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Abstract

Proponents of proportional electoral rules often argue that majority rule
depresses turnout and may lower welfare due to the “tyranny of the majority”
problem. The present paper studies the impact of electoral rules on turnout
and social welfare. We analyze a model of instrumental voting where citizens
have private information over their individual cost of voting and over the al-
ternative they prefer. The electoral rule used to select the winning alternative
is a combination of majority rule and proportional rule. Results show that
the above arguments against majority rule do not hold in this set up. Social
welfare and turnout increase with the weight that the electoral rule gives to
majority rule when the electorate is expected to be split, and they are inde-
pendent of the electoral rule employed when the expected size of the minority
group tends to zero. However, more proportional rules can increase turnout
within the minority group. This effect is stronger the smaller the minority
group. We then conclude that majority rule fosters overall turnout and in-
creases social welfare, whereas proportional rule fosters the participation of
minorities.
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Because the majority ought to prevail over the minority, must the majority
have all the votes, the minority none? Is it necessary that the minority should
not even be heard?
John Stuart Mill (1861), Considerations on Representative Government.

1 Introduction

In May 2011, the UK held a referendum on its electoral rule. The Liberal Democrat
party and the civic initiative “Make My Vote Count”campaigned in favor of aban-
doning the first-past-the-post (FPTP) system, with the long run goal of shifting
to a proportional representation (PR) system. Although the reform was rejected,
that referendum became part of a recent movement in favor of PR, which has suc-
ceeded so far in New Zealand and several Canadian states. As a matter of fact, most
western democracies shifted to PR systems during the first wave of this movement,
spanning over the last third of the 19th century and the first third of the 20th, up
to the downfall of the Weimar Republic (Blais et al. 2005).
The arguments against FPTP put forward by the “Make My Vote Count”move-

ment were mainly two. The first one relates to the wasted votes phenomenon,
namely that majority rule can potentially dismiss the votes of a large part of the
electorate.1 The wasted votes phenomenon is particularly worrisome in multi-party
systems and was especially acute in the UK 2005 national election, when more than
half of the votes were cast in favor of losing candidates. This concern relates also
to the tyranny of the majority problem (Madison et al., 1788; Mill, 1861), that is,
the fact that under majority rule just above half of the electorate might impose
its preferred alternative on the other half.2 A second modern criticism of FPTP
is that it discourages supporters of minoritarian alternatives from voting, as their
favorite choice is much less likely to obtain seats. That in turn depresses turnout,
increases political disaffection and weakens democratic legitimacy. Because PR is
not a winner-take-all electoral rule and makes all votes “count”, i.e., have an impact
on the outcome, supporters of proportional voting rules propose it as a remedy to
the “tyranny of the majority”problem and the low turnout associated with majority
rule.
This paper studies how electoral rules affect overall turnout, social welfare and

the representation of minority groups. We present a two-party model of costly
instrumental voting. Citizens have private information over their individual cost of
voting and over the alternative they prefer. The electoral rule used to select the
winning alternative is a combination of majority and proportional rule. Our results
suggest that the arguments against majority rule outlined above are wrong. We
show that in tight elections, that is, when citizens’probabilities of supporting each
alternative are close enough, turnout increases with the weight the electoral rule

1“In the large constituencies, nearly half of the electors are, for all useful purposes, in the same
position as if they were disenfranchised”(Hare, 1865).

2Tocqueville (1835) and Mill (1859) also referred to this problem, but rather than on this
potential caveat of majority rule, they focused on the social pressure stemming from majoritarian
opinions, which they called the “moral tyranny of the majority” or the “tyranny of the public
sentiment”.
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gives to majority rule. The same applies to social welfare: it is the highest under
pure majority rule. On the other hand, we show that in biased elections, that is,
when the expected size of the minority group tends to zero, proportional rule is not
welfare enhancing either, because social welfare is independent of the electoral rule
that is adopted.
The driving force behind these seemingly counterintuitive results is the funda-

mental trade off that proportional and majority rule offer between the frequency
and the magnitude of a vote’s impact. Under majority rule, a voter can only have
an impact on the outcome if she is pivotal, i.e., if her vote breaks or creates a tie.
Although relatively infrequent, the magnitude of this impact is big. On the other
hand, proportional rule ensures that votes in favor of an alternative always increase
its winning probability. However, the magnitude of that impact is relatively small.
As it turns out, when the minority group is expected to be large, magnitude is a
much stronger force than frequency, resulting in majority providing stronger incen-
tives to vote than proportional rule. The difference between the strengths of these
two effects vanishes as citizens’probability of supporting the minority alternative
tends to zero. In the limit, when the minority group has zero size, a vote has positive
impact only if everybody else abstains. In turn, that impact is the same regardless
of the electoral rule employed. Hence, in that case, social welfare is the same under
any electoral rule.
Finally, we compare overall and minority turnout for different electoral rules and

different types of elections. We show that overall turnout is always higher in tight
elections than in biased ones, independently of the electoral rule. We refer to this as
the generalized competition effect. Regarding the participation of minority groups,
we show that the “Make My Vote Count”initiative was right for the case of biased
elections, where more proportional rules foster turnout within the minority group.
Moreover, minority supporters vote more often under proportional rule when the
election is biased than when it is tight. This reversed competition effect is due to
the big magnitude that the vote of a minority supporter has in biased elections. In
addition, the collective action problem faced by the majority group in this type of
elections is so severe that, for any electoral rule, minority supporters vote more often
than majority supporters. We refer to this result as the generalized underdog effect.
The present work contributes to the literature on costly voting under majority

rule, which became prominent with the seminal papers by Ledyard (1981, 1984) and
Palfrey and Rosenthal (1983, 1985). In another key contribution, Börgers (2004)
performs a welfare comparison between majority voting, random decision making
and compulsory voting for the case in which the electorate is evenly split in ex-
pectation. Krasa and Polborn (2007) generalize Börgers’model to the case where
citizens are not equally likely to support each alternative, focusing on the welfare
properties of mandatory voting. In a recent working paper, Bognar et al. (2012)
show that, given certain conditions, welfare is maximized by a sequential voting pro-
cedure. Also related to our analysis, Goeree and Grosser (2007) and Lockwood and
Ghosal (2009) consider models where citizens’preferences are correlated. Finally,
a number of papers study the properties of costly voting models in large elections
(e.g., see Myerson, 1998, 2000; Campbell, 1999; Taylor and Yildirim 2010). When
the electorate grows without bound, turnout converges to zero independently of the
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electoral rule (see Faravelli and Walsh, 2011). Different ways to generate positive
limiting turnout have been proposed, such as mobilization (Morton, 1991; Shachar
and Nalebuff, 1999), ethical voting (Feddersen and Sandroni, 2006; Coate and Con-
lin, 2004) or other-regarding preferences (Evren, 2010; Faravelli and Walsh, 2011).
However, we chose to abstract away from this issue and focus on finite elections, in
order to analyze the most basic driving forces of voting decisions without adding
any potentially confounding factors.
Our study also belongs to the long-lasting debate on the relative merits of pro-

