest to agent 2 (we
shall show that utility does not fall, so consumption does not fall and thus the change is feasible). The
change in per-period utilities are

(A.4) ∆w1 = φ1(aNE
1 ,aNE

2 )−φ1(a1,a2)− (aNE
1 −a1)

and

∆w2 = y(aNE
1 ,aNE

2 )− y(a1,a2)−
(
φ1(aNE

1 ,aNE
2 )−φ1(a1,a2)

)
− (aNE

2 −a2)

≥ φ2(aNE
1 ,aNE

2 )−φ2(a1,a2)− (aNE
2 −a2),
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where the inequality follows from integrating equation (1). By definition of (aNE
1 ,aNE

2 ),

Di(aNE
j ) = φi(aNE

1 ,aNE
2 )−aNE

i +δ ∑
r∈S

πsrDi(aNE
j,r ,r),

for i 6= j. Hence for agent 1

(A.5) D1(aNE
2 )−D1(a2) = φ1(aNE

1 ,aNE
2 )−φ1(aN

1 (a2),a2))− (aNE
1 −aN

1 (a2)),

with a similar expression for agent 2. Using (A.4) and (A.5),

(A.6) ∆w1− (D1(aNE
2 )−D1(a2)) = φ1(aN

1 (a2),a2))−φ1(a1,a2)− (aN
1 (a2)−a1).

By the definition of aN
1 (a2), φ1(aN

1 (a2),a2)− aN
1 (a2) ≥ φ1(a1,a2)− a1 for all a1 ≥ 0. Thus ∆w1−

(D1(aNE
2 )−D1(a2))≥ 0 and the change does not violate the constraint of agent 1. Likewise for agent 2.

To obtain a contradiction, it remains to show that ∆w1, ∆w2 ≥ 0, with at least one strict inequality. As
Di(aNE

j )−Di(a j)≥ 0 by Di(·) non-decreasing, it follows from (A.6) that ∆w1, ∆w2 ≥ 0. Moreover as
0 ≤ a2 < aNE

2 , there is an interior solution for aN
2 (a

NE
1 ) so that ∂φ2(aNE

1 ,aNE
2 )/∂a2 = 1 and then from

Assumption 3 ∂y(aNE
1 ,aNE

2 )/∂a2 > 0 and output increases as a2 is increased. Thus by from Lemma 3,
D′1(a

NE
2 )> 0 and therefore D1(aNE

2 )−D1(a2)> 0, and hence ∆w1 > 0 as required. Q.E.D.

Proof of Lemma 6. (i) If a j < a∗j(ai) then raising a j by ∆a j sufficiently small will not violate agent i’
self-enforcing constraint as Di(·) is continuous, and will produce more output. Giving this extra
output to agent j, the change in his utility is ∆w j ' ((∂y(a1,a2)/∂a j)− 1)∆a j. Since a j < a∗j(ai),
(∂y(a1,a2)/∂a j)> 1 and hence utility is improved without violating any constraint agent j’s deviation
utility is unchanged so his constraint is relaxed. This contradicts the assumed optimality of the initial
contract.
(ii) Suppose for agent 1 say, a1 > a∗1(a2) and c1 > 0. Consider cutting a1 and c1 by the same small
amount, that is ∆c1 = ∆a1 < 0. Then ∆w1 = ∆c1−∆a1 = 0. Transfer this cut in consumption to agent 2
and reduce his consumption by the reduction in output. That is ∆c2 '−∆c1 +(∂y(a1,a2)/∂a1)∆a1 =

−(1− (∂y(a1,a2)/∂a1))∆a1. As (∂y(a1,a2)/∂a1)< 1 by a1 > a∗1(a2), ∆w2 = ∆c2 > 0 showing that a
Pareto-improvement can be found. No constraints are violated as agent 1’s deviation payoff is unchanged
(a2 is held constant) and agent 2’s deviation payoff falls with a1. Q.E.D.

Proof of Lemma 7. By definition a∗2(a1) = argmaxa′2
{y(a1,a′2)− a′2} and by diminishing marginal

product ∂ 2y(a1,a2)/∂a2
2 ≤ 0, so that y(a1,a′2)−a′2 is weakly increasing in a′2 for aN

2 (a1)≤ a′2 ≤ a∗2(a1).
In particular, since aN

2 (a1)≤ a2 ≤ a∗2(a1),

(A.7) y(a1,a2)−a2 ≥ y(a1,aN
2 (a1))−aN

2 (a1).
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Since in breakdown agent 2 receives at most all output,

D2(a1)≡ φ2(a1,aN
2 (a1))−aN

2 (a1)+δ ∑
r

πsrD2(aNE
1,r ,r)

≤ y(a1,aN
2 (a1))−aN

2 (a1)+δ ∑
r

πsrD2(aNE
1,r ,r)(A.8)

≤ y(a1,a2)−a2 +δ ∑
r

πsrD2(aNE
1,r ,r),

where the second inequality follows from (A.7), and since V2,r ≥ D2(aNE
1,r ,r), all r ∈ S, this implies (3) is

satisfied. Next suppose a2 > 0. If aN
2 (a1) = 0, then it follows from a∗2(a1)≥ a2 > 0 that a∗2(a1)> aN

2 (a1)

and hence from Assumption 1, ∂y(a1,a2)/∂a2 > 0 and thus ∂ 2y(a1,a2)/(∂a2)
2 < 0 on (0,a∗2(a1)).

Thus (A.7) holds strictly. If aN
2 (a1)> 0 then y(a1,aN

2 (a1))> 0 and (A.8) is strict by Assumption 3 which
implies that φ2(a1,aN

2 (a1))< y(a1,aN
2 (a1)); so in either case (3) holds strictly. Q.E.D.

Proof of Theorem 1. (i) Assume by contradiction that agent 1 is unconstrained and at̃
1 < a∗1(a

t̃
2),

but that ct
2 > 0 after st for some t < t̃ (where st is composed of the first t + 1 components of st̃).

