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Abstract

Reinforcement learning offers a general framework to explain reward related learning in artificial and biologi-
cal motor control. However, cur-rent reinforcement learning methods rarely scale to high dimensional movement
systems and mainly operate in discrete, low dimensional domains like game-playing, artificial toy problems, etc.
This drawback makes them unsuitable for application to human or bio-mimetic motor control. In this poster, we
look at promising approaches that can potentially scale and suggest a novel formulation of the actor-critic algo-
rithm which takes steps towards alleviating the current shortcomings. We argue that methods based on greedy
policies are not likely to scale into high-dimensional domains as they are problematic when used with function
approximation a must when dealing with continuous domains. We adopt the path of direct policy gradient based
policy improvements since they avoid the problems of unstabilizing dynamics encountered in traditional value
iteration based updates. While regular policy gradient methods have demonstrated promising results in the do-
main of humanoid motor control, we demonstrate that these methods can be significantly improved using the
natural policy gradient instead of the regular policy gradient. Based on this, it is proved that Kakades average
natural policy gradient is indeed the true natural gradient. A general algorithm for estimating the natural gra-
dient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges with probability one to the
nearest local minimum in Riemannian space of the cost function. The algorithm outperforms non-natural policy
gradients by far in a cart-pole balancing evaluation, and offers a promising route for the development of reinforce-
ment learning for truly high-dimensionally continuous state-action systems. Keywords: Reinforcement learning,
neuro-dynamic programming, actor-critic methods, policy gradient methods, natural policy gradient

1 Introduction
Reinforcement learning algorithms based on value function approximation with discrete lookup table parameter-
ization have been highly successful. However, when applied with continuous function approximation, many of
these algorithms failed to generalize, and few convergence guarantees could be obtained [15]. The reason for this
problem can largely be traced back to the greedy or ε-greedy policy update of most techniques, as it does not ensure
a policy improvement when applied with an approximate value function [5]. During a greedy update small errors in
the value function can cause large changes in the policy which in return cause large changes in the value function.
This process, when applied repeatedly, can result in oscillations or divergence of the algorithms. Even in simple
toy systems, such behavior can be shown for most of the well-known greedy reinforcement learning algorithms
[2, 5].

As an alternative to greedy reinforcement learning, policy gradient methods have been suggested. Policy
gradients have rather strong convergence guarantees, even when used in conjunction with function approximation
for value functions, and recent results created a theoretically solid framework for policy gradient estimation from
sampled data [16, 10]. However, even when applied to simple examples with rather few states, policy gradient
methods often turn out to be quite inefficient [9], partially caused by the large plateaus in the expected return
landscape where the gradients are small and often do not point towards the optimal solution. A simple example
that demonstrates this behavior is given in Fig. 1.

Similar as in supervised learning, the steepest ascent in Riemannian space [1], called the ‘natural’ policy
gradient, turns out to be significantly more efficient than normal gradients. Such an approach was first suggested
for reinforcement learning as the ‘average natural policy gradient’ by Kakade [8], and subsequently shown in
preliminary work to be the true natural policy gradient [13, 4]. In this paper, after a brief introduction to our
framework of reinforcement learning in Section 2, we take this line of reasoning one step further in Section 3 by

1

ttotterd
Typewritten Text
Peters, J., Vijayakumar, S., & Schaal, S. (2003). Scaling Reinforcement Learning Paradigms for Motor Control. In Proc. 10th Joint Symposium on Neural Computation, UC Irvine.



Figure 1: When plotting the expected return landscape, the differences between ‘vanilla’ and natural policy gradi-
ents become apparent for simple examples (a-b). ‘Vanilla’ policy gradients (c) point onto a plateau at θ2 = 0, while
natural policy gradients direct to the optimal solution (d). The gradients are normalized for improved visability.

introducing the novel Natural Actor-Critic architecture which, under mild assumptions, converges to the next local
minimum in Riemannian space with probability 1. Furthermore, in Section 4, we show that several successful
previous reinforcement learning methods, including Sutton et al.’s original Actor-Critic, can be seen as special
cases or approximations of this more general architecture. The paper concludes with empirical evaluations that
demonstrate the effectiveness of the suggested methods in Section 5.