portional and majority rule. This debate traces back to the classical works of John
Stuart Mill (1861) and Thomas Hare (1865), which spread the belief in PR as the
“most democratic system”(Blais et al., 2005). To the best of our knowledge, very
few costly voting models have tackled this comparison between proportional and
majority rule. Herrera et al. (2011) compare turnout in proportional and winner-
take-all systems under population uncertainty. They also find that proportional rule
leads to higher turnout of the minority group, an effect that becomes stronger in
biased elections. Finally, in a concurrent paper, Kartal (2011) studies the welfare
properties of majority rule and PR under several cost structures focusing mostly on
tight elections.
The remainder of the paper is organized as follows. In the next section we

describe our set up and prove the existence of a type-symmetric equilibrium. We
then analyze equilibrium uniqueness, turnout and social welfare in tight elections.
Section 4 performs the same analysis for the case of biased elections. Section 5
compares turnout in these two polar cases and Section 6 concludes. We chose to
maintain in the text only those proofs that help to understand the main results
by providing their intuitions, while we relegated the more technical proofs to the
Appendix.

2 The Model

We consider a model of costly voting with two possible alternatives, A and B, and
n + 1 risk neutral citizens. Each citizen has got the same ex ante independent
probability α ≥ 1

2
of being a supporter of A and 1− α of supporting B. While α is

common knowledge, a citizen’s preference is private information. We will refer to A
as the majoritarian alternative and to its supporters as the majority group; and to
B as the minoritarian alternative and to its supporters as the minority group.
The benefit for an individual is equal to 1 if her preferred alternative is chosen

and 0 otherwise. Citizens decide simultaneously whether to vote or abstain. If
a citizen participates in the election she bears a cost. We call ci individual i’s
cost of voting. Each voter’s cost is randomly and independently drawn from the
differentiable distribution F (c) on the support [c

¯
,c̄], with 0 < c

¯
< 1

2
. We assume that

F ′(c) = f(c) is strictly positive on the whole support [c
¯
, c̄]. While an individual’s

cost is private information, F (c) is publicly known.
A voting rule aggregates votes to determine the outcome of the election. Denote

by j the number of votes for alternative z = A,B and l the number of votes for the
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other alternative. According to majority rule the probability that z is chosen is

qM(j, l) =


1 if j > l
1
2
if j = l

0 if j < l
,

whereas under proportional rule the probability of z being chosen is

qP (j, l) =

{ j
j+l

if j, l 6= 0
1
2

if j, l = 0
.

Since voters are risk neutral, the two voting rules described above can be in-
terpreted as two different allocation rules in a contest between two parties for a
prize of unitary value. On the one hand, majority rule is a standard winner-take-all
contest where the prize is entirely allocated to the alternative that receives the most
votes. On the other hand, proportional rule assigns to each alternative a share of
the prize proportional to its share of the votes. This, in turn, is the typical stylized
representation of PR based on the idea that parliamentary seats are assigned to
parties proportionally to their vote shares. Under either voting rule, each individual
receives a benefit equal to the share of the prize assigned to her preferred alternative.
We consider the family of voting rules Ωλ that includes all convex combinations

of majority and proportional rule. These electoral rules represent systems where
choices, like parliamentary seats, are made partly by PR and partly by FPTP within
districts.3 More formally, we define a voting rule as a function qλ : N × N → [0, 1],
where qλ represents the probability that z is chosen and is defined as

qλ(j, l) = λqM + (1− λ)qP .

The value of λ determines the weight assigned to majority rule. Notice that
λ = 1 describes pure majority rule and λ = 0 refers to pure proportional rule. Our
voting game can thus be summarized by the collection Λ = {n, α, λ, F (c)}.
The solution concept that we employ is Bayesian-Nash equilibrium (BNE). As

it is customary in this literature, we restrict our attention to type-symmetric BNE,
that is, those in which all citizens supporting the same alternative follow the same
strategy. Participation decisions depend on the realization of the individual voting
cost. Formally, a strategy is a mapping sz : [c

¯
,c̄]→ {0, 1}, where a choice of 0 denotes

abstaining and 1 denotes voting. A strategy profile {sA, sB} is a BNE of the game Λ
if for each alternative z ∈ {A,B} and each individual supporting alternative z, sz(·)
maximizes an individual’s expected payoff given that all other individuals adhere
to sz. Notice that voting for the least preferred alternative is strictly dominated
by abstaining. Consequently, in equilibrium, citizens will either abstain or vote for
their preferred alternative. It is possible to characterize citizens’strategies through
cut-off values ĉA and ĉB, such that

sz(ci) =

{
1 if ci ≤ ĉz
0 if ci > ĉz

. (1)

3There exist several examples of “mixed”electoral systems. For instance, in the general elections
that were held in Italy between 1993 and 2005, 75% of the parliament seats were assigned according
to FPTP and the remaining 25% according to PR. Similarly, since 2003, 73 of the 123 seats in the
Scottish Parliament are assigned by FPTP and the remaining by PR.

5



Before proving the existence of a BNE, we introduce two objects that will be
useful for our analysis. Suppose the strategy defined by (1) and the thresholds ĉA
and ĉB constitute an equilibrium. First, the expected benefit from abstaining for a
supporter of A is given by

UA(ĉA, ĉB) =
n∑
v=0

v∑
vA=0

(
n

v

)(
v

vA

)
[αF (ĉA)]vA [(1− α)F (ĉB)]v−vA (2)

× [1− αF (ĉA)− (1− α)F (ĉB)]n−v qλ (vA, v − vA) ,

where v is the number of citizens who turn out to vote, and vA is the number of
votes cast for alternative A. This expression adds up the benefit from abstaining,
represented by qλ (vA, v − vA), across all possible realizations of v and vA, given that
the ex ante probability of an individual voting for A is αF (ĉA), while she votes for
B with ex ante probability (1− α)F (ĉB).
Second, the net expected benefit from voting for a supporter of A is equal to

BA(ĉA, ĉB) =

n∑
v=0

v∑
vA=0

(
n

v

)(
v

vA

)
[αF (ĉA)]vA [(1− α)F (ĉB)]v−vA (3)

× [1− αF (ĉA)− (1− α)F (ĉB)]n−v

× [qλ (vA + 1, v − vA)− qλ (vA, v − vA)] .