Assume w.l.o.g. that ct ′
2 = 0 for t < t ′ < t̃ (i.e., choose t so that this is satisfied on st̃). We shall change

the contract at dates t and t̃ (only), and demonstrate an improvement. Consider a small increase in
at̃

1, ∆at̃
1 > 0, and let ∆̃ (' D′2(a

t̃
1)∆at̃

1) be the resulting increase in agent 2’s deviation payoff. To
preserve agent 2’s self-enforcing constraint, transfer ∆̃ from agent 1 at date t̃ (i.e., ∆ct̃

2 = ∆̃), and
allocate the remaining incremental output to agent 1, ∆ct̃

1 ' (∂y(at̃
1,a

t̃
2)/∂a1)∆at̃

1− ∆̃. This is feasible
since ∆ct̃

1 ≥ 0. The argument for this is similar to that in the proof of Lemma 5 (Step 1). Inequality
(1) in Assumption 3, along with ∂φ2(a)/∂a1 ≥ 0 implies ∂φ2(a)/∂a1 ≤ ∂y(a)/∂a1. Then using the
envelope theorem, D′2(a1) = ∂φ2(a1,aN

2 (a1))/∂a1 ≤ ∂φ2(a1,a2)/∂a1 since a2 ≥ aN
2 (a1) (by Lemma 5)

and ∂ 2φ2/∂a1∂a2 ≥ 0. Thus D′2(a1) ≤ ∂y(a)/∂a1 and the result follows from integrating between at̃
1

and at̃
1 +∆at̃

1. Agent 1’s self-enforcing constraint holds as it was slack initially. Thus both self-enforcing
constraints hold at t̃. At the earlier date ct

2 > 0, so the increase in agent 1’s effort can be compensated
at t, and the increase in surplus must imply a Pareto-improvement at t. Specifically: cut agent 2’s
consumption at date t so that ∆ct

2 = −δ t̃−t π̃∆̃ < 0 where π̃ > 0 is the probability of reaching st̃ from
st . This consumption is given to agent 1 so ∆ct

1 =−∆ct
2 > 0. Thus the change in discounted utility for

agent 1 at date t is

∆V1(st) = δ
t̃−t

π̃∆̃+δ
t̃−t

π̃(∆ct̃
1−∆at̃

1)

' δ
t̃−t

π̃∆̃+δ
t̃−t

π̃

((
∂y(at̃

1,a
t̃
2)

∂a1
−1
)

∆at̃
1− ∆̃

)
= δ

t̃−t
π̃

(
∂y(at̃

1,a
t̃
2)

∂a1
−1
)

∆at̃
1

which is positive as at̃
1 is under-efficient by assumption and so ∂y(at̃

1,a
t̃
2)/∂a1 > 1. Likewise the change

for agent 2 is ∆V2(st) = −δ t̃−t π̃∆̃+ δ t̃−t π̃∆̃ = 0. Thus the period t constraints hold as actions are
unchanged, and there is a Pareto-improvement. It remains to check the constraints at periods t ′ for
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t < t ′ < t̃: agent 2’s future utility (at t̃) has increased so his constraints still hold. However agent 1’s utility
at t̃ may have fallen, decreasing her payoff at t ′. Nevertheless, agent 1 gets all consumption so ct ′

1 > 0 and
hence by Lemma 6(ii) at ′

1 ≤ a∗1(a
t ′
2), unless y(at ′) = 0, in which case at ′

1 = 0, so again at ′
1 ≤ a∗1(a

t ′
2). Also

by Lemma 5 at ′
1 ≥ aN

1 (a
t ′
2). Likewise by Lemma 5 at̃

2 ≥ aNE
2 , and we know that agent 1’s constraint holds at

t̃, so Ṽ1(st̃)≥D1(at̃
2)≥D1(aNE

2 ) as D1(·) non-decreasing, where Ṽ1(st̃)≡V1(st̃)+∆ct̃
1−∆at̃

1 is agent 1’s
new utility. In the other states at t̃, the corresponding inequality holds by equilibrium (nothing has been
changed), so continuation utilities after t ′ = t̃−1 satisfy V1,r ≥ D1(aNE

2,r ,r), for all r ∈ S. Lemma 7 can
thus be applied to ensure agent 1’s constraints hold at t̃−1. Working backwards, the same holds for all
t ′ > t. As all the constraints are met a Pareto-improvement has been found.
(ii) We now prove the second part of the theorem. Assume by contradiction that at̃

2 > a∗2(a
t̃
1) but that

ct
2 > 0 after st for some t < t̃ (i.e., earlier on the same history). Assume w.l.o.g. that ct ′

2 = 0 for t < t ′ < t̃
(we can choose t so that this is satisfied on st̃). We shall change the contract at dates t and t̃ (only),
and demonstrate a Pareto-improvement. By Lemma 6(ii) as at̃

2 > a∗2(a
t̃
1) we must have ct̃

2 = 0 and so
ct̃

1 = y(at̃
1,a

t̃
2). Now consider a small change in at̃

2 of ∆at̃
2 < 0, but continue allocating all output to

agent 1. If at̃
1 > 0 then since ct̃

1 = y(at̃
1,a

t̃
2)> 0 and thus at̃

1 ≤ a∗1(a
t̃
2) by Lemma 6(ii) (and at̃

1 ≥ aN
1 (a

t̃
2)

by Lemma 5), agent 1 is initially unconstrained by Lemma 7 and a small cut in the consumption of
agent 1 will not violate his constraint. If on the other hand at̃

1 = 0, then after the change we have, trivially,
at̃

1 ≤ a∗1(a
t̃
2 +∆at̃

2), while aN
1 (a

t̃
2 +∆at̃

2) ≤ aN
1 (a

t̃
2) ≤ at̃

1(= 0) as aN
1 (·) is non-decreasing. So Lemma 7

applies and again agent 1’s constraint must hold. For agent 2 since at̃
1 is unchanged and wt̃

2 is increased
(the cut in effort implies ∆wt̃

2 = −∆at̃
2 > 0), his self-enforcing constraint is satisfied at t̃. Thus both

self-enforcing constraints hold at t̃. Agent 1 is getting all consumption and so satisfies the self-enforcing
constraint at all intervening dates t ′, t < t ′ < t̃, repeating the argument from part (i) of the proof, while
agent 2 is better off due to the improvement at t̃, so his constraints are not violated (as deviation payoffs
are unchanged at t ′). The increase in surplus at t̃ allows for a Pareto-improvement at t: To compensate
agent 1 at date t for any decreased consumption at date t̃, ∆ct̃

1 < 0, let ∆ct
1 =−δ (t̃−t)π̃∆ct̃

2 > 0, where we
denote by π̃ > 0 the probability of reaching st̃ at date t̃ starting from t earlier on the same history. We
take this increase from agent 2, so ∆ct

2 = δ (t̃−t)π̃∆ct̃
1 and since ∆ct̃

1 ' (∂y(at̃
1,a

t̃
2)/∂a2)∆at̃

2 we have that
the change in discounted utility for agent 2 is

∆V2(st)' δ
(t̃−t)

π̃

((
∂y(at̃

1,a
t̃
2)/∂a2

)
−1
)

∆at̃
2 > 0

since ∂y(at̃
1,a

t̃
2)/∂a2 < 1 (as at̃

2 > a∗2(a
t̃
1)) and ∆at̃

2 < 0. This increase at date t implies that both self-
enforcing constraints hold at t (actions are unchanged, so deviation payoffs are unchanged) and hence the
original contract was not optimum. Q.E.D.