2 Markov Decision Processes
We assume that the underlying control problem is aMarkov Decision Process (MDP) in discrete time with contin-
uous state set X = Rn, and a continuous action set U = Rm [5]. The system is at an initial state x0 ∈ X at time
t = 0 drawn from the start-state distribution p(x0). At any state xt ∈ X at time t, the actor will choose an action
ut ∈ U by drawing it from a stochastic, parameterized policy π(ut|xt) = p(ut|xt,θ) with parameters θ ∈ RN ,
and the system transfers to a new state xt+1 drawn from the state transfer distribution p(xt+1|xt,ut). The system
yields a scalar reward rt = r(xt,ut) ∈ R after each action. We assume that the policy πθ is continuously differ-
entiable with respect to its parameters θ, and that for each considered policy πθ, a state-value function V π(x), and
the state-action value function Qπ (x,u) exist and can be defined by

V π(xi) = E
{∑∞

t=0γ
trt+i

∣∣ xi

}
, Qπ (xi,ui) = E

{∑∞
t=0γ

trt+i

∣∣ xi,ui

}
, (1)

where γ ∈ [0, 1) denotes the discount factor. It is assumed that some basis functions φ(x) are given so that the
state-value function can be approximated with linear function approximation V π(x) = φ(x)T v. The general goal
is to optimize the expected return

J(θ) = E
{

(1 − γ)
∑∞

t=0γ
trt

∣∣ θ
}

=
∫

Xdπ(x)
∫

Uπ(u|x)r(x,u)dudx, (2)

where dπ(x) = (1 − γ)
∑∞

t=0 γ
tp(xt = x) denotes the discounted state distribution.

3 Natural Actor-Critic
Actor-Critic and many other policy iteration architectures consist of two steps, a policy evaluation step and a
policy improvement step. The main requirements for the policy evaluation step are that it makes efficient usage
of experienced data and converges with probability 1 to a good value function approximation of the current policy
within the representational power of the value function parameterization. The policy improvement step is required
to improve the policy on every step until convergence to a (local) optimum of the expected return while, on this
way, taking a short trajectory in parameter space of the policy.

3.1 Actor Improvements with Natural Policy Gradient Updates
The requirements on the policy improvement step rule out greedy methods as, at the current state of knowledge,
a policy improvement for approximated value functions cannot be guaranteed, even on average. ‘Vanilla’ policy
gradient improvements (see e.g., [16, 10]) which follow the gradient∇θJ(θ) of the expected return function J(θ)
(where∇θ denotes the derivative with respect to parameters θ) often get stuck in plateaus as demonstrated in [9].
Natural gradients ∇̃θJ(θ) avoid this pitfall as demonstrated for supervised learning problems by Amari [1], and
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suggested for reinforcement learning by Kakade [8]. These methods do not follow the steepest direction in the
Euclidean space of the parameters but the steepest direction in Riemannian space given by

∇̃θJ(θ) = G−1(θ)∇θJ(θ), (3)

where G(θ) denotes the Fisher information matrix. It is guaranteed that the angle between natural and ordinary
gradient is never larger than ninety degrees, i.e., convergence to the next local optimum can be guaranteed. The
gradient in Euclidean space is given by the policy gradient theorem (see e.g., [16, 10]),

∇θJ(θ) =
∫

Xdπ(x)
∫

U∇θπ(u|x) (Qπ(x,u) − bπ(x)) dudx, (4)

where bπ(x) denotes a baseline. [16] and [10] demonstrated that in Eq. (4), the term Qπ(x,u) can be replaced by
a compatible function approximation

fπ
w(x,u) = ∇θ log π(u|x)T w, (5)

parameterized by the vector w, without affecting the unbiasedness of the gradient estimate and irrespective of the
choice of the baseline bπ(x). However, as mentioned in [16], the baseline may still be useful in order to reduce
the variance of the gradient estimate when Eq. 4 is approximated from samples. Based on Eqs.(4, 5), we derive an
estimate of the policy gradient as