Similarly, this expression adds up the net benefit from going to vote (the last term
in square brackets) across all possible realizations of v and vA. In an analogous
way, it is possible to calculate UB(ĉA, ĉB) and BB(ĉA, ĉB), representing the expected
benefit from abstaining and the net expected benefit from voting for a supporter of
B, respectively.
The following proposition characterizes existence of the type-symmetric BNE.

Proposition 1 There exists a pure strategy type-symmetric BNE of the game Λ =
{n, α, λ, F (c)} characterized by the voting strategy in (1) and thresholds c∗A and c∗B.

Proof. See Appendix.

Before proceeding, let us define three concepts which will be the object of our
analysis. First, we will call F (c∗z) the individual turnout probability within the group
of supporters of z. The second concept is ex ante voter turnout, defined as

αF (c∗A) + (1− α)F (c∗B) ,

which represents a citizen’s ex ante probability of voting before learning her type.
Finally, ex ante social welfare is given by

W (c∗A, c
∗
B) = (4)

α

[∫ c∗A

c

(UA(c∗A, c
∗
B) +BA(c∗A, c

∗
B)− c)f(c)dc+

∫ c

c∗A

UA(c∗A, c
∗
B)f(c)dc

]

+ (1− α)

[∫ c∗B

c

(UB(c∗A, ĉB) +BB(c∗A, c
∗
B)− c)f(c)dc+

∫ c

c∗B

UB(c∗A, c
∗
B)f(c)dc

]
.

6



This expression represents the welfare of an individual before learning her type
and it is given by the weighted average of the expected utility of an A-supporter and
that of a supporter of B. In turn, each of these two is represented by the sum of the
utility of an abstainer and that of a voter. As we know, in equilibrium, supporters
of alternative z with a cost higher than c∗z abstain and receive benefit Uz(c

∗
A, c

∗
B).

Citizens with a lower cost vote in equilibrium, and their utility is found by adding
the benefit from abstaining, Uz(c∗A, c

∗
B), and the net benefit from voting, Bz(c

∗
A, c

∗
B),

and subtracting the cost c.
Notice that all of the three objects defined above are continuous in c∗A and c

∗
B.

Throughout the paper, to simplify the language, we refer to ex ante voter turnout
and ex ante social welfare as turnout and social welfare, respectively.
In the following sections, we will analyze the properties of these three objects as

a function of the electoral rule qλ and the expected size of the two groups of sup-
porters. We begin by exploring two polar cases in detail. The case where citizens’
probabilities of supporting each alternative are similar, i.e., α ≈ 1

2
, and the case

where their probability of supporting the minoritarian alternative B tends to zero,
i.e., α → 1. We refer to these cases as tight elections and biased elections, respec-
tively. For each case, we characterize equilibrium uniqueness, and analyze turnout
and social welfare as a function of the electoral rule qλ.

3 Tight Elections

In this section, we analyze the case where citizens’probabilities of supporting each
alternative are relatively close. On the one hand, this is the case where the argument
in favor of PR as a potential welfare improving system seems to be the strongest
possible. Indeed, the “tyranny of the majority”problem associated with a winner-
take-all election is expected to be most acute, since, in expectation, a large share
of the population will see their favorite alternative defeated. On the other hand,
though, the “Make My Vote Count”argument that PR fosters turnout among mi-
nority supporters would seem rather weak in a close election where the minority
group is expected to be large. We explore these opposed arguments first by study-
ing the knife-edge case α = 1

2
, where the electorate is expected to be equally split

between A and B, and then by extending the analysis to a neighborhood of that
value.
When each citizen is equally likely to support either of the two alternatives it is

possible to characterize the equilibrium by using just a single strategy s : [c
¯
, c̄] →

{0, 1}. Following the same logic as above, a strategy can be now fully described by a
single cut-off cost ĉ such that citizens vote for their preferred alternative if and only
if ci ≤ ĉ. Hence, any equilibria we characterize at α = 1

2
will be (fully) symmetric.

Conditional on all citizens abiding to strategy s, and given that each one of
them is equally likely to support either A or B, it is possible to express the expected
benefit of voting for a generic individual i as a function of the individual ex ante
probability of voting, i.e., before learning her type, which is identical for all citizens.
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This probability is given by

π =

∫ ĉ

c
¯

s(c)f(c)dc.

Hence, the expected benefit from voting for a supporter of A, given by expression
(3), can be written as a function of the ex ante voting probability π and boils down
to

B(π) =

n∑
v=0

(
n

v

)
πv(1− π)n−v

v∑
m=0

[qλ(m+ 1, v −m)− qλ(m, v −m)]

(
v

m

)
1

2

v

. (5)

Observe that, since citizens support either party with probability 1
2
, the expected

benefit from voting is the same regardless of the alternative favored by an individual.
We can thus drop the subindex z in expression (5) and denote by m the number
of citizens who vote for the same alternative supported by citizen i. The term(
n
v

)
πv(1 − π)n−v represents the probability that v of the n citizens other than i

turn out to vote. The expression [qλ(m + 1, v − m) − qλ(m, v − m)] corresponds
to the benefit from voting when m of the v voters are already voting for the same
alternative supported by i, and it is multiplied by the probability of that event
happening, which is equal to

(
v
m

)
1
2

v. Note that B(0) = 1
2
.

We can rearrange (5) as

B(π) = (1− λ)
n∑
v=0

(
n

v

)
πv(1− π)n−v (6)

×
v∑

m=0

[qP (m+ 1, v −m)− qP (m, v −m)]

(
v

m

)
1

2

v

+ λ
n∑
v=0

(
n

v

)
πv(1− π)n−v

×
v∑

m=0

[qM(m+ 1, v −m)− qM(m, v −m)]

(
v

m

)
1

2

v

.

= (1− λ)P (π) + λM(π).

Hence, B(π) is a convex combination of M(π) and P (π), where the former cor-
responds to the expected benefit from voting under majority rule and the latter is
the expected benefit from voting under proportional rule.
We begin by showing that at α = 1

2
the game has a unique symmetric BNE. In

order to do this we first have prove the following technical result.

Lemma 1 The expected benefit function B(π) is differentiable and decreasing in π.

Proof. See Appendix.

Notice that given the cut-off strategy described above, then π = F (ĉ). In ad-
dition, observe that B(F (c)) = B(0) = 1

2
> c. Since F (ĉ) is increasing in ĉ, then

B(F (ĉ)) is decreasing in ĉ and there exists at most one cost level c∗ such that
B(F (c∗)) = c∗. Thus, as we state in the next lemma, there exists a unique equilib-
rium c∗ such that c∗ ∈ (c, c̄) if B(F (c̄)) < c̄, while c∗ = c̄ otherwise.
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Lemma 2 When the electorate is evenly split in expectation, i.e., α = 1
2
, there

exists a unique symmetric BNE such that c∗Aε(c¯
, c̄].