Proof of Lemma 8. To show the connection between a joint utility maximizing and current surplus
maximizing self-enforcing contract, it will be useful to define an intermediate case where the action profile
maximizes current surplus for a given set of continuation utilities. We say that the action vector a is myopic
surplus maximizing in state s for continuation utilities (V1,r,V2,r)r∈S if there is an associated consumption
vector c such that (a,c) ∈ argmax(a,c)∈R4

+
(y(a1,a2,s)−a1−a2) s.t. ci−ai +δ ∑r∈S πsrVi,r ≥ Di(a j,s),

and c1 + c2 ≤ y(a1,a2) for i = 1,2, j 6= i. (Myopic surplus maximizing actions are not necessarily
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optimum since they take the continuation utilities as given and do not take into account the trade-off
between actions today and actions in the future.)

Step 1: We show that if ã is myopic surplus maximizing for some (V1,r,V2,r)r∈S with Vi,r ≥ Di(aNE
j,r ,r)

all r ∈S , i, j = 1,2, j 6= i, then

(A.9) y(ã1, ã2,s)− ãi +δ ∑
r∈S

πsrDi(aNE
j,r ,r)≥ Di(ã j,s),

for i, j = 1,2, j 6= i; i.e., giving all output to agent i implies that the current self-enforcing constraint
continues to hold for agent i even if the continuation utilities are replaced with the deviation payoffs. By
adapting the proof of Lemma 5 it is easy to check that ãi ≥ aN

i (ã j) for i, j = 1,2, j 6= i. Next, suppose
ãi > a∗i (ã j). We shall establish a contradiction. If ci > 0 then lowering both ai and ci by an equal small
amount is feasible and does not violate either constraint: agent i is no worse off, and j 6= i is strictly
better off (by the net surplus increase), contrary to assumption. Thus ãi > a∗i (ã j) and ci > 0 is impossible.
If ci = 0 and hence c j = y(ã1, ã2) then lowering ai will lower the consumption of agent j and hence
might violate agent j’s self-enforcing constraint. But ãi > a∗i (ã j) implies y(ã1, ã2)> 0 so c j > 0 and thus
ã j ≤ a∗j(ãi) by the above argument. Suppose that ai is reduced to a∗i (ã j) with agent j still receiving all
the output. Clearly the surplus has increased, and agent i’s utility has risen while Di(ã j) is unchanged, so
that agent i’s self-enforcing constraint is still satisfied. There are two cases to consider.
(i) If ã j ≤ a∗j(a

∗
i (ã j)) then leave a j unchanged at ã j. Thus, as aN

j can only fall with the cut in ai,
aN

j (a
∗
i (ã j))≤ ã j ≤ a∗j(a

∗
i (ã j)). All the conditions of Lemma 7 are satisfied at (a∗i (ã j), ã j), so the current

self-enforcing constraint for agent j holds:

y(a∗i (ã j), ã j)− ã j +δ ∑
r∈S

πsrVj,r ≥ D j (a∗i (ã j)) .

(ii) As ai is reduced a∗j(ai) may have fallen below ã j. If this is the case, cut a j to a∗j(a
∗
i (ã j)). Repeating

the argument just given, agent j’s constraint will be satisfied at (a∗i (ã j),a∗j(a
∗
i (ã j))), while the cut in a j

cannot lead to a violation in agent i’s constraint. So again the changed contract satisfies the self-enforcing
constraints.
In both cases (i) and (ii) the reduction in overinvestment leads to an increase in current surplus, contrary
to the assumption that ã was myopic surplus maximizing. We conclude that ãi > a∗i (ã j) is impossible.
Thus a∗i (ã j)≥ ãi ≥ aN

i (ã j). Thus Lemma 7 can again be appealed to, at ã with continuation utilities set
equal to Di(aNE

j,r ,r), establishing (A.9).

Step 2: Take any myopic surplus maximizing action a for some (V1,r,V2,r)r∈S ; we shall show that given
any alternative continuation utilities (V̂1,r,V̂2,r)r∈S satisfying, for all r ∈ S , V̂1,r + V̂2,r ≥ V1,r +V2,r,
V̂i,r ≥ Di(aNE

j,r ,r), there is a division of y(a1,a2) such that the self-enforcing constraints are satisfied with
the same action a. We need to show that both self-enforcing constraints can still hold with some output
division (ĉ1, ĉ2)≥ 0, where ĉ1 + ĉ2 = y(a1,a2), i.e.,

(A.10) ĉi−ai +δ ∑
r

πsrV̂i,r ≥ Di(a j)
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for i, j = 1,2, j 6= i. By assumption they hold in the equilibrium supporting a:

(A.11) ci−ai +δ ∑
r

πsrVi,r ≥ Di(a j)

for i, j = 1,2 j 6= i. Let i = 1. If (A.10) holds at ĉ1 = 0, then setting ĉ2 = y(a1,a2) guarantees that (A.10)
holds also for agent 2 by Step 1 (because V̂i,r ≥ Di(aNE

j,r ,r) all r). Otherwise choose ĉ1 such that (A.10)
holds with equality for i = 1; by continuity this is possible as (A.10) holds at ĉ1 = y(a1,a2) using Step 1
again. Suppose that (A.10) is then violated for i = 2. Summing the left hand side of (A.10) over i thus
implies

(A.12) y(a1,a2)−∑
i

ai +δ ∑
r

πsr ∑
i

V̂i,r < ∑
i

Di(a j).

But summing (A.11) over i implies that

y(a1,a2)−∑
i

ai +δ ∑
r

πsr ∑
i

Vi,r ≥∑
i

Di(a j),

and since the left hand side is smaller than the left hand side of (A.12) by V̂1,r +V̂2,r ≥V1,r +V2,r, there is
a contradiction. Hence we conclude that there is a division of y(a1,a2) such that (A.10) holds for both
agents.

