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Reconstructing Null-space Policies Subject to

Dynamic Task Constraints in Redundant

Manipulators

Matthew Howard Sethu Vijayakumar∗

August 28, 2007

Abstract

We consider the problem of direct policy learning in situations where the policies are only
observable through their projections into the null-space of a set of dynamic, non-linear
task constraints. We tackle the issue of deriving consistent data for the learning of such
policies and make two contributions towards its solution. Firstly, we derive the conditions
required to exactly reconstruct null-space policies and suggest a learning strategy based on
this derivation. Secondly, we consider the case that the null-space policy is conservative
and show that such a policy can be learnt more easily and robustly by learning the
underlying potential function and using this as our representation of the policy.

1 Introduction

Redundant manipulators are characterised as having degrees of freedom in excess of those
needed to perform some task. In the control of such systems a popular paradigm is to
utilise redundancy through secondary movement policies that complement the primary task
goals in some way. Such policies prefer actions that, for example, avoid joint limits [1],
kinematic singularities [11] or self-collisions [9]. Traditionally these policies were implemented
as optimising some carefully selected instantaneous cost function or potential. The approach
was first proposed by Liégeois [3] in the context of Resolved Motion Rate Control (RMRC)
[10], but has since been extended to other control regimes (notably force based control)
and a wider variety of secondary policies. For example Nakamura [5] studied the problem
extensively with particular emphasis on optimal RMRC and Resolved Acceleration Control
(RAC) of arms with pre-defined tasks and time-integral cost functions.

However, the secondary policy need not be the result of optimisation and the formalism
extends to a variety of constraint-based control scenarios. For example, in humanoid robots, a
secondary goal might be to maintain some posture when performing some task [2], to perform
multiple prioritised tasks at once [8] or perform control subject to contact constraints [6].
Furthermore, many tasks are best described as constrained with respect to certain variables.
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Consider running on a treadmill: the centre of mass and tilt of the torso are constrained and
the policy controlling the gait is projected into the null-space of these constraints.

The focus in this paper is on modelling secondary control policies from observations of
constrained motion using statistical learning methods. This is a form of direct policy learn-
ing, with the difference that the policy is only partially observable. For the learning, most
supervised learning techniques require consistent, convex training data. In this paper, we
look at the problem of deriving this data and offer two contributions for its solution.

The first concerns the general case where the policy can be any non-conservative vector
function of the state. We take a geometric approach to reconstructing the policy based on
Euclid’s theorem and outline the necessary conditions for exact reconstruction at any given
point. Furthermore, we show that this approach suggests an iterative training algorithm for
our learner.

The second contribution is to show that, by restricting the class of permissible policies to
those that optimise some potential, the policy can be inferred in a simpler and more robust
way using a form of inverse optimal control. In this approach, identifying the unconstrained
policy from constrained observations, is equivalent to seeking the potential being optimised.
We show that by modelling the policy through its potential we can side-step several of the
restrictions of the geometric approach.

Finally, we present experimental results for a simulated robot arm in which the recon-
structed null-space policy is used to replace that of the original and the resultant behaviour
is compared across a variety of consistent task goals.

2 Problem Formulation

We consider control policies of the form

u = utask(x, t) + unull(x, t) = utask(x, t) + N(x, t)a(x) (1)

where u is the control signal, utask is the component of u that satisfies a set of non-linear, time-
varying task constraints, a(x) is a policy pursuing secondary movement goals, and N(x, t)
is a projection matrix. N(x, t) prevents violation of the task constraints by projecting the
policy into the null-space. Our goal is to model a(x) from observations of unull.

In general, a(x) can be any arbitrary vector field. According to the Helmholtz decompo-
sition, any vector field may be comprised of rotational and divergent components

a(x) = ∇x ×Φ(x) +∇xφ(x) (2)

where Φ and φ are vector and scalar potentials. Assuming that a(x) is conservative1 an
equivalent goal is to model φ(x). Policies of the form (1) occur in both velocity (u ≡ q̇) and
force (u ≡ τ ) based control [4].