Proof. See Appendix.

Note that for the case of majority rule (i.e., λ = 1) uniqueness was already
proven in Börgers (2004). The previous lemma generalizes that result to the use of
any electoral rule qλ.
Having established equilibrium uniqueness, we can now safely perform compara-

tive statics on turnout and social welfare as a function of the electoral rule, charac-
terized by the parameter λ. The following proposition shows that, contrary to the
assertion that proportional rule fosters turnout because it makes all votes count,
turnout is actually increasing in the weight the electoral system assigns to majority
rule.

Proposition 2 Turnout at α = 1
2
is increasing in the weight λ assigned to majority

rule.

Proof. Recall from (6) that B(π) = (1− λ)P (π) + λM(π) and that

M(π) =
n∑
v=0

(
n

v

)
πv(1− π)n−v

v∑
m=0

[qM(m+ 1, v −m)− qM(m, v −m)]

(
v

m

)(
1

2

)v
.

Notice that, if v is odd, qM(m + 1, v −m) − qM(m, v −m) is equal to 1
2
when

m = v−1
2
and zero otherwise. Similarly, if v is even, qM(m+1, v−m)−qM(m, v−m)

is equal to 1
2
when m = v

2
and equals zero otherwise. Finally, if v = 0 then qM(m+

1, v −m)− qM(m, v −m) = 1
2
. Let us define the function g(v) as

g(v) =


1 if v = 0(
v
v−1
2

)
if v is odd(

v
v
2

)
if v is even

.

We can now rewrite

M(π) =
1

2

n∑
v=0

(
n

v

)
πv(1− π)n−v

(
1

2

)v
g(v).

We want to compare M(π) with P (π), which we know from expression (8), as
worked out in the proof of Lemma 1, that can be written as

P (π) =
1

2

n∑
v=0

(
n

v

)
πv(1− π)n−v

1

v + 1
.

Hence

M(π)− P (π) =
1

2

n∑
v=0

(
n

v

)
πv(1− π)n−v

[(
1

2

)v
g(v)− 1

v + 1

]
.

9



First, notice that if v = 0 then M(π) = P (π) = 1
2
. Consider now the case of v

odd. Notice that in that case(
1

2

)v
g(v) =

(
1

2

)v (
v
v−1
2

)
=

(
1

2

)v
v!(

v−1
2

)
!
(
v−1
2

)
!v+1
2

=

(
1

2

)v
v!(

1
2

) v+1
2
(
1
2

) v−1
2 (v + 1) [(v − 1)× (v − 3)× · · · × 2]2

=
1

(v + 1)

v!

(v − 1)2 × (v − 3)2 × · · · × 22

=
1

(v + 1)

v × (v − 2)× · · · × 3

(v − 1)× (v − 3)× · · · × 2
>

1

(v + 1)
.

Finally, consider v even. In this case(
1

2

)v
g(v) =

(
1

2

)v (
v
v
2

)
=

(
1

2

)v
v!
v
2
!v
2
!

=

(
1

2

)v
v!(

1
2

)v
[v × (v − 2)× · · · × 2]2

=
1

v

(v − 1)× (v − 3)× · · · × 3

(v − 2)× (v − 4)× · · · × 2
>

1

v
>

1

v + 1
.

Thus, we can conclude that M(π) > P (π) and therefore ∂B(π)
∂λ

> 0. It follows
that c∗ and turnout are also increasing in λ.

Majority rule makes votes relevant only if they are pivotal, that is, if they help to
break a tie or reach one. This may be a very low probability event, but the impact of
such pivotal vote is very high. On the other hand, proportional rule ensures that all
votes in favor of an alternative help increase its winning probability. However, the
magnitude of that impact is relatively small. Proposition 2 shows that in this trade
off between frequency and magnitude of a vote’s impact, the latter is a stronger
force. Majority rule gives voters a higher ex ante incentive to cast a ballot and that
results in higher turnout than under proportional rule.
In the next proposition we show that higher turnout leads to higher social welfare.

It follows that, if the electorate is evenly split in expectation, welfare is maximized
by adopting majority rule.

Proposition 3 Welfare at α = 1
2
is increasing in the weight λ assigned to majority

rule.

Proof. We begin by showing that under both majority and proportional rule the ex-
pected utility of a citizen who abstains is 1

2
. Börgers (2004) showed this for majority

10



rule. This is rather intuitive since ex ante individuals are equally likely to support
each alternative and the benefit in case of supporting the winning alternative is just
1. The case of proportional rule is not that straightforward. Although supporters of
both alternatives will cast a vote with the same probability π, the benefit from sup-
porting an alternative depends on its vote share. Hence it is necessary to consider
all possible realizations of the vote shares.
When α = 1

2
, the expected payoff for any citizen who abstains and supports

alternative z, given by expression (2), boils down to

U(π) =
n∑
v=0

(
n

v

)
πv(1− π)n−v

v∑
m=0

qP (m, v −m)

(
v

m

)(
1

2

)v
=

n∑
v=0

v∑
m=0

(
n

v

)
πv(1− π)n−v

(
v

m

)(
1

2

)v
m

v
,

which is the probability of the alternative supported by citizen i winning when v
out of n citizens vote and m of them vote for that alternative, multiplied by the
probability of that event, added up across all possible realizations of v and m.
Note that when v voters vote, the probability that m do it in favor of i’s favorite
alternative is identical to the probability of v −m doing the same. Hence,

U(π) =
n∑
v=0

v∑
m=0

(
n

v

)
πv(1− π)n−v

(
v

m

)(
1

2

)v
m

v
=

n∑
v=0

(
n

v

)
πv(1− π)n−vh(v), (7)

where

h(v) =

{ ∑ v−1
2

m=0

(
v
m

) (
1
2

)v
if v odd∑ v

2
−1

m=0

(
v
m

) (
1
2

)v
+
(
v
v
2

) (
1
2

)v+1
if v even

,

which in turn is equal to 1
2
. Thus, expression (7) reduces to

1

2

n∑
v=0

(
n

v

)
πv(1− π)n−v =

1

2
,

meaning that the expected utility from abstaining under proportional rule is 1
2
re-

gardless of the alternative the citizen supports. Given that qλ is linear, this property
extends to any intermediate value of λ.
Hence, expression (4) denoting an individual’s ex ante expected welfare boils

down to

W (π) =

∫ c∗

c

(
1

2
+B(π)− c)f(c)dc+

∫ c

c∗

1

2
f(c)dc

=

∫ c∗

c

(
1

2
+ λM(π) + (1− λ)P (π)− c)f(c)dc+

∫ c

c∗

1

2
f(c)dc

=
1

2
+

∫ c∗

c

(λM(π) + (1− λ)P (π)− c)f(c)dc.
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Recall that π = F (c∗). The function W (π) is clearly differentiable with respect
to c∗, so its derivative with respect to λ is

W ′(π) =

∫ c∗

c

B′(π)f(c∗)
∂c∗

∂λ
f(c)dc+ (B(π)− c∗)f(c∗)

∂c∗

∂λ

= B′(π)f(c∗)F (c∗)
∂c∗

∂λ
.