Step 3: Consider the following putative equilibrium. At date t, in state st , set a to a current joint surplus
maximizing action (i.e., compatible with equilibrium) in this state. Adapting earlier arguments, the
maximizing actions exist. Let (V1,r,V2,r)r∈S be the corresponding continuation utilities from t +1 in this
equilibrium. At time t +1, in any state r, follow an equilibrium that maximizes joint utility from that
point onwards, yielding utilities we denote by (V̂1,r,V̂2,r)r∈S . Clearly a is myopic surplus maximizing
relative to (V1,r,V2,r)r∈S , so by Step 2 there is a split of y(a1,a2) which sustains this as an equilibrium
from t on when (V1,r,V2,r)r∈S is replaced by (V̂1,r,V̂2,r)r∈S since the latter have a maximal sum in each
state and V̂i,r ≥ Di(aNE

j,r ,r), i = 1,2. Note that this must provide maximal joint utility from t since current
joint surplus is maximized at t, and joint utilities are maximal from t +1. Consequently starting from any
state st , a joint utility maximizing equilibrium must involve a current joint net output maximizing action
compatible with equilibrium in state st , for if it did not, replacing it by the equilibrium just constructed
would lead to a higher utility sum. At t +1, since the utility sum is maximal in each state r, repeating
the above argument again confirms that net output is maximal for state r. So a joint utility maximizing
equilibrium must involve a joint net output maximizing action compatible with equilibrium in every state
and date. Q.E.D.

Proof of Lemma 9. By assumption that both constraints bind we have

ci−ai +δ ∑
r

πsrVi,r = Di(a j)
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for i, j = 1,2, i 6= j. Suppose, to the contrary of the claim, that the pair (V1,r′ ,V2,r′) does not maximize
joint utility in at least one successor state r′. We can change the contract as follows. Replace (V1,r′ ,V2,r′)

by (V̂1,r′ ,V̂2,r′) ∈Vr′ such that V̂1,r′+V̂2,r′ >V1,r′+V2,r′ (and recall that we must have V̂i,r′ ≥ Di(aNE
j,r′ ,r

′),
i, j = 1,2, j 6= i), and choose a division ĉ of the current output y(a1,a2) (i.e., holding a constant) such that

(A.13) ĉi−ai +δ ∑
r 6=r′

πsrVi,r +δπsr′V̂i,r′ ≥ Di(a j)

for i, j = 1,2, j 6= i, with a strict inequality for at least one i. This is possible by the fact that if
ĉi = y(a1,a2) then, as ai ≥ aN

i (ã j) by Lemma 5, ai ≤ a∗i (a j) by hypothesis, and Vi,r ≥ Di(aNE
j,r ,r), r 6= r′,

V̂i,r′ ≥ Di(aNE
j,r′ ,r

′), the self-enforcing constraint for agent i must be satisfied (Lemma 7). The argument
then follows the proof of Lemma 8, step 2; however the increase in aggregate utility implies the
constraint (A.13) is strict for one agent. This is a Pareto-improvement, so the original contract could not
have been optimal. Q.E.D.

Proof of Theorem 2. Suppose that Λ(V ) 6= (0,0); otherwise the proposition is trivial.47

(i) Consider first the case where there exists (V1,V2) ∈ Λ(V ) with V1,V2 > 0. Thus in any optimum,
with payoffs (V̂1,V̂2), either V̂1 ≥ V1 > 0, or V̂2 ≥ V2 > 0. We deal first with the former case. In this
optimum, choose t ′ > 0 so that δ t ′w̄/(1− δ ) < V1/2, where w̄ is an upper bound on equilibrium per-
period payoffs (that per-period payoffs are bounded follows from Assumption 1(vi)). Then since the
initial expected discounted utility is V̂1 ≥ V1 it follows that even if utility for agent 1 is as high as
possible after date t ′ there must be some history st , t < t ′, which occurs with positive probability, where
ct

1 ≥ µ1 ≡V1/2t ′ > 0, otherwise the initial utility V1 could not be achieved. For convenience we let st = r.
Since ct

1 ≥ µ1 we have y(at
1,a

t
2,r)≥ µ1 > 0. We next show that this in turn implies a positive probability

that c2 must be greater than a positive bound within a fixed amount of time after st occurs. (a) If y(·,r)
is such that only agent 2 can contribute to output, we have at

2 ≥ ¯
a2 where y(0,

¯
a2,r) = µ1. Let C̃i(st)

denote expected discounted consumption of agent i to date t, conditional on st ; the negative utility from
at

2 > 0 must be compensated (since D2(at
1,r) ≥ 0) by positive consumption now or in the future, that

is C̃2(st) ≥
¯
a2. (b) If, on the other hand, only agent 1 can contribute, at

1 ≥ ¯
a1 where y(

¯
a1,0,r) = µ1.

Then D2(at
1,r)≥ D2(¯

a1,r)> 0, where the strict inequality follows from the hold-up assumption (y must
be increasing in a1). It follows that V (st) ≥ C̃2(st) ≥ D2(¯

a1,r) to maintain agent 2’s self-enforcing
constraint. (c) Finally, if both can contribute, there are two further cases to consider. Define ā1 to be an
upper bound on a1 (recall this exists by Assumption 1(vi)). If y(ā1,0,r)< µ1 then define

¯
a2 > 0 to be

such that y(ā1, ¯
a2,r) = µ1 (this exists by the hypothesis that y(at

1,a
t
2,r)≥ µ1, by y non-decreasing and

by continuity); clearly (by monotonicity) at
2 ≥ ¯

a2, and so C̃2(st) ≥
¯
a2, as in (a) above. If on the other

hand y(ā1,0,r)≥ µ1, define ã1 so that y(ã1,0,r) = µ1. By the hold-up assumption (Assumption 3) and
because y is increasing in a1 when a2 = 0, φ2(ã1,0,r) > 0. Consequently D2(ã1,r) ≥ φ2(ã1,0,r) > 0.
By continuity there exists (

¯
a1, ¯

a2) with
¯
a2 > 0 such that y(

¯
a1, ¯

a2,r) = µ1, with D2(¯
a1,r)≥ D2(ã1,r)/2.

Clearly, either at
1 ≥ ¯

a1 > 0 or at
2 ≥ ¯

a2 > 0. In the case where at
1 ≥ ¯

a1, since D2(at
1,r)≥ D2(¯

a1,r)> 0, it

47 If Λ(V ) = (0,0) current surplus maximizing actions lead to a surplus of 0 at all s, so T = 0 as in equilibrium at
each t ≥ 0 surplus must be zero.
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follows that C̃2(st)≥ D2(¯
a1,r) as in (b) above. In the case where at

2 ≥ ¯
a2, C̃2(st)≥

¯
a2, as in (a) again.

