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Abstract 

If globally high dimensional data has locally only low dimensional distribu­
tions, it is advantageous to perform a local dimensionality reduction before 
further processing the data. In this paper we examine several techniques for 
local dimensionality reduction in the context of locally weighted linear re­
gression. As possible candidates, we derive local versions of factor analysis 
regression, principle component regression, principle component regression 
on joint distributions, and partial least squares regression. After outlining the 
statistical bases of these methods, we perform Monte Carlo simulations to 
evaluate their robustness with respect to violations of their statistical as­
sumptions. One surprising outcome is that locally weighted partial least 
squares regression offers the best average results, thus outperforming even 
factor analysis, the theoretically most appealing of our candidate techniques. 

1 INTRODUCTION 
Regression tasks involve mapping a n-dimensional continuous input vector x E ~n onto 
a m-dimensional output vector y E ~m • They form a ubiquitous class of problems found 
in fields including process control, sensorimotor control, coordinate transformations, and 
various stages of information processing in biological nervous systems. This paper will 
focus on spatially localized learning techniques, for example, kernel regression with 
Gaussian weighting functions. Local learning offer advantages for real-time incremental 
learning problems due to fast convergence, considerable robustness towards problems of 
negative interference, and large tolerance in model selection (Atkeson, Moore, & Schaal, 
1997; Schaal & Atkeson, in press). Local learning is usually based on interpolating data 
from a local neighborhood around the query point. For high dimensional learning prob­
lems, however, it suffers from a bias/variance dilemma, caused by the nonintuitive fact 
that " ... [in high dimensions] if neighborhoods are local, then they are almost surely 
empty, whereas if a neighborhood is not empty, then it is not local." (Scott, 1992, p.198). 
Global learning methods, such as sigmoidal feedforward networks, do not face this 
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problem as they do not employ neighborhood relations, although they require strong 
prior knowledge about the problem at hand in order to be successful. 

Assuming that local learning in high dimensions is a hopeless, however, is not necessar­
ily warranted: being globally high dimensional does not imply that data remains high di­
mensional if viewed locally. For example, in the control of robot anns and biological 
anns we have shown that for estimating the inverse dynamics of an ann, a globally 21-
dimensional space reduces on average to 4-6 dimensions locally (Vijayakumar & Schaal, 
1997). A local learning system that can robustly exploit such locally low dimensional 
distributions should be able to avoid the curse of dimensionality. 

In pursuit of the question of what, in the context of local regression, is the "right" 
method to perfonn local dimensionality reduction, this paper will derive and compare 
several candidate techniques under i) perfectly fulfilled statistical prerequisites (e.g., 
Gaussian noise, Gaussian input distributions, perfectly linear data), and ii) less perfect 
conditions (e.g., non-Gaussian distributions, slightly quadratic data, incorrect guess of 
the dimensionality of the true data distribution). We will focus on nonlinear function ap­
proximation with locally weighted linear regression (L WR), as it allows us to adapt a va­
riety of global linear dimensionality reduction techniques, and as L WR has found wide­
spread application in several local learning systems (Atkeson, Moore, & Schaal, 1997; 
Jordan & Jacobs, 1994; Xu, Jordan, & Hinton, 1996). In particular, we will derive and 
investigate locally weighted principal component regression (L WPCR), locally weighted 
joint data principal component analysis (L WPCA), locally weighted factor analysis 
(L WF A), and locally weighted partial least squares (L WPLS). Section 2 will briefly out­
line these methods and their theoretical foundations, while Section 3 will empirically 
evaluate the robustness of these methods using synthetic data sets that increasingly vio­
late some of the statistical assumptions of the techniques. 

2 METHODS OF DIMENSIONALITY REDUCTION 

We assume that our regression data originate from a generating process with two sets of 
observables, the "inputs" i and the "outputs" y. The characteristics of the process en­
sure a functional relation y = f(i). Both i and yare obtained through some measure­
ment device that adds independent mean zero noise of different magnitude in each ob­
servable, such that x == i + Ex and y = y + Ey • For the sake of simplicity, we will only fo­
cus on one-dimensional output data (m=l) and functions / that are either linear or 
slightly quadratic, as these cases are the most common in nonlinear function approxima­
tion with locally linear models. Locality of the regression is ensured by weighting the er­
ror of each data point with a weight from a Gaussian kernel: 

Wi = exp(-O.5(Xi - Xqf D(Xi - Xq)) (1) 