As we have proven that B(π) and c∗ are increasing in λ, social welfare W (π) is
also increasing in λ.

This result is somewhat counterintuitive, as it disproves our initial concern about
the “tyranny of the majority”problem. A social planner wishing to maximize welfare
would deny any representation to the losing alternative. This is because ex ante
social welfare is given by the sum of the expected utility of those citizens who
abstain and those who vote. When voters are equally likely to support the two
alternatives, the expected utility of a citizen who abstains under proportional rule
is the same as under majority rule, i.e., 1

2
. Hence, any difference between the two

electoral rules boils down to the difference in the expected benefit from going to the
polls. As Proposition 2 showed, this is greater under majority rule and so is social
welfare.
We now turn our attention to the case in which the two parties are expected

to be of similar, but not identical, size. Unfortunately, many of the properties of
the symmetric equilibrium are lost when we move away from the case where the
electorate is evenly split in expectation. As it is not possible to obtain explicit
analytic solutions for the equilibrium thresholds for a generic value of α, we cannot
perform straightforward comparative statics on turnout and welfare as a function of
both α and λ. However, we can analyze what happens in a neighborhood of α = 1

2

by applying a continuity argument. In order to do this we first need to present the
following technical result.

Lemma 3 In a neighborhood of α = 1
2
, there exists a unique type-symmetric BNE.

Moreover, the equilibrium cutoffs c∗A and c
∗
B are continuous functions of α.

Proof. See Appendix.

First of all, equilibrium uniqueness allows us to perform meaningful comparative
statics. Second, since the equilibrium values are continuous functions of α, we can
extend the turnout and welfare properties that hold at α = 1

2
to a neighborhood. In-

deed, recall that both turnout and welfare are continuous in c∗A and c
∗
B and therefore,

given Lemma 3, they are also continuous in α.

Proposition 4 In a neighborhood of α = 1
2
, turnout and welfare are increasing in

the weight λ assigned to majority rule.

We started our analysis of tight elections armed with two opposing intuitions.
On the one hand, the case where the expected size of the two groups is similar would
seem the most likely to lead to a “tyranny of the majority”scenario, where almost
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half of the population sees their preferred alternative defeated. Hence, proportional
rule would look like an appropriate candidate to mitigate that potential welfare loss.
On the other hand, the argument that PR would encourage turnout by making
every vote count seems rather weak when the election is expected to be close. The
first intuition was revealed to be wrong. This is because, when elections are tight,
proportional rule not only does not encourage turnout, but actually depresses it,
even among minority supporters. Although it increases the frequency of a vote
having positive impact compared to majority rule, the magnitude of that impact
is far too small, resulting in a lower expected benefit from voting. In turn, social
welfare is directly determined by voter turnout. As the expected benefit of abstainers
is insensitive to the electoral rule, welfare depends solely on the benefit from voting.
Thus, welfare is maximized under majority rule because such a system encourages
voters of both groups to vote more frequently than under proportional rule.

4 Biased Elections

In this section, we focus on the case where the expected size of the minority group
is rather small. This is the scenario where PR, in principle, is more likely to remedy
the problem of low incentives for minority supporters that emerges under FPTP.
At the same time, it is also the case where the “tyranny of the majority”would
seem less worrisome, since the victory of the majoritarian alternative would benefit
a large fraction of the population. This second factor would run in favor of adopting
majority rule.
We begin by analyzing the extreme case where all citizens support the majori-

tarian alternative, i.e., α = 1. Clearly, as everyone supports alternative A, the
equilibrium will be fully symmetric.

Proposition 5 When all citizens support the majoritarian alternative, i.e., α =
1, there exists a unique symmetric BNE such that c∗Aε(c¯

, c̄). At that equilibrium,
turnout and social welfare are invariant across all voting rules in the class Ωλ.

Proof. See Appendix.

The proof of the previous proposition rests on showing that when α = 1 the
benefit from voting under any electoral rule qλ is identical to the benefit from voting
under majority rule. Since everybody supports the same alternative, even under
proportional rule a voter can only make a difference when everyone else abstains, in
which case a decisive vote has the same impact independently of the electoral rule.
Thus, turnout does not vary with λ. Moreover, the expected benefit from abstaining
is also independent of λ. These two factors imply that social welfare is also constant
across all electoral rules. Hence, while it is actually true that majority rule does not
lead to the “tyranny of the majority”, it is also true that welfare is not diminished
by adopting any other electoral rule. Finally note that, differently from the case of
α = 1

2
, it cannot happen that all citizens turn out to vote in equilibrium. Indeed, as

everyone supports the same alternative, if anyone else voted with probability 1 an
individual would be better off by abstaining.
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The next lemma extends equilibrium uniqueness to the case of biased elections
and proves that, in a neighborhood of α = 1, the equilibrium values are continuous
in α. This is an analogous result to what we proved in Lemma 3 for the case of tight
elections.

Lemma 4 In a neighborhood of α = 1, there exists a unique type-symmetric BNE.
Moreover, the equilibrium cutoffs c∗A and c

∗
B are continuous functions of α.

Proof. See Appendix.

From Lemma 4 it follows that, in a neighborhood of α = 1, turnout and welfare
are continuous in α. Since turnout and welfare are identical under all voting rules
when everyone supports A, this means that in a tight election they will be relatively
insensitive to the electoral rule. Unfortunately though, this also implies that we
cannot infer any comparative statics properties for a neighborhood of α = 1 by
applying a continuity argument. However, we can compare the individual turnout
probability within each group of supporters, and analyze how they vary as a function
of the weight λ given to majority rule.

Proposition 6 In a neighborhood of α = 1, the unique type-symmetric BNE has
the following properties:

i) Generalized Underdog Effect: For any voting rule qλ, individual turnout probabil-
ity is greater among minority supporters than among majority supporters.

ii) Make Minorities Count: The individual turnout probability of minority support-
ers is decreasing in the weight λ assigned to majority rule.

Proof. See Appendix.