∇θJ(θ) =
∫

Xdπ(x)
∫

Uπ(u|x)∇θ log π(u|x)∇θ log π(u|x)T dudx w = F (θ)w. (6)

Since π(u|x) is chosen by the user, even in sampled data, the integralF (θ,x) =
∫

U π(u|x)∇θ log π(u|x)∇θ log π(u|x)T du
can be evaluated analytically or empirically without actually taking all actions. It is also noteworthy that the base-
line does not appear in Eq. 6 as it integrates out, thus eliminating the need to find an optimal selection of this open
parameter. Nevertheless, the estimation of F (θ) =

∫
X dπ(x)F (θ,x)dx still requires expensive roll-outs since

dπ(x) is not known; these roll-outs can become a severe bottleneck. However, Equation (6) has more surprising
implications for policy gradients, when examining the meaning of the matrix F (θ) in Eq.(6). Kakade [8] argued
that F (θ,x) is the point Fisher information matrix for state x, and that F (θ) =

∫
Xdπ(x) F (θ,x)dx, therefore,

denotes the ‘average Fisher information matrix’. However, going one step further, we demonstrate in Endnote1
that F (θ) is indeed the true Fisher information matrix and does not have to be interpreted as the ‘average’ of the
point Fisher information matrices. Eqs.(6) and (3) combined imply that the natural gradient can be computed as

∇̃θJ(θ) = G−1(θ)F (θ)w = w, (7)

since F (θ) = G(θ) (c.f. Endnote 1). The resulting policy improvement step is thus θi+1 = θi + αw where α
denotes a learning rate. Under an appropriate choice of α, this update converges to the next local minimum in
Riemannian space with probability 1. The estimation of the natural gradientw is treated in Section 3.2.

When comparing these different policy gradients already for a simple continuous dynamic systems as in Fig-
ure 1, the ‘vanilla’ policy gradient will reach plateaus with low exploration (i.e., small σ) before the optimal
controller gain k is computed, leading to premature convergence. On the other hand, the natural gradient points
towards the optimal solution. For visibility, the gradients are normalized.

3.2 Critic Estimation with Compatible Policy Evaluation: LSTD-Q(λ)
The critic evaluates the current policy π in order to provide the basis for an actor improvement, i.e., the change∆θ
of the policy parameters. As we are interested in natural policy gradient updates∆θ = αw, we wish to employ the
compatible function approximation fπ

w(x,u) from Eq.(5) in this context. Unfortunately, an obstacle in this regard
is that the compatible function approximation fπ

w(x,u) is mean-zero, i.e.,
∫

Uπ(u|x)fπ
w(x,u)du =

∫
U∇θπ(u|x)T duw = 0, (8)

since differentiating
∫

Uπ(u|x)du = 1 implies
∫

U∇θπ(u|x)T du = 0. Thus, fπ
w(x,u) represents in general an

advantage function Aπ(x,u) = Qπ(x,u) − V π(x). The advantage function cannot be learned with TD-like
bootstrapping without knowledge of the value function as it is the essence of TD is to compare the value V π(x) of
the two adjacent states – but this value has been subtracted out in Aπ(x,u). Hence, a TD-like bootstrapping using
exclusively the compatible function approximator is impossible.

As a way out, we observe that we can write the Bellman equations (e.g., see [3]) in terms of the advantage
function and the state-value function

Qπ(x,u) = Aπ(x,u) + V π(x) = r (x,u) + γ
∫

Xp(x′|x,u)V π(x′)dx′. (9)
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Table 1: Natural Actor-Critic Algorithm with LSTD-Q(λ)

Input: Parameterized policy π(u|x) = p(u|x, θ) with initial parameters θ = θ0, its derivative
∇θ logπ(u|x)and basis functions φ(x)for state value function parameterization V π(x).