Xtt denotes the query point, and D a positive semi-definite distance metric which deter­
mmes the size and shape of the neighborhood contributing to the regression (Atkeson et 
aI., 1997). The parameters Xq and D can be determined in the framework of nonparamet­
ric statistics (Schaal & Atkeson, in press) or parametric maximum likelihood estimations 
(Xu et aI, 1995}- for the present study they are determined manually since their origin is 
secondary to the results of this paper. Without loss of generality, all our data sets will set 
!,q to the zero vector, compute the weights, and then translate the input data such that the 
locally weighted mean, i = L WI Xi / L Wi , is zero. The output data is equally translated to 
be mean zero. Mean zero data is necessary for most of techniques considered below. The 
(translated) input data is summarized in the rows of the matrix X, the corresponding 
(translated) outputs are the elements of the vector y, and the corresponding weights are in 
the diagonal matrix W. In some cases, we need the joint input and output data, denoted 
as Z=[X y). 
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2.1 FACTORANALYSIS(LWFA) 

Factor analysis (Everitt, 1984) is a technique of dimensionality reduction which is the 
most appropriate given the generating process of our regression data. It assumes the ob­
served data z was produced. by a mean zero independently distributed k -dimensional 
vector of factors v, transformed by the matrix U, and contaminated by mean zero inde­
pendent noise f: with diagonal covariance matrix Q: 

z=Uv+f:, where z=[xT,yt and f:=[f:~,t:yr (2) 

If both v and f: are normally distributed, the parameters Q and U can be obtained itera­
tively by the Expectation-Maximization algorithm (EM) (Rubin & Thayer, 1982). For a 
linear regression problem, one assumes that z was generated with U=[I, f3 Y and v = i, 
where f3 denotes the vector of regression coefficients of the linear model y = f31 x, and I 
the identity matrix. After calculating Q and U by EM in joint data space as formulated in 
(2), an estimate of f3 can be derived from the conditional probability p(y I x). As all 
distributions are assumed to be normal, the expected value ofy is the mean of this condi­
tional distribution. The locally weighted version (L WF A) of f3 can be obtained together 
with an estimate of the factors v from the joint weighted covariance matrix 'I' of z and v: 

E{[: ] + [ ~ } ~ ~,,~,;'x, where ~ ~ [ZT, VT~~Jft: w; ~ (3) 

[Q+UUT U] ['I'II(=n x n) 'I'12(=nX(m+k»)] 
= UT I = '¥21(= (m + k) x n) '1'22(= (m + k) x (m + k») 

where E { .} denotes the expectation operator and B a matrix of coefficients involved in 
estimating the factors v. Note that unless the noise f: is zero, the estimated f3 is different 
from the true f3 as it tries to average out the noise in the data. 

2.2 JOINT-SPACE PRINCIPAL COMPONENT ANALYSIS (LWPCA) 

An alternative way of determining the parameters f3 in a reduced space employs locally 
weighted principal component analysis (LWPCA) in the joint data space. By defining the . 
largest k+ 1 principal components of the weighted covariance matrix ofZ as U: 

U = [eigenvectors(I Wi (Zi - ZXZi - Z)T II Wi)] (4) 
max(l :k+1l 

and noting that the eigenvectors in U are unit length, the matrix inversion theorem (Hom 
& Johnson, 1994) provides a means to derive an efficient estimate of f3 

( T T( T )-1 T\ [Ux(=nXk)] 
f3=U x Uy -Uy UyUy -I UyUyt where U= Uy(=mxk) 

(5) 

In our one dimensional output case, U y is just a (1 x k) -dimensional row vector and the 
evaluation of (5) does not require a matrix inversion anymore but rather a division. 

If one assumes normal distributions in all variables as in L WF A, L WPCA is the special 
case of L WF A where the noise covariance Q is spherical, i.e., the same magnitude of 
noise in all observables. Under these circumstances, the subspaces spanned by U in both 
methods will be the same. However, the regression coefficients of L WPCA will be dif­
ferent from those of L WF A unless the noise level is zero, as L WF A optimizes the coeffi­
cients according to the noise in the data (Equation (3» . Thus, for normal distributions 
and a correct guess of k, L WPCA is always expected to perform worse than L WF A. 
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2.3 PARTIAL LEAST SQUARES (LWPLS, LWPLS_I) 

Partial least squares (Wold, 1975; Frank & Friedman, 1993) recursively computes or­
thogonal projections of the input data and performs single variable regressions along 
these projections on the residuals of the previous iteration step. A locally weighted ver­
sion of partial least squares (LWPLS) proceeds as shown in Equation (6) below. 