This proposition shows that, although in a biased election turnout is quite in-
sensitive to the electoral rule, members of the minority group vote relatively more
often than majority supporters. This is a consequence of the greater collective ac-
tion problem faced by the latter. For the case of majority rule, this phenomenon is
typically referred to as the underdog effect (Levine and Palfrey, 2007). It has been
formalized in a general setting by Taylor and Yildirim (2010) and various studies
provide empirical evidence in its support (see, for example, Shachar and Nalebuff,
1999; and Blais, 2000). We generalize this result to the use of any electoral rule qλ.
The second part of the proposition shows that minority supporters vote more

often the more proportional the electoral rule is. Hence, in biased elections at least,
the argument put forward by the “Make My Vote Count”initiative is indeed correct.
To see this, let us focus on a member of the minority group. As we know, under
proportional rule her vote always has a positive impact, albeit of modest magnitude.
Under majority rule, the impact is only positive if she is pivotal. However, in a biased
election this event occurs with an extremely low frequency, much lower than when
the electorate is evenly split. As a result, contrary to the case of tight elections,
frequency is the determinant force of voting decisions. By making all votes count,
more proportional rules give minority supporters greater incentives to vote.
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Although explicit calculations are not possible, the combination of these two
results suggest that in biased elections, just like in tight ones, social welfare must
be higher the more weight is assigned to majority rule. This is because the higher
λ, the lower the individual turnout probability within the minority group. This in
turn weakens the underdog effect and makes the minoritarian alternative less likely
to win.

5 Comparing Tight and Biased Elections

So far we have focused on two polar cases, elections where the electorate is expected
to be almost evenly split and elections where the expected size of the minority group
is close to zero. We have not made yet any comparisons between these two cases.
Specifically we wish to answer the two following questions. First, how does turnout
compare between tight and biased elections? This is a very relevant issue, which
is often studied in empirical analyses of voter turnout (Blais, 2006). Second, under
proportional representation, do minority supporters vote more frequently in biased
or in tight elections?
The following proposition characterizes our results on these issues.

Proposition 7 (Generalized and Reversed Competition Effects) Turnout in
a tight election is always higher than in a biased election. Under proportional rule,
the individual turnout probability within the minority group is higher in a biased
election than in a tight election.

Proof. See Appendix.

The first part of this proposition shows that election closeness, measured by
citizen’s ex ante probability of supporting the minoritarian alternative 1− α, has a
positive impact on turnout. In the case of majority rule, this phenomenon is known
as the competition effect (Levine and Palfrey, 2007) and it is consistent with the
existing empirical evidence on real elections. For instance, Shachar and Nalebuff
(1999) find a positive effect of predicted closeness in turnout in US presidential
elections, while Noury (2004) finds a similar effect in roll call votes in the European
Parliament. Levine and Palfrey (2007) observe this phenomenon in the laboratory
as well. We generalize the competition effect in two directions. First, we show that
it holds for any given electoral rule in the family Ωλ. Second, we prove that it holds
even when comparing different voting rules across the two scenarios: the turnout
under any rule in a tight election is higher than the highest possible turnout in a
biased election.
This result also implies that turnout is more sensitive to election closeness the

more weight is assigned to majority rule. This is because, as we know from Proposi-
tions 2 and 5, turnout is fostered by majority rule when elections are tight, whereas
it is relatively insensitive to the voting rule when they are biased. The intuition
behind this result is that proportional rule provides voters with flatter incentives
than majority rule. The impact of a vote under proportional rule is always positive
but relatively small. Hence, election closeness has a more limited effect on turnout
the more proportional the electoral rule is.
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The second part of the proposition shows that under proportional rule turnout
within the minority group is higher when the election is biased than when the
election is tight. This reversed competition effect (Herrera et al., 2011) is due to
the differential marginal effect of a minority vote in these two scenarios. Under
proportional rule, the share of the prize qP is a concave function of the number
of votes. Hence the magnitude of impact when the expected size of the minority
group tends to zero is larger than when the minority group comprises about half
of the population. This higher magnitude of impact fosters turnout within the
minority group more in biased elections than in tight ones, generating this reversed
competition effect.

6 Conclusion

The debate on the best electoral rule is a long-lasting one. From the works of John
Stuart Mill (1861) and Thomas Hare (1865) to initiatives like the “Make My Vote
Count” campaign, many have defended PR against majority rule as a rule that
enhances welfare, fosters turnout and protects minorities. In this paper, we have
studied how different electoral rules affect turnout and social welfare. Our results
suggest that most of the above arguments against majority rule do not hold true, at
least in the context of a model of costly instrumental voting and under reasonable
informational assumptions. We show that when the electorate is expected to be split,
majority rule induces higher turnout and social welfare than proportional rule. And
when the size of the minority group tends to zero, both turnout and social welfare
are independent of the electoral rule employed.
These results run against the intuition behind the “tyranny of the majority”ar-

gument and seem at odds with the available empirical evidence. Studies on electoral
turnout show that PR systems yield higher levels of participation than majoritar-
ian systems, at least in well established democracies (for a survey see Blais, 2006).
However, in a laboratory experiment, Schram and Sonnemans (1996) obtain the op-
posite. Our results suggest that this conflicting evidence may be due to the different
effect that electoral rules have on overall turnout depending on the expected size
of the minority group. Hence, empirical studies on the relation between electoral
systems and turnout in real elections should control for expected closeness. Whereas
the positive effect of expected closeness on turnout is well-described in the empirical
literature (Blais, 2006), to the best of our knowledge, there are no empirical studies
measuring this effect in PR systems.
We also showed that overall turnout is higher in a tight election than in a biased

one, under any electoral rule. This result holds true as well when different voting
rules are applied in these two scenarios (generalized competition effect). We also
paid extensive attention to voting decisions within the minority group. We showed
that when elections are biased, minority supporters vote more often than major-
ity supporters (generalized underdog effect), and that this effect is strongest under
proportional rule. Finally, we compared minority turnout between the two polar
cases of tight elections and biased elections. We showed that the positive effect of
proportional rule on the turnout of minority supporters is higher in the latter case,
so the minority group experiences a reversed competition effect.
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We should stress here that our results rest on a key feature of our approach,
which is that voting is only instrumental. Hence, social welfare is measured by the
expected benefit of voting, which in turn is a combination of the frequency and
magnitude of a vote’s impact. This is perhaps against the classical view on the
“tyranny of the majority”issue, which implicitly places a high weight on the welfare
of the defeated group. Our measure of social welfare, as it is customary in the
literature, is based on utilitarian principles. Hence, a stronger underdog effect, due
either to a biased election or a more proportional rule, tends to reduce welfare by
decreasing the winning probability of the majoritarian alternative.
One last remark is in order. We did not compare social welfare between tight

and biased elections. This is because the final effect depends on the size of the
electorate and the distribution of costs. Although citizens have a higher incentive to
vote when the election is tight, a larger share of the electorate will see their preferred
alternative defeated. When the election is biased, the collective action problem is
strong within the majority group but the overwhelmingly majoritarian alternative is
selected almost surely. These two opposing factors make comparison not clear-cut.
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Appendix