1: Draw initial state x0 ∼ p(x0), and select parametersAt+1 = 0, bt+1 = zt+1 = 0.
2: For t = 0, 1, 2, . . . do
3: Execute: Draw action ut ∼ π(ut|xt), observe next state xt+1∼ p(xt+1|xt, ut),

and reward rt= r(xt, ut).
4: Critic Evaluation (LSTD-Q): Determine state-value function V π(xt) = φ(xt)

T vt and the
compatible advantage function approximation fπ

w (xt, ut) = ∇θ log π(ut|xt)
T wt. Update:

4.1: basis functions: φ̃t = [φ(xt+1)
T ,0T ]

T ; φ̂t = [φ(xt)
T , ∇θ log π(ut|xt)

T ]
T ,

4.2: sufficient statistics: zt+1 = λzt+φ̂t; At+1 = At + zt+1(φ̂t − γφ̃t)
T ; bt+1 = bt + zt+1rt,

4.3: critic parameters: [wT
t+1, v

T
t+1]

T = A−1
t+1bt+1.

5: Actor-Update: When the natural gradient is converged over a window h, i.e., ∀τ ∈ [0, ..., h] :
!(wt+1, wt−τ ) ≤ ε, update the parameterized policy π(ut|xt) = p(ut|xt, θt+1):

5.1: policy parameters: θt+1 = θt + αwt+1,
5.2: forget some of sufficient statistics with β ∈ [0, 1]: zt+1 ← βzt+1, At+1 ← βAt+1, bt+1 ← βbt+1.

6: end.

InsertingAπ(x,u) = fπ
w(x,u) and an appropriate basis functions representation of the value function as V π(x) =

φ(x)T v, we can rewrite the Bellman Equation, Eq., (9), as a set of linear equations

∇θ log π(ut|xt)T w + φ(xt)T v =
〈
r(xt,ut) + γφ(xt+1)T v

〉
. (10)

Using these simultaneous sets of linear equations, a solution to Equation (9) can be obtained by adapting the
LSTD(λ) policy evaluation algorithm [6, 7, 12]. For this purpose, we define

φ̂t = [φ(xt)T ,∇θ log π(ut|xt)T ]T , φ̃t = [φ(xt+1)T ,0T ]T , (11)

as new basis functions, where 0 is the zero vector. This definition of basis function reduces bias and variance of
the learning process in comparison to SARSA and previous LSTD(λ) algorithms for state-action value functions
[11] as the basis functions φ̃t do not depend on stochastic future actions ut+1. I.e., the input variables to the
LSTD regression are not noisy due to ut+1 – such input noise violates the standard regression model that only
takes noise in the regression targets into account. Alternatively, Bradtke et al. [7] assume V π(x) = Qπ(x,u)
where u is the average future action, and choose their basis functions accordingly; however, this is only given
for deterministic policies, i.e., policies without exploration and not applicable in our framework. LSTD(λ) with
the basis functions in Eq.(11), called LSTD-Q(λ) from now on, is thus currently the theoretically cleanest way of
applying LSTD to state-value function estimation. It is exact for deterministic or weekly noisy state transitions and
arbitrary stochastic policies, and, as all previous LSTD suggestions, it loses accuracy with increasing noise in the
state transitions since φ̃t becomes a random variable. The complete LSTD-Q(λ) algorithm is given in the Critic
Evaluation (lines 4.1-4.3) of Table 1.

Once LSTD-Q(λ) converges to an approximation of Aπ(xt,ut) + V π(xt) (which it does with probability 1
as shown in [12]), we obtain two results: the value function parameters v, and the natural gradient w. The natural
gradient w serves in updating the policy parameters ∆θt = αwt. After this update, the critic has to forget at
least parts of its accumulated sufficient statistics using a forgetting factor β ∈ [0, 1] (cf. Table 1). For β = 0,
i.e., complete resetting, and appropriate basis functions φ(x), convergence to the true natural gradient can be
guaranteed. The complete Natural Actor Critic algorithm is shown in Table 1.