Example 2.1. Velocity-based Control
A standard velocity-based control scheme is RMRC [10, 3]

q̇ = J(q, t)†ṙ + N(q, t)a (3)
1A necessary and sufficient condition for this is that ∇x × a(x) = 0,∀x.
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Figure 1: Effect of different null-space policies a(x) on behaviour when tracking a linear task-
space trajectory in RMRC (left) and applying a force F to a mass in force control (right).

where r, ṙ ∈ Rk and q, q̇ ∈ Rn, denote the task- and joint-space positions and velocities and
J(q, t) is the Jacobian with W-weighted pseudoinverse J† = W−1JT (JW−1JT )−1. N(q, t) =
(I− J†(q, t)J(q, t)) is the null-space projection matrix (where I is the identity matrix). Note
that, in general, the Jacobian and the projection matrix are time-dependent reflecting the fact
that the task-space may change in time [1].

Example 2.2. Force-based Control
A general formulation for force-based control is [7]

τ = W−1/2(AM−1W−1/2)†(b−AM−1F) + N(q, q̇, t)a (4)

where τ ∈ Rn is the applied torque/force, q, q̇, q̈ ∈ Rn are joint-space positions, velocities
and accelerations, M(q) ∈ Rn×n is an inertia/mass matrix and F ∈ Rn describes per-
turbing forces such as centrifugal, Coriolis and gravity forces. The weighting matrix W ∈
Rn×n determines the control paradigm used, such as RAC (W = M−2) or the Operational
Space Formulation (W = M−1) [7]. The task is described through constraints of the form
A(q, q̇, t)q̈ = b(q, q̇, t) ∈ Rk and the null-space projection matrix is given by N(q, q̇, t) =
W−1/2(I− (AM−1W−1/2)†AM−1W−1/2)W1/2.

The correspondence between (1), (3) and (4) can easily be shown by appropriate substitution
of variables. In both cases, the second term arises when there is redundancy, i.e. the task
dimensionality is lower than that of the action space (k < n), allowing secondary goals to be
pursued. Fig. 1 shows examples of how different null-space policies affect behaviour.

3 Reconstructing Nullspace Policies

Theorem 3.1. Reconstruction of Projected Policies
Given observations a(i) = N(i)(x)a(x), i = 1, . . . , n of a policy a(x) projected into the null-
space of a set of n task constraints which that span the action space, the unconstrained policy
is given by

a(x) = x× − x (5)
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Figure 2: Under the task constraints (7), the null-space policy is projected onto a manifold r =
α(t)Tq (left), orthogonal to the task space motion. Under multiple constraints the projected
policy vectors lie inscribed in a hypersphere in state-space (centre). Euclid’s Theorem can be
used to reconstruct a(q) given observations under different constraints (right).

where x× is the solution to the linear system

Ax× = d (6)

where A ≡ (a′, . . . ,a(m))T and the elements of d are given by di = a(i)T (x + a(i)).

Proof Consider the RMRC control of a manipulator with two-dimensional joint space, q ≡
(q1, q2)T , and one-dimensional task space r(i), i = 1, . . . , n. The Jacobian of this system

J(i)(q) = (α1, α2)(i) = α(i) (7)

is locally linear in the region of q. Under task constraint i the null-space policy is constrained
to a line in joint-space with intersection r(i) (Fig. 2, left). When the active constraint changes
the rotation of this line changes so that the observed projections lie inscribed within a circle
(hypersphere in n-d space) of diameter ||a(q)|| (Fig. 2, centre). Euclid’s theorem states that
any triangle inscribed in a semi-circle is a right-angle triangle. Hence a(q) is given by the
intersection of the lines orthogonal to any two projections a′,a′′ (Fig. 2, right). By the same
argument, in n-dimensional space, if observations are such that they form a basis set of the
space, we can construct planes normal to the projections and solve for the intersection point
q×. This yields the linear system (6) with the unprojected vector given by (5). ¤

Theorem 3.1 also suggests the following lemma.