Proof of Proposition 1. For this to be an equilibrium, it must be the case that the
supporter of A with cost ĉA and the supporter of B with cost ĉB must be indifferent
between voting and abstaining, if each other player adopts this strategy. That is,
BA(ĉA) = ĉA and BB(ĉB) = ĉB.
To prove the existence of such an equilibrium, define the function Φ : [c

¯
,c̄]2 →

[c
¯
, c̄]2 as

Φ(ĉA, ĉB) = (max{min{BA(ĉA, ĉB), c̄}, c
¯
},max{min{BB(ĉA, ĉB), c̄}, c

¯
}).

As Bz(ĉA, ĉB) is clearly continuous in ĉA and ĉB then the operator Φ(ĉA, ĉA) is
also continuos. Therefore, by Brower’s fixed point theorem there must exist a pair
(c∗A, c

∗
B) such that Φ(c∗A, c

∗
B) = (c∗A, c

∗
B). If c∗z ∈ (c

¯
, c̄) then all supporters of the

generic alternative z with cost lower than c∗z will vote, while the ones with a higher
cost will abstain. Similarly, if c∗z =c

¯
all supporters of the alternative will abstain,

while if c∗z = c̄ they will all vote.

Proof of Lemma 1. Note that the termM(π) in expression (6) corresponds to the
expected benefit from voting under majority rule as analyzed in Börgers (2004). In
Remark 1, he shows that M(π) is differentiable and decreasing in π. It now remains
to show that the same applies to P (π), that is, the expected benefit from voting
under proportional rule.
First, it is possible to express P (π) as

P (π) = (1− π)n
1

2
+

n∑
v=1

(
n

v

)
πv(1− π)n−v

v∑
m=0

(
v

m

)[
m+ 1

v + 1
− m

v

]
1

2

v

= (1− π)n
1

2
+

n∑
v=1

(
n

v

)
πv(1− π)n−v

v∑
m=0

(
v

m

)[
v −m

(v + 1)v

]
1

2

v

.
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Further, notice that the last term
∑v

m=0

(
v
m

) [
v−m
(v+1)v

]
1
2

v can be expressed as

v∑
m=0

(
v

m

)[
v −m

(v + 1)v

]
1

2

v

=

v∑
m=0

v!

m!(v −m)!

[
v −m

(v + 1)v

]
1

2

v

=
1

2(v + 1)

v∑
m=0

(
v − 1

m

)
1

2

v−1

=
1

2(v + 1)

v−1∑
m=0

(
v − 1

m

)
1

2

v−1

=
1

2(v + 1)
,

where the last equality holds by applying the binomial theorem. Hence, we can
rewrite P (π) as

P (π) =
1

2

n∑
v=0

(
n

v

)
πv(1− π)n−v

1

v + 1
=

1− (1− π)n+1

2π(n+ 1)
, (8)

where the last equality follows from applying regular binomial rules.
Differentiating the above expression with respect to π we obtain the following:

∂P (π)

∂π
=

1

2(n+ 1)

[
−(n+ 1)

(1− π)n

π
− 1− (1− π)n+1

π2

]
< 0. (9)

which implies that P (π) is decreasing in π. As a consequence, we can conclude that
B(π) is also decreasing in π.

Proof of Lemma 3. Consider a sequence αm such that limm→∞ αm = 1
2
and call

cmA and c
m
B the corresponding equilibrium thresholds. By compactness, we know that

there exist subsequences converging to some cutoffs c̃A and c̃B. Moreover, since the
benefit functions are continuous, the pair of cutoffs (c̃A, c̃B) is an equilibrium for the
case of α = 1

2
. As the equilibrium is unique when α = 1

2
, for any neighborhood of

the α = 1
2
equilibrium there exists a critical value α̃ > 1

2
such that all equilibria

corresponding to α < α̃ are in that neighborhood. Having established this, we can
apply the implicit function theorem to prove that the equilibrium is unique in a
neighborhood of α = 1

2
, and that the corresponding cutoffs are continuos functions

of α.
Let us calculate the Jacobian in α = 1

2
:

J =

(
∂BA(c

∗
A,c

∗
B)

∂c∗A
|α= 1

2
−1

∂BA(c
∗
A,c

∗
B)

∂c∗B
|α= 1

2
∂BB(c

∗
A,c

∗
B)

∂c∗A
|α= 1

2

∂BB(c
∗
A,c

∗
B)

∂c∗B
|α= 1

2
−1

)
.

Notice that, by symmetry, ∂BA(c
∗
A,c

∗
B)

∂c∗A
|α= 1

2
=

∂BB(c
∗
A,c

∗
B)

∂c∗B
|α= 1

2
and ∂BB(c

∗
A,c

∗
B)

∂c∗A
|α= 1

2
=

∂BA(c
∗
A,c

∗
B)

∂c∗B
|α= 1

2
. Hence, we can express the Jacobian determinant as

det J =

(
∂BA(c∗A, c

∗
B)

∂c∗A
|α= 1

2
−1

)2
−
(
∂BA(c∗A, c

∗
B)

∂c∗B
|α= 1

2

)2
.
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If the determinant is nonzero then J is invertible and we can apply the implicit
function theorem. Note that det J 6= 0 iff ∂BA(c

∗
A,c

∗
B)

∂c∗A
|α= 1

2
−∂BA(c

∗
A,c

∗
B)

∂c∗B
|α= 1

2
6= 1.

Denote by vA the number of votes in favor of alternative A. When α = 1
2
the

expected benefit (3) reduces to

BA(c∗A, c
∗
B) =

1

2n

n∑
v=0

v∑
vA=0

(
n

v

)(
v

vA

)
F (c∗A)vA F (c∗B)v−vA [2− F (c∗A)− F (c∗B)]n−v

(10)

× [qλ (vA + 1, v − vA)− qλ (vA, v − vA)] .

Differentiating (10) with respect to c∗A we obtain the following:

∂BA(c∗A, c
∗
B)

∂c∗A
|α= 1

2
=

1

2n
f (c∗A)

n∑
v=0

v∑
vA=0

(
n

v

)(
v

vA

)
F (c∗A)vA−1 F (c∗B)v−vA

× [2− F (c∗A)− F (c∗B)]n−v−1

× vA [2− F (c∗A)− F (c∗B)]− (n− v)F (c∗A)]

× [qλ (vA + 1, v − vA)− qλ (vA, v − vA)] .