3.3 Sensitivity to Imperfect Basis Functions
For a perfect state value function parameterization V π(x) = φ(x)T v, LSTD-Q can be guaranteed to converge
to the correct natural policy gradient, which follows directly from the results in [12]. The case of imperfect
basis function, however, requires a more thorough inspection. We define ψ(x,u) = ∇θ log π(u|x) to make the
equations in this section more readable. For the case of λ = 1, i.e., Monte-Carlo rollouts, LSTD-Q needs to solve

[
w

v

]
=

[
〈 ψ(x,u)ψ(x,u)T 〉 0

0 〈 φ(x)φ(x)T 〉

]−1 [
〈 ψ(x,u)Q̂π(x,u) 〉
〈 φ(x)Q̂π(x,u) 〉

]
,
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where Q̂π(x,u) is an estimate for the true Qπ(x,u) obtained from summing up all rewards along a sample
trajectory. As the cross terms 〈 ψ(x,u)φ(x)T 〉 = 0 between both basis functions vanish, for LSTD-Q(1) the
natural gradient estimation is independent of the choice of basis functions φ. This result corresponds to Konda
and Tsitsiklis’ [10] observation that the compatible function approximation can be seen as a projection of the
state-action value function Qπ(x,u), i.e.,

w = argminν Ex∼dπ(x),u∼π(u|x){(Qπ(x,u) − fπ
ν (x,u))2}. (12)

Interestingly, we note that 〈 φ(x)Q̂π(x,u) 〉 = ∇θJ(θ), and 〈 ψ(x,u)ψ(x,u)T 〉 = F (θ) when γ → 1, which
means that this solution forw corresponds to the definition of the natural gradient in Eq.(3) for the average reward
case and for the discounted case when the process restarts from the stationary distribution [6]. However, learning
purely from rollouts is rather inefficient. Unfortunately, for all other choices of λ, γ, and φ(x), it is not easily
possible to make an analytical statement of how the estimate of w is affected by the choice of basis functions.
Thus, we conclude at the moment that basis function should be chosen such that they have a good representational
power for the expected state-action value function, e.g., a quadratic polynomial expansion for LQR problems or a
mixture of quadratic polynomial expansions for a mixture of local linear controllers.

4 The Natural Actor-Critic’s Relation to Previous Algorithms
A surprising aspect about the Natural Actor-Critic (NAC) is its relation to previous algorithms. In this section, we
briefly demonstrate that established algorithms like the classic Actor-Critic architecture[15], ε-soft SARSA [15],
and Bradtke’s Q-Learning [7] can be seen as special cases or approximations of NAC.

4.1 Original Actor-Critic and ε-soft SARSA approximates NAC
Sutton et al. [15] proposed the original actor-critic choosing a Gibbs policy π(ut|xt) = exp(θxu)/

∑
b exp(θxb),

with all parameters θxu lumped in the vector θ, denoted as θ = [θxu] from now on, in a discrete setup with tabular
representations of transition probabilities and rewards. A linear function approximation V π(x) = φ(x)T v with
v = [vx] and basis functions φ(x) = [0, ..., 0, 1, 0, ..., 0]T was employed, where the 1 is in the element corre-
sponding to state x. Sutton et al. online update rule is θt+1

xu = θt
xu + α1δπ(x, u, x′), vt+1

x = vt
x + α2δπ(x, u, x′),

where δπ(x, u, x′) = (r(x, u) + γV π(x′) − V π(x)) denotes the TD(0) error, and α1, α2 are learning rates. The
update of the critic parameters vt

x equals the one of the Natural Actor-Critic in expectation as TD(0) critics con-
verges to the same values as LSTD(0) and LSTD-Q(0) for discrete problems [6]. For this Gibbs policy we have (i)
∂ log π(b|a)/∂θxu = 1 − π(b|a) if a = x and b = u, (ii) ∂ log π(b|a)/∂θxu = −π(b|a) if a = x and b '= u, and
(iii) ∂ log π(b|a)/∂θxu = 0 otherwise. Since, furthermore,