So C̃2(st)≥min{D2(¯
a1,r), ¯

a2}. Thus taking (a) - (c) together, there is a positive lower bound on C̃2(st);
the bound depends on r but we can take its minimum over all r ∈S such that y(a,r) ≥ µ1 for some
a≥ 0; this minimum thus depends only on V1 (fixed in the proof). So, in the same way we showed that
ct

1 ≥ µ1 for some t < t ′, we can show there exists t ′′ ≥ t ′ and µ2 > 0 such that ct̃
2 ≥ µ2 for some t̃ < t ′′

with positive probability. Next, if V̂2 ≥V2, we can repeat the argument in a symmetric fashion. Denote
the minima of µ1 and µ2 over the two cases V̂1 ≥V1 and V̂2 ≥V2 by

¯
µ1 and

¯
µ2, and the maximum of t ′′

by
¯
t ′′. So for both agents, ct

i ≥
¯
µi > 0, for some t <

¯
t ′′ (not necessarily at the same date t for each agent)

with probability at least equal to the minimum probability
¯
π , say, of any

¯
t ′′-period positive probability

history emanating from s0 where
¯
π > 0 as S is finite. Note that

¯
µ1,

¯
µ2,

¯
t ′′, and

¯
π are all independent of

the particular optimum at t = 0.
(ii) If no (V1,V2) ∈ Λ(Vs) exists with V1,V2 > 0, then there exists a unique optimum (V1 > 0,V2 = 0), or
a unique optimum (V1 = 0,V2 > 0), or both points exist as optima. In either case the argument above can
be repeated mutatis mutandis.
Let t̂ (random) denote the earliest date such that both consumptions have been positive, i.e., the first period
for which ct

1 > 0 and ct̃
2 > 0 for t, t̃,≤ t̂. By optimality, whenever s0 occurs on a positive probability

history, utilities must belong to Λ(Vs0). From the above argument and given that all states communicate
so that s0 is recurrent, then we conclude that t̂ is finite almost surely. After t̂, both c1 and c2 have been
positive at some point in the past. From Theorem 1(ii) we know that for t > t̂, at

i ≤ a∗i (a
t
j), i = 1,2.

Suppose that one agent, say agent i, is unconstrained at t > t̂. Then from Theorem 1(i), at
i ≥ a∗i (a

t
j), j 6= i,

whilst from Lemma 6(i), at
j ≥ a∗j(a

t
i). Hence if either agent is unconstrained, at = a∗∗ and actions are

efficient. Inefficiency can only occur if both agents are constrained. But from Lemma 8 and Lemma 9
joint utility and current surplus is maximized thereafter. We conclude then that on any path after t̂ either
actions are always efficient, or there is at most one date at which actions are not efficient, but this is then
followed by the current surplus maximizing actions thereafter. Q.E.D.

Proof of Theorem 3. To simplify notation where there is no ambiguity we shall write a∗i (a
t
j) as a∗i and

suppress the current state st .

Step 1: We show first that if at t ≥ 0, ct
1 = 0, we have at

1 ≥ a∗1 and at
2 ≤ a∗2. Moreover, if t ≥ 1 and either

inequality is strict, then if ct−1
1 = 0, at−1

1 > a∗1. (And likewise if the agent indices are swapped.) To see
the first part of the claim, note that by at

i ≥ aNE
i > 0, i = 1,2, yt > 0 and so ct

2 > 0; thus at
2 ≤ a∗2 from

Lemma 6(ii). Moreover, by Lemma 7, agent 2 is unconstrained (as at
2 > 0); hence at

1 ≥ a∗1. For the second
part of the claim, we shall consider changing, say increasing, agent 1’s utility at t a small amount by
decreasing a1 and at the same time (as this will have relaxed agent 1’s constraint) increasing a2 so that
agent 1’s constraint is unaffected (so if it initially binds, it remains satisfied but binding), while holding
c1 = 0, and the future contract fixed. Formally, let V t

i denote current (to t) discounted equilibrium utility
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and V t+1
i,r the same at t +1 in state r. Then consider the equations

V1 +a1 = δ ∑
r∈S

πst rV
t+1
1,r ,

V2− y(a1,a2)+a2 = δ ∑
r∈S

πst rV
t+1
2,r ,

V1−D1(a2) =V t
1−D1(at

2).

(A.14)

These are satisfied by definition at (V1,V2,a1,a2) = (V t
1 ,V

t
2 ,a

t
1,a

t
2) (noting that the equality c2 = y(a1,a2)

has been used to substitute out for c2 in the second line). As the functions y(a1,a2), D1(a2) and
D2(a1) are continuously differentiable, and ∂D1(at

2)/∂a2 6= 0 (as ∂D1(at
2)/∂a2 > 0 from Lemma 3, and

given 0 < at
2 ≤ a∗2 implies ∂y(at

1,a
t
2)/∂a2 > 0), the implicit function theorem asserts the existence of

continuously differentiable functions a1(V1), a2(V1) and V2(V1) in an open interval around V t
1 such that

a1(V t
1) = at

1 etc. which satisfy (A.14), and such that

(A.15) V ′2(V
t
1) =−

∂y(at
1,a

t
2)

∂a1
−

(
1− ∂y(at

1,a
t
2)

∂a2

)
∂D1(at

2)
∂a2

.

Agent 2 is unconstrained so remains unconstrained for small changes in V1 away from V t
1 , the value at the

optimum, while the third line of (A.14) ensures that agent 1’s constraint holds. Therefore the continuation
contracts from date t, defined as V1 is varied locally (i.e., with a and c2 varying and holding the future
fixed), are self-enforcing, and V2(V1) gives agent 2’s utility from each such contract. Now suppose that
either inequality is strict, i.e., at

1 > a∗1 or at
2 < a∗2. Then V ′2(V

t
1) > −1 (recall ∂D1(at

2)/∂a2 > 0). At
t− 1, suppose that at−1

1 ≤ a∗1. A small increase in at−1
1 of ∆ > 0 holding ct−1

1 = 0 (recall ct−1
1 = 0 by

hypothesis), leads to an increase in agent 2’s payoff of at least, to a first-order approximation, ∆ (since
∂y/∂a1 ≥ 1) while agent 1 can be compensated at t by a value of V1 satisfying (V1−V t

1) = ∆/δπst−1st , so
that agent 2’s utility changes by approximately ∆+δπst−1stV

′
2(V1)(V1−V t

1)> 0. Agent 1’s constraint at
t−1 holds: her utility is held constant and her deviation payoff is unchanged (at−1

2 is unchanged); and
agent 2’s constraint must hold by Lemma 7 (ct−1

1 = 0). By construction of the contracts defined for each
V1 the constraints hold from t. Thus a Pareto-improvement has been found for ∆ small enough, contrary
to the assumed optimality. Hence at−1

1 > a∗1.