Lemma 3.1. Given observations a(i) = N(i)(x)a(x), i = 1, . . . , n of a constrained policy
a(x), the observation with the largest norm ||a(i)|| lies closest to the unconstrained policy.

Proof By inspection of Fig. 2, or by considering that N(x, t) is a projection matrix, with k

eigenvalues of value 0 and n− k eigenvalues of value 1. Fewer constraints (smaller k) results
in larger norms. ¤
Lemma 3.1 suggests an iterative approach to training whereby if multiple observations are
made around the same point, those with the largest norm should be used for learning. This
is particularly true of highly redundant systems (k << n) where there the policy is much less
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constrained. Furthermore, in the limit that observations are made under a single, constant
constraint, a consistent policy unull(x) = N(x)a(x) will be learnt.

The condition in Theorem 3.1 that a spanning set of projections are required to exactly
reconstruct the policy is somewhat restrictive, and in real data sets unlikely. However if the
policy is conservative (i.e. the first term of (2) is zero) we can side-step these restrictions with
the following proposition.

Proposition 3.1. Reconstruction of Conservative Policies
Under the same conditions as Theorem 3.1, a conservative policy a(x) can be represented by its
underlying potential function, which can be learnt without the need for multiple observations
or iterative training.

Consider again the case of RMRC of a redundant manipulator. The potential underlying
a conservative a(q) can be reconstructed through inverse optimal control [4]. The sim-
plest method requires trajectories sampled at some rate ρ resulting in a set of via-points
(q1 . . .qρτ )T where

qt+1 = qt + N(qt)∇qφ(qt) (8)

for a trajectory of duration τ and utask = 0. Training samples of φ(x) can be generated by
integrating along trajectories using, for example, the Euler method

φ(qt+1) = φ(qt) + (qt+1 − qt)TN(qt)∇qφ(qt). (9)

The key observation is that the integration in (9) occurs in the direction locally orthogonal to
the constraints. We refer the reader to results reported in [4] for empirical evidence supporting
Proposition 3.1.

In Fig. 3 the left-hand plot shows the true (blue) and reconstructed (cyan) potential along
trajectories under a variety of constraints. Contours show the true (quadratic) potential func-
tion over two of the joints of the arm. The trajectories are reconstructed up to a translation
in the φ-dimension (trajectories have been translated in Fig. 3 for comparison). In the middle
and right-hand plots a modified Euler method was used to learn two policies; that derived
from a quadratic potential (top row) and a sinusoidal one (bottom row); The middle plots
show the true and reconstructed policy subject to constraints on the hand. The right-hand
plots show a time-lapse of the arm tracking a linear trajectory using the true and learnt policy
in the null-space.

4 Conclusion

We have presented the mathematical basis for direct policy learning of policies subject to
dynamic, non-linear constraints. We have shown that in the general case of non-conservative
policies exact reconstruction of the policy requires solution of a system of equations con-
structed from observations under task constraints that span the state-space. We have noted
that this suggests an iterative training scheme based on the norm of observed projections.
Finally, we have suggested a more robust approach to learning conservative policies through
numerical integration techniques and simulation results have been presented for the learning
of such policies for a kinematically-controlled three link arm.
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Figure 3: True (blue) and reconstructed (cyan) values of the quadratic potential (contours)
along trajectories subject to different constraints (constraints on the hand, wrist, elbow, and
unconstrained trajectories shown). True (black) and learnt (red) null-space policies subject
to hand constraints for the quadratic (top) and sinusoidal (bottom) potentials. Time-lapse of
the arm tracking a linear trajectory using the true (left) and learnt (right) null-space policies.
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