∑
b π(b|x)A(x, b) = 0, we can evaluate the advantage

function and derive

A(x, u) = A(x, u) −
∑

b
π(b|x)A(x, b) =

∑
b

∂ log π(b|x)
∂θxu

A(x, b) =
∂ log π(u|x)

∂θ

T

a.

witha = [A(x, u)]. Since the compatible function approximation represents the advantage function, i.e., fπ
w(x,u) =

A(x, u), we realize that the advantages equal the natural gradient, i.e., a = w. Furthermore, the TD(0) error of a
state-action pair (x, u) equals the advantage function in expectation, and therefore the natural gradient update

wxu = A(x, u) = Ep(x′|x,u){r(x, u) + γV (x′) − V (x)} = Ep(x′|x,u){δπ(x, u, x′)},

corresponds to the average online updates of Actor-Critic. As both update rules of the Actor-Critic equal the one
of NAC in expectation, it follows that the Actor-Critic approximates the Natural Actor-Critic.

SARSAwith a tabular, discrete state-action value functionQπ(x, u) and an ε-soft policy improvement π(ut|xt) =
exp(Qπ(x, u)/ε)/

∑
û exp(Qπ(x, u)/ε) can also be seen as an approximation of NAC. When treating the table en-

tries as parameters of a policy θxu = Qπ(x, u), we realize that the TD update of these parameters corresponds
approximately to the natural gradient update sincewxu = εA(x, u) ≈ εEp(x′|x,u){r(x, u)+γQ(x′, u′)−Q(x, u)},
i.e., ε-soft SARSA with lookup-tables can be seen as an approximation of NAC.

4.2 Bradtke’s Q-Learning for LQR is a Special Case of NAC
Bradtke et al. [7] propose an algorithm with policy π(ut|xt) = N (ut|kT

i xt,σ2
i ) and parameters θi = [kT

i ,σi]T
(where σi denotes the exploration, and i the policy update time step) in a linear control task with linear state

5



Figure 2: A comparison of Natural Actor Critic to policy gradients methods on a standard cart-pole balancing
[15, 14] task. For each actor update of NAC, an update along the true ‘vanilla’ policy gradient is performed with
the maximal convergent learning rate – and NAC still outperforms the policy gradient.

transitions xt+1 = Axt + but, and quadratic rewards r(xt,ut) = xT
t Hxt + Ru2

t . They evaluated Qπ(xt,ut)
with LSTD(0) using a quadratic polynomial expansion as basis functions, and applied greedy updates:

ki+1 = argmaxki+1
Qπ(xt,ut = kT

i+1xt) = −(R + γbT P ib)−1γbP iA, (13)

where P i denotes policy-specific value function parameters related to the gain ki; no update the exploration σi

was included. After inserting the compatible function approximation in Eqn. (9) and solving analytically for the
natural gradient w, we obtain

w = [wk, wσ]T = [−(γAT P ib + (R + γbT P ib)k)Tσ2
i ,−0.5(R + γbT P ib)σ3

i ]. (14)

One can derive that the expected return is J(θi) = −(R + γbT P ib)σ2
i for this type of problems. For a learning

rate αi = 1/ ‖J(θi)‖, we see that

ki+1 = ki + αtwk = ki − (ki + (R + γbT P ib)−1γAT P ib) = (R + γbT P ib)−1γAT P ib,

which demonstrates that Bradtke’s Actor Update is a special case of the Natural Actor-Critic. NAC extends
Bradtke’s result as it gives an update rule for the exploration, correctly deals with stochastic policies in LSTD-Q,
and allows smaller learning rates as needed for nonlinear extensions.