Step 2: Suppose at a positive probability st ′ , t ′ ≥ 0, that at ′
1 > a∗1. Then we have ct

1 = 0 for all t ≤ t ′ (by
Lemma 6(ii) and Theorem 1(ii)). However, at ′

1 > a∗1 then implies by repeated application of Step 1 that
at

1 > a∗1 for all t < t ′. Moreover as ct
2 > 0 for all t ≤ t ′, at

2 ≤ a∗2 for all t ≤ t ′. Hence Phase 1 conditions
are satisfied for all t ≤ t ′ and for i = 1. By the same logic, if at any point t ′ the Phase 2 conditions
at ′ ≤ a∗ hold, they must hold at all subsequent positive probability histories, since a violation (i.e., at

i > a∗i
for t > t ′ and some i) would imply that at ′

i > a∗i also. Thus any positive probability st ′ must satisfy the
two-phase property up to t ′. The fact that t̃ in the statement of the theorem is a.s. finite follows from the
argument in the proof of convergence that the date at which both consumptions have been positive is
itself a.s. finite (as both consumptions positive implies at ≤ a∗ by Theorem 1(ii)).
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Step 3: Next, we consider Phase 2, after the initial period t̃. Suppose that at t̃ +1 in some state r with
πst̃ r > 0 at least one constraint does not bind. Suppose w.l.o.g. that agent 2 is unconstrained and we
can repeat the argument of Step 1, with c1 again being held constant, but now at a possibly positive
level. Again we have a locally differentiable relationship between utilities arising from self-enforcing
contracts at t̃ +1, with slope V ′2(V

t̃+1
1 ) given by (A.15). As agent 2 is unconstrained at̃+1

1 ≥ a∗1, and by
Phase 2, at̃+1

1 ≤ a∗1, so at̃+1
1 = a∗1. Consequently if at̃+1

2 < a∗2, then V ′2(V
t̃+1
1 ) > −1, and repeating the

argument at the end of Step 1, at̃
1 > a∗1, which contradicts the definition of t̃. So at̃+1

2 = a∗2. Thus it
must be (if either agent is unconstrained at t̃ + 1) that at̃+1 = a∗∗. It follows that if at̃+1 6= a∗∗, both
agents are constrained, and it cannot be that ct̃+1

i = 0 for either agent as that would imply agent j 6= i is
unconstrained by Lemma 7 (as at̃+1

j > 0). Hence the only alternative is that both are constrained, and
ct̃+1

i > 0, i = 1,2.

Step 4: Moreover if this latter is the case (at̃+1 6= a∗∗, with both being constrained, and ct̃+1
i > 0, i = 1,2),

it cannot be that at̃+1
i = a∗i for either i = 1 or 2. Suppose to the contrary and that w.l.o.g. at̃+1

1 = a∗1. Again
we can construct a family of self-enforcing contracts by varying the contract only at t̃ +1. Consider the
equations

V1− c1 +a1 = δ ∑
r∈S

πsrV t̃+2
1,r ,

V2− y(a1,a2)+ c1 +a2 = δ ∑
r∈S

πsrV t̃+2
2,r ,

V1−D1(a2) = 0,

V2−D2(a1) = 0,

(A.16)

where V t̃+2
i,r is continuation utility for i on the equilibrium path from t̃ + 2 in state r. These are sat-

isfied at (V t̃+1
1 ,V t̃+1

2 ,ct̃+1
1 ,at̃+1

1 ,at̃+1
2 ). As the functions y(a1,a2), D1(a2) and D2(a1) are continuously

differentiable, the implicit function theorem asserts, provided that

(A.17)
∂D1(at̃+1

2 )

∂a2

(
1+

∂D2(at̃+1
1 )

∂a1
−

∂y(at̃+1
1 ,at̃+1

2 )

∂a1

)
6= 0,

the existence of continuously differentiable functions c1(V1), a1(V1), a2(V1) and V2(V1) in an open
interval around V t̃+1

1 such that c1(V t̃+1
1 ) = ct̃+1

1 etc. which satisfy equation (A.16). As at̃+1
1 = a∗1,

∂y(at̃+1
1 ,at̃+1

2 )/∂a1 = 1, and as ∂Di(at̃+1
j )/∂a j > 0 (from Lemma 3, given that ∂y(aN

i (a
t̃+1
j ),at̃+1

j )/∂a j >

0 by monotonicity of y(·) and aN
i (a

t̃+1
j )> 0, the latter following from at̃+1

j ≥ aNE
j > 0 and the nondecreas-

ing reaction function) it follows that (A.17) holds. Since ct̃+1
1 > 0 and ct̃+1

2 > 0, nonnegativity constraints
on consumption will also hold in an open interval around V t̃+1

1 , and the self-enforcing constraints hold
(by the third and fourth lines of (A.16)). Hence holding the future contract fixed, but varying V1, varies
the current contract according to c1(V1), a1(V1), a2(V1), and traces out a series of self-enforcing contracts
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such that agent 2’s discounted utility is V2(V1), with

V ′2(V
t̃+1
1 ) =−

∂D2(at̃+1
1 )

∂a1

(
1+ ∂D1(at̃+1

2 )
∂a2

− ∂y(at̃+1
1 ,at̃+1

2 )
∂a2

)
∂D1(at̃+1

2 )
∂a2

(
1+ ∂D2(at̃+1

1 )
∂a1

− ∂y(at̃+1
1 ,at̃+1

2 )
∂a1

) .
As at̃+1

2 < a∗2, ∂y(at̃+1
1 ,at̃+1

2 )/∂a2 > 1, so given ∂y(at̃+1
1 ,at̃+1

2 )/∂a1 = 1 it follows that V ′2(V
t̃+1
1 ) > −1,

which we have shown is impossible as again it would imply at̃
1 > a∗1. Hence a contradiction, and therefore

if both agents are constrained it is concluded that at̃+1
i < a∗i ≤ a∗∗i , i = 1,2. Q.E.D.

Proof of Theorem 4. Suppose to the contrary that at
1 > a∗1 for some st . From Lemma 6(ii), ct

1 = 0.
Agent 1’s optimal current payoff from defaulting is just the Nash breakdown payoff: φ1(aNE

1 ,st)−aNE
1 .

We thus have equilibrium current utility, wt
1, is less than this breakdown payoff, as aNE

1 ≤ a∗1 < at
1 and ct

1 =

0≤ φ1(aNE
1 ,st). Denote this negative surplus by χ t ≡ wt

1− (φ1(aNE
1 ,st)−aNE

1 )< 0. Agent 1’s discounted
utility is V1(st) = wt

1 +δ ∑st+1∈S πst st+1V1(st+1), so defining the discounted surplus as V S1(st)≡V1(st)−
D1(st) we have

(A.18) V S1(st) = χ(st)+δ ∑
st+1∈S

πst st+1V S1(st+1)≥ 0.