As all single variable regressions are ordinary uni­
variate least-squares minim izations, L WPLS 
makes the same statistical assumption as ordinary 
linear regressions, i.e., that only output variables 
have additive noise, but input variables are noise­
less. The choice of the projections u, however, in­
troduces an element in L WPLS that remains statis­
tically still debated (Frank & Friedman, 1993), al­
though, interestingly, there exists a strong similar­
ity with the way projections are chosen in Cascade 
Correlation (Fahlman & Lebiere, 1990). A peculi­
arity of L WPLS is that it also regresses the inputs 
of the previous step against the projected inputs s 
in order to ensure the orthogonality of all the pro­
jections u. Since L WPLS chooses projections in a 
very powerful way, it can accomplish optimal 
function fits with only one single projections (i.e., 

For Training: 

Initialize: 

Do = X, eo = y 
For i = 1 to k: 

For Lookup: 

Initialize: 

do = x, y= ° 
For i = 1 to k: 

s. = dT.u. 
I 1- I 

(6) 

k= 1) for certain input distributions. We will address this issue in our empirical evalua­
tions by comparing k-step L WPLS with I-step L WPLS, abbreviated L WPLS_I. 

2.4 PRINCIPAL COMPONENT REGRESSION (L WPCR) 

Although not optimal, a computationally efficient techniques of dimensionality reduction 
for linear regression is principal component regression (LWPCR) (Massy, 1965). The in­
puts are projected onto the largest k principal components of the weighted covariance 
matrix of the input data by the matrix U: 

U = [eigenvectors(2: Wi (Xi - xX Xi - xt /2: Wi )] (7) 
max(l:k) 

The regression coefficients f3 are thus calculated as: 

f3 = (UTXTwxUtUTXTWy (8) 

Equation (8) is inexpensive to evaluate since after projecting X with U, UTXTWXU be­
comes a diagonal matrix that is easy to invert. L WPCR assumes that the inputs have ad­
ditive spherical noise, which includes the zero noise case. As during dimensionality re­
duction L WPCR does not take into account the output data, it is endangered by clipping 
input dimensions with low variance which nevertheless have important contribution to 
the regression output. However, from a statistical point of view, it is less likely that low 
variance inputs have significant contribution in a linear regression, as the confidence 
bands of the regression coefficients increase inversely proportionally with the variance of 
the associated input. If the input data has non-spherical noise, L WPCR is prone to focus 
the regression on irrelevant projections. 

3 MONTE CARLO EVALUATIONS 

In order to evaluate the candidate methods, data sets with 5 inputs and 1 output were ran­
domly generated. Each data set consisted of 2,000 training points and 10,000 test points, 
distributed either uniformly or nonuniformly in the unit hypercube. The outputs were 
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generated by either a linear or quadratic function. Afterwards, the 5-dimensional input 
space was projected into a to-dimensional space by a randomly chosen distance pre­
serving linear transformation. Finally, Gaussian noise of various magnitudes was added 
to both the 10-dimensional inputs and one dimensional output. For the test sets, the addi­
tive noise in the outputs was omitted. Each regression technique was localized by a 
Gaussian kernel (Equation (1)) with a to-dimensional distance metric D=IO*I (D was 
manually chosen to ensure that the Gaussian kernel had sufficiently many data points and 
no "data holes" in the fringe areas of the kernel) . The precise experimental conditions 
followed closely those suggested by Frank and Friedman (1993): 

• 2 kinds of linear functions y = {g.I for: i) 131 .. = [I, I, I, I, If , ii) I3Ii. = [1,2,3,4,sf 

• 2 kinds of quadratic functions y = f3J.I + f3::.aAxt ,xi ,xi ,X;,X;]T for: 

i) 1311. = [I, I, I, I, Wand f3q.ad = 0.1 [I, I, I, I, If, and ii) 131 .. = [1,2,3,4, sf and f3quad = 0.1 [I, 4, 9, 16, 2sf 

• 3 kinds of noise conditions, each with 2 sub-conditions: 
i) only output noise: a) low noise: local signal/noise ratio Isnr=20, 

and b) high noise: Isnr=2, 
ii) equal noise in inputs and outputs: 

a) low noise Ex •• = Sy = N(O,O.Ot2), n e[I,2, ... ,10], 

and b) high noise Ex •• =sy=N(0,0.12),ne[I,2, ... ,10], 
iii) unequal noise in inputs and outputs: 

a) low noise : Ex .• = N(0,(0.0In)2), n e[I,2, . .. ,1O] and Isnr=20, 

and b) high noise: Ex .• = N(0,(0.0In)2), n e[I,2, ... ,1O] and Isnr=2, 

• 2 kinds of input distributions: i) uniform in unit hyper cube, ii) uniform in unit hyper cube excluding data 
points which activate a Gaussian weighting function (I) at c = [O.S,O,o,o,of with D=IO*I more than 
w=0.2 (this forms a "hyper kidney" shaped distribution) 

Every algorithm was run * 30 times on each of the 48 combinations of the conditions. 
Additionally, the complete test was repeated for three further conditions varying the di­
mensionality--called factors in accordance with L WF A-that the algorithms assumed to 
be the true dimensionality of the to-dimensional data from k=4 to 6, i.e., too few, correct, 
and too many factors. The average results are summarized in Figure I. 