5 Empirical Evaluation & Conclusion
We evaluated the Natural Actor-Critic algorithm on the standard benchmark of cart-pole balancing [15, 14] as
described in Figure 2. We compare the results of the Natural Actor Critic algorithm to the results of the ideal
‘vanilla’ policy gradient which can be computed analytically; both algorithms started with the same initial policy
parameters, and the true ‘vanilla’ policy gradient updates were done simultaneaously with each NAC update. The
true policy gradient used the maximal learning rate where it would still converge. Still, the NAC converged signif-
icantly faster as can be seen in Figure 2. Greedy policy improvement methods do not compare easily. Discretized
greedy methods cannot compete due to the fact that the amount of data required would be significantly increased.
Model-based dynamic programming based methods as described in the linear quadratic regulation literature work
well, but require the estimation of a model.

In summary, we focussed on the theoretical development of a novel algorithm, the Natural Actor-Critic, which
uses two essential components. First, it approximates the natural gradient directly in the policy evaluation loop
using the compatible function approximator. This part is based on LSTD(λ) and inherits several strong theoretical
properties from previous work. Second, the natural gradient is used in order to improve the policy; under suitable
conditions, e.g., with sufficiently rich basis functions, this method guarantees convergence with probability one to
the next local minimum in Riemannian space. We apply this algorithm successfully in a simple robotic task, i.e.,
pole balancing. By the time of the NIPS 2003 conference, we hope to augment this paper by an implementation
of the pole-balancing task on an actual anthropomorphic robot, and by presenting extensions of the suggested
framework to nonlinear control systems by means of embedding the Natural Actor-Critic in a mixture model
approach.
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1In here we add the proof that the all-action matrix F (θ) in general equals the Fisher information matrix G(θ). By differentiating∫
Rn p(x)dx = 1 twice with respect to the parameters θ, we obtain

∫
Rnp(x)∇2

θ log p(x)dx = −
∫

Rnp(x)∇θ log p(x)∇θ log p(x)T dx

for any probability density function p(x). The probability p(τ0:n) of a trajectory τ0:n = [x0, u0, r0, . . ., xn, un, rn, xn+1]T is given as
p(τ0:n) = p(x0)

∏n
t=0p(xt+1|xt, ut)π(ut|xt) ⇒ ∇2

θ log p(τ0:n) =
∑n

t=0∇2
θ log π(ut|xt). Combining these facts, and using the

definition of the Fisher information matrix [1], we can determine Fisher information matrix for the average reward case, i.e,

G(θ) = limn→∞ n−1Eτ 0:n{∇θ log p(τ0:n)∇θ log p(τ0:n)T }

= − limn→∞ n−1Eτ 0:n{∇2
θ log p(τ0:n)},

= − limn→∞ n−1Eτ 0:n{
∑n

t=0∇2
θ log π (ut |xt )}

= −
∫

Xdπ(x)
∫

Uπ(u|x)∇2
θ log π(u|x)dudx,

=
∫

Xdπ(x)
∫

Uπ(u|x)∇θ log π(u|x)∇θ log π(u|x)T dudx = F (θ), (15)

This proves that the all-action matrix is indeed the Fisher information matrix for the average reward case. For the discounted case, with a dis-
count factor γ we realize that we can rewrite the problem where the probability of rollout is given by pγ(τ0:n) = p(τ0:n)(

∑n
i=0 γi1xi,ui ).

It is straightforward to show that ∇2
θ log p (τ0:n) = ∇2

θ log pγ(τ0:n). This rewritten probability allows us to repeat the transformations
from before, and show that again the all-action matrix equals the Fisher information matrix. Therefore, we can conclude that for both the
average reward and the discounted case, these Fisher information and all-action matrix are the same, i.e., G(θ) = F (θ). A similar theorem
has been derived in [13, 4].
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