From equation (A.18) it follows that there is at least one state at date t + 1 with πst st+1 > 0 such that
V S1(st+1)≥−χ(st)/δ > 0. Suppose that either at+1

1 = 0 or at+1
1 > a∗1. In the former case, f (at+1

1 ,st+1) =

0, so wt+1
1 = 0. In the latter case, from Lemma 6(ii), ct+1

1 = 0, so wt+1
1 < 0. Consequently, there must, by

repeating the earlier logic, be another successor state at date t +2 with πst+1st+2 > 0 such that continuation
surplus V S1(st+2)≥−χ(st)/δ 2. We can repeat this argument if again either at+2

1 = 0 or at=2
1 > a∗1. Since

continuation surplus must be bounded, this can only happen a fixed number of times. Thus we must have
(along such a path) in finite time t ′ > t, 0 < at ′

1 ≤ a∗1(st ′) and V S1(st ′)> 0 for the first time. Suppose first
this happens at t ′ = t + 1. Thus in this state at t + 1, agent 1 is unconstrained. Consider frontloading
agent 1’s utility by increasing her action at t+1 in state st+1 by ∆ > 0 and reducing it by δπst st+1∆ at date t
to compensate (holding consumption constant). Agent 2’s utility changes (to a first-order approximation)
by−(∂ f (at

1,st)/∂a1)δπst st+1∆+δπst st+1(∂ f (at+1
1 ,st+1)/∂a1)∆ which is positive by virtue of at

1 > a∗1 (so
∂ f (at

1,st)/∂a1 < 1) and 0 < at+1
1 ≤ a∗1(st+1) (so ∂ f (at+1

1 ,st+1)/∂a1 ≥ 1). No constraints are violated by
this: agent 1 is unconstrained at t +1 (V S1(st+1)> 0) so for ∆ small her constraint is maintained; agent 2
receives the extra output at t +1 and by Assumption 3 his breakdown payoff increases by at most this
amount, so his constraint holds. At t there is a Pareto-improvement and agent 2’s breakdown payoff has
not increased (and agent 1’s is constant) so again the constraints hold. Thus we have a contradiction. The
remaining possibility is that t ′ > t +1. A similar construction will lead to a Pareto-improvement at t, but
now we have additionally to worry about constraints for periods t̂ between t and t +1. By construction
V S1(st̂)> 0 along the entire path, so for ∆ small enough agent 1’s continuation surplus remains positive.
Agent 2’s utility is backloaded, so his constraints are relaxed. Again we have a contradiction. Q.E.D.

Proof of Theorem 5. As usual we drop time superscripts etc. where no ambiguity arises. First,
consider any self-enforcing contract in the model without savings, that is (using the shorthand notation
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yt = y(a(st),st), etc.), where ct
i = χ t

i ∈ [0,yt ] for all t ≥ 0. Since the contract is self-enforcing V t
i ≥Di(at

j).
This contract is self-enforcing when savings are possible as it specifies that transfers are consumed
immediately; that is, V t

i ≥ Di(at
j)+ St

i since in this putative equilibrium St
i = 0, and so the deviation

payoffs are unchanged (agents can do no better than consume current transfers when they deviate).

To establish the converse, it is sufficient to start from a Pareto-efficient equilibrium in the model with
savings (existence follows along the lines of the proof of Lemma 4). We show that the same ex ante
utilities can be generated in a self-enforcing contract without savings. The proof proceeds in four stages.
First we show that it is feasible to change transfers over the first T periods of the contract to satisfy the
three properties outlined in the text. Second we show that there exists a limit contract which satisfies
these properties. Thirdly we modify the changed contract to eliminate some potential overinvestment.
Lastly we show that this new contract satisfies the self-enforcing constraints.

Step 1: In general for any efficient self-enforcing contract with savings we adopt a similar procedure to the
example in the text and working backwards from some date T ≥ 1 make a sequence of transfer changes
∆χi(st ,T ) at each st , t ≤ T , where T is the last date at which changes are to be made (∆χi(st ,T ) = 0 for
t > T ). Keep actions fixed and define the expected discounted change in transfers for agent i from t to be

(A.19) θi(st ,T ) = ∆χi(st ,T )+E

[
T

∑
τ=t+1

δ
τ−t

∆χi(sτ ,T )|st

]
for t ≤ T .

Since these are transfers between the two agents we have θi(st ,T ) =−θ j(st ,T ), i 6= j. At each date t ≤ T
the changes are made to make transfers non-negative, and to the maximum extent possible, to compensate
for the subsequent changes along successor histories. In other words, given the changes which have been
made from t +1 until T , the problem at t ≥ 1 is to choose ∆χi(st ,T ) to minimize |θi(st ,T )| subject to
0 ≤ χi(st)+∆χi(st ,T ) ≤ y(a(st),st). For each T and history st , t ≤ T , this process satisfies the three
properties identified in the text: the new transfers are non-negative, if the discounted transfers of an
agent falls (θi(st ,T ) < 0) then she is allocated all of the current output (correspondingly θi(st ,T ) > 0
implies χi(st)+∆χi(st ,T ) = 0), and we shall now show that the initial discounted transfer distribution is
unchanged.

As the largest possible transfer is constrained by the inherited savings,−ST
i ≤ χi(sT )≤ yT +ST

j , and as
savings are non-negative we have for each sT that ST

i ≥max{0,∆χi(sT ,T )}, i = 1,2. This says that since
the original allocation was feasible whichever agent is called upon to make the transfer had sufficient
savings to make that transfer. From θi(sT ,T )≡ ∆χi(sT ,T ), we get −ST

j ≤ θi(sT ,T )≤ ST
i .

Next suppose that at t + 1, −St+1
j ≤ θi(st+1,T ) ≤ St+1

i , all st+1. We shall establish the induction
step that −St

j ≤ θi(st ,T ) ≤ St
i for all st . When θi(st ,T ) = −θ j(st ,T ) = 0 it follows trivially. Thus

suppose that at st (considered fixed for the following argument) θi(st ,T )> 0. There are two cases. (a)
θi(st ,T )+ χi(st) < 0. Then by feasibility St

i ≥ −χi(st) > θi(st ,T ). (b) θi(st ,T )+ χi(st) ≥ 0. Define
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θ i(st+1,T ) := maxst+1 θi((st ,st+1),T ). We have

St
i ≥ (1+ r)−1St+1

i −χi(st)≥ (1+ r)−1
θ i(st+1,T )−χi(st)

≥ (1+ r)−1
δ
−1 (

θi(st ,T )−∆χi(st ,T )
)
−χi(st)

= (1+ r)−1
δ
−1 (

θi(st ,T )+χi(st)
)
−χi(st)

≥ θi(st ,T ).