Figure I a,b,c show the summary results of the three factor conditions. Besides averaging 
over the 30 trials per condition, each mean of these charts also averages over the two in­
put distribution conditions and the linear and quadratic function condition, as these four 
cases are frequently observed violations of the statistical assumptions in nonlinear func­
tion approximation with locally linear models. In Figure I b the number of factors equals 
the underlying dimensionality of the problem, and all algorithms are essentially per­
forming equally well. For perfectly Gaussian distributions in all random variables (not 
shown separately), LWFA's assumptions are perfectly fulfilled and it achieves the best 
results, however, almost indistinguishable closely followed by L WPLS. For the ''unequal 
noise condition", the two PCA based techniques, L WPCA and L WPCR, perform the 
worst since--as expected-they choose suboptimal projections. However, when violat­
ing the statistical assumptions, L WF A loses parts of its advantages, such that the sum­
mary results become fairly balanced in Figure lb. 

The quality of function fitting changes significantly when violating the correct number of 
factors, as illustrated in Figure I a,c. For too few factors (Figure la), L WPCR performs 
worst because it randomly omits one of the principle components in the input data, with­
out respect to how important it is for the regression. The second worse is L WF A: ac­
cording to its assumptions it believes that the signal it cannot model must be noise, lead­
ing to a degraded estimate of the data's subspace and, consequently, degraded regression 
results. L WPLS has a clear lead in this test, closely followed by L WPCA and L WPLS_I. 

* Except for LWFA, all methods can evaluate a data set in non-iterative calculations. LWFA was trained with EM for maxi­
mally 1000 iterations or until the log-likelihood increased less than I.e-lOin one iteration. 
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For too many factors than necessary (Figure Ie), it is now LWPCA which degrades. This 
effect is due to its extracting one very noise contaminated projection which strongly in­
fluences the recovery of the regression parameters in Equation (4). All other algorithms 
perform almost equally well, with L WF A and L WPLS taking a small lead. 
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e) RegressIon Results with 4 Factors 

• LWFA • LWPCA • LWPCR 0 LWPLS • LWPLS_1 

c) RegressIon Results with 6 Feclors 

d) Summery Results 

Figure I: Average summary results of Monte Carlo experiments. Each chart is primarily 
divided into the three major noise conditions, cf. headers in chart (a). In each noise con­
dition, there are four further subdivision: i) coefficients of linear or quadratic model are 
equal with low added noise; ii) like i) with high added noise; iii) coefficients oflinear or 
quadratic model are different with low noise added; iv) like iii) with high added noise. 

Refer to text and descriptions of Monte Carlo studies for further explanations. 
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4 SUMMARY AND CONCLUSIONS 

Figure 1 d summarizes all the Monte Carlo experiments in a final average plot. Except for 
L WPLS, every other technique showed at least one clear weakness in one of our "robust­
ness" tests. It was particularly an incorrect number of factors which made these weak­
nesses apparent. For high-dimensional regression problems, the local dimensionality, i.e., 
the number of factors, is not a clearly defined number but rather a varying quantity, de­
pending on the way the generating process operates. Usually, this process does not need 
to generate locally low dimensional distributions, however, it often "chooses" to do so, 
for instance, as human ann movements follow stereotypic patterns despite they could 
generate arbitrary ones. Thus, local dimensionality reduction needs to find autonomously 
the appropriate number of local factor. Locally weighted partial least squares turned out 
to be a surprisingly robust technique for this purpose, even outperforming the statistically 
appealing probabilistic factor analysis. As in principal component analysis, LWPLS's 
number of factors can easily be controlled just based on a variance-cutoff threshold in in­
put space (Frank & Friedman, 1993), while factor analysis usually requires expensive 
cross-validation techniques. Simple, variance-based control over the number of factors 
can actually improve the results of L WPCA and L WPCR in practice, since, as shown in 
Figure I a, L WPCR is more robust towards overestimating the number of factors, while 
L WPCA is more robust towards an underestimation. If one is interested in dynamically 
growing the number of factors while obtaining already good regression results with too 
few factors, L WPCA and, especially, L WPLS seem to be appropriate-it should be 
noted how well one factor L WPLS (L WPLS_l) already performed in Figure I! 

In conclusion, since locally weighted partial least squares was equally robust as local 
weighted factor analysis towards additive noise in. both input and output data, and, 
moreover, superior when mis-guessing the number of factors, it seems to be a most fa­
vorable technique for local dimensionality reduction for high dimensional regressions. 
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