The first inequality follows as St+1
i ≤ (1+ r)(χi(st)+ St

i), the second from the induction assumption
St+1

i ≥ θ i(st+1,T ), the third from ∆χi(st ,T )≥ θi(st ,T )−δθ i(st+1,T ) (which follows from (A.19) and
the definition of θ i(st+1,T )), the equality from χi(st)+∆χi(st ,T ) = 0 (recall θi(st ,T ) > 0 implies a
modified transfer of zero), and the last inequality as δ (1+ r)≤ 1 and θi(st ,T )+χi(st)≥ 0.

We have established that θi(st ,T )≤ St
i whenever θi(st ,T )> 0, and so −St

j ≤ θi(st ,T )≤ St
i . It follows

that St
j ≥−θi(st ,T ) = θ j(st ,T )≥−St

i , so the bounds apply also for θ j(st ,T )< 0. This completes the
induction argument, and at date 0, from S0

1 = S0
2 = 0, we therefore have θi(st ,T ) = 0, i = 1,2. That is,

the initial discounted transfer distribution is unchanged, as was to be shown.

Step 2: We know the action space is bounded (see Lemma 4), so output is also bounded. Then there is
some number B such that the sum of current output (at t) and total continuation utility from date t +1 on
discounted to date t, is bounded above. Hence, denoting utility from the end of t (i.e., gross of action
costs) by Ṽ t

i , we have Ṽ t
1 +Ṽ t

2 ≤ B+St
1 +St

2. We also have Ṽ t
i ≥ St

i as agent i can guarantee a utility at
least equal to inherited resources. Then if the equilibrium transfer from i to j is B+ ε for ε > 0, we must
have Ṽ t

j ≥ B+ε +St
j since j could just consume the current transfer and inherited resources. But then we

have Ṽ t
i ≤ St

i− ε < St
i which is impossible. Thus transfers are bounded by B.

For each T we have defined ∆χi(st ,T ) for all st (with ∆χi(st ,T ) = 0 for t > T ). Consider now the
sequence of the changed transfers as T → ∞; given that actions and transfers are bounded, we can use
sequential compactness in the product topology (along the lines of Lemma 4) to guarantee the existence
of a convergent subsequence T (p) for p = 1,2, . . .. The limit of this subsequence then gives us our
changed contract. That is we denote ∆χi(st) := limp→∞ ∆χi(st ,T (p)) and define the changed contract as
χ̃i(st) := χi(st)+∆χi(st). The limit changes satisfy the same properties as above at all dates. Since the
transfers converge to some limit so too does the discounted value of the expected changes θi(st ,T ) (as it
is a continuous function of these changes), and write θi(st) := limp→∞ θi(st ,T (p)). This limit too satisfies
the above property that it is positive only when the new transfer is zero and is negative only when the
agent receives all the output. Finally, we specify that there is no saving, so that all transfers are consumed
immediately.

Step 3: Possibly at st the modified contract has χ̃i(st) = y(at(st),st) and ai(st) > a∗i (a j(st),st). Never-
theless it is feasible to reduce ai(st) to a∗i (a j(st),st) and simultaneously reduce χ̃i(st) by the consequent
change in output. That is, we change the contract (again) for all such histories so the new actions and
transfers satisfy âi(st) = a∗i (a j(st),st) and χ̂i(st) = y(a∗i (a j(st),st),a j(st),st). This raises the utility of
agent i as inefficiency has been reduced (and the incentive constraint of agent j is relaxed because ai has
fallen). After having made these changes denote the changed continuation utilities by Ûi(st) and V̂i(st).



DYNAMIC RELATIONAL CONTRACTS 50

Step 4: First consider st such that θi(st)≥ 0. Also in the original contract Vi(st)≤Ui(st)+St
i . Since after

step 3 the contract satisfies Ûi(st)≥Ui(st)+θi(st) (the inequality is strict if actions have been reduced
because of overinvestment as indicated in step 3) and the new contract has no saving,

V̂i(st) = Ûi(st)≥Ui(st)+θi(st)≥Vi(st)−St
i .

It then follows from the original default constraint (4) that V̂i(st)≥ Di(a j(st))≥ Di(â j(st)), where the
final inequality follows since a j(st)≥ â j(st) by the changes made to actions above. Hence the incentive
constraint is satisfied.

Next consider the case where θi(st)< 0 and hence χ̂i(st) = y(âi(st),a j(st)). (Since we know θ j(st)> 0
and hence χ̃ j(st) = 0 we know that the action of agent j is unchanged.) We have (dropping the date
and state notation) that ai ≥ aN

i (a j) from Lemma 5 as this result applies independently of any savings.
Now apply the logic of Lemma 7 to show that the agent’s incentive constraint holds. First, χ̂i− âi ≥
φi(aN

i (a j),a j)−aN
i (a j), so there is no short-run gain to deviating (this follows as aN

i (a j)≤ âi ≤ a∗i (a j)

and therefore y(âi,a j)− âi ≥ y(aN
i (a j),a j)−aN

i (a j), and from y(aN
i (a j),a j)≥ φi(aN

i (a j),a j)). We also
need to show that for all st+1, V̂i(st ,st+1) ≥ Di(aNE

j ). First we note that if θi(sτ) < 0 then the same
argument applies and (dropping sτ etc.) we have χ̂i− âi ≥ φi(aN

i (a j),a j)−aN
i (a j)≥ φi(aNE)−aNE

i since
âi ≥ aNE

i (ai ≥ aNE
i from Lemma 5 again, and if âi < ai, âi = a∗i (a j)≥ aNE

i (a j)≥ aNE
i (aNE

j ) = aNE
i from

Lemma 2 and aNE
i (·) non-decreasing) and φi non-decreasing. Secondly, if θi(sτ)≥ 0 then the argument

in the previous paragraph gives V̂i(sτ)≥ Di(a j(sτ))≥ Di(aNE
j ) as a j(sτ)≥ aNE

j . Thus the continuation
utility is no less than the breakdown equilibrium along all future paths and hence V̂i(st ,st+1)≥ Di(aNE

j )

as required. Thus Lemma 7 applies and the incentive constraint of the agent who gets all the output holds.

To conclude, we have constructed a self-enforcing contract which offers each agent at least as much ex
ante utility as the original contract and there are no savings. It satisfies the incentive constraints in the
model without savings and thus is self-enforcing in that model. Q.E.D.
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