As we know that F (c∗A) = F (c∗B) when α = 1
2
, we can rewrite the above expres-

sion as

∂BA(c∗A, c
∗
B)

∂c∗A
|α= 1

2
= (11)

f(c∗)
n∑
v=0

v∑
vA=0

(
n

v

)(
v

vA

)
1

2v
F (c∗)v−1 [1− F (c∗)]n−v−1

× [vA [1− F (c∗)]− (n− v)F (c∗)]

× [qλ (vA + 1, v − vA)− qλ (vA, v − vA)]

Similarly, differentiating BA(c∗A, c
∗
B) with respect to c∗B and calculating the deriv-

ative α = 1
2
we get the following

∂BA(c∗A, c
∗
B)

∂c∗B
|α= 1

2
= (12)

f(c∗)

n∑
v=0

v∑
vA=0

(
n

v

)(
v

vA

)
1

2v
F (c∗)v−1 [1− F (c∗)]n−v−1

× [(v − vA) [1− F (c∗)]− (n− v)F (c∗)]

× [qλ (vA + 1, v − vA)− qλ (vA, v − vA)] .

Call ∆ the difference between (11) and (12). Then

∆ = f(c∗)
n∑
v=0

v∑
vA=0

(
n

v

)(
v

vA

)
1

2v
F (c∗)v−1 [1− F (c∗)]n−v (13)

× (2vA − v)

× [qλ (vA + 1, v − vA)− qλ (vA, v − vA)] .
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We want to study the sign of ∆. First consider the case of λ = 1, that is, when
majority rule is applied. Recall that qM (vA + 1, v − vA) − qM (vA, v − vA) is either
equal to zero or to 1

2
. Moreover, note that this difference is equal to 1

2
either when

2vA = v or when 2vA = v − 1 (for strictly positive values of v). But, in these cases,
the second term of expression (13) is either zero or strictly negative, meaning that
∆ < 0 when majority rule is applied.
Let us now explore the case of λ = 0, i.e., when proportional rule is employed.

We can safely ignore the case v = 0, as 2vA − v would also be equal to zero. First,
consider v even and let i < v

2
. Notice that

(
v
i

)
=
(
v
v−i
)
. Hence, for a given v, the

cases vA = i and vA = v − i are multiplied by the same binomial coeffi cient and,
consequently, in both cases the first line of expression (13) assumes the same value.
Further notice that qP (vA + 1, v − vA) − qP (vA, v − vA) = v−vA

(v+1)v
. Therefore, the

third term of (13) is greater when vA = i than when vA = v − i. But, when vA = i
the term (2vA−v) is negative. Vice versa, (2vA−v) is positive when vA = v−i. This
means that we are multiplying greater values times negative numbers and smaller
values times positive numbers. Finally notice that (2vA − v) is equal to zero when
vA = v

2
, resulting in ∆ being strictly negative. When v is odd, the same reasoning

carries through, with the only difference that, instead of vA = v
2
, we now have to

consider the case vA = v
2

+ 1. Notice that in this case (2vA − v) assumes a negative
value.
If ∆ is negative both when λ = 1 and when λ = 0, then it is clearly negative for

any λ. Having proved that ∆ < 0 assures that the Jacobian determinant is different
from zero. Hence, the implicit function theorem guarantees that in a neighborhood
of α = 1

2
the equilibrium is unique, and that the equilibrium thresholds c∗A and c

∗
B

are continuous functions of α.

Proof of Proposition 5. When α = 1 a strategy can be fully described by a single
cut-off cost ĉA. The expected benefit from voting for an individual is given by

BA(ĉA) =
n∑
v=0

(
n

v

)
F (ĉA)v [1− F (ĉA)]n−v [qλ (v + 1, 0)− qλ (v, 0)]

= λ
n∑
v=0

(
n

v

)
F (ĉA)v [1− F (ĉA)]n−v [qM (v + 1, 0)− qM (v, 0)]

+ (1− λ)
n∑
v=0

(
n

v

)
F (ĉA)v [1− F (ĉA)]n−v [qP (v + 1, 0)− qP (v, 0)] .

By definition, whenever v > 0 it is the case that qM (v + 1, 0) − qM (v, 0) =
qP (v + 1, 0)− qP (v, 0) = 0. On the other hand, when v = 0 we have qM (v + 1, 0)−
qM (v, 0) = qP (v + 1, 0)− qP (v, 0) = 1

2
. Thus, the benefit from voting boils down to

BA(ĉA) =
1

2
[1− F (ĉA)]n . (14)

Since BA(ĉA) is non increasing in ĉA there must exist a unique cost level c∗A such
that BA(c∗A) = c∗A. Notice that

1
2

[1− F (c
¯

)]n = 1
2
> c
¯
and 1

2
[1− F (c̄)]n = 0 < c̄,

implying that c
¯
< c∗A < c̄.
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We immediately realize from expression (14) that the expected benefit from
voting does not depend on λ, implying that turnout is identical under all voting
rules. Notice that this means that the expected benefit of a voter conditional on
abstaining is also independent of λ. Indeed, for any voting rule qλ, an abstainer
receives a benefit equal to 1 when v > 0 and equal to 0 when v = 0; since c∗A is
constant, these two events happen with the same probability across all rules. As
the expected benefit from voting and from abstaining is invariant across all electoral
rules, social welfare must also be invariant.

Proof of Lemma 4. Consider a strategy defined by (1) and thresholds ĉA and ĉB.
We know that for this to be an equilibrium it must be the case that ĉA = BA(ĉA, ĉB)
and ĉB = BB(ĉA, ĉB). In Proposition 3, Krasa and Polborn (2009) demonstrate
that: 1) the equilibrium under majority rule is unique in a neighborhood of α = 1
and 2) the equilibrium values c∗A and c

∗
B are continuous in α. Since majority rule

and our generic electoral rule qλ coincide at α = 1, both of these results also extend
to our setup.

Proof of Proposition 6. Let us start by considering the benefit from voting for a
supporter of A. By continuity, we know from (14) that when α that tends to 1 the
benefit from voting for an A-member is given by

lim
α→1

BA(ĉA, ĉB) =
1

2
[1− F (ĉA)]n . (15)

Hence, when α → 1 the equilibrium cut-off c∗A is found by solving the following
equation in one unknown

1

2
[1− F (ĉA)]n = ĉA.

Consider now BB(ĉA, ĉB), and notice that it can be expressed as

BB(ĉA, ĉB) = λ
n∑
v=1

v∑
vA=0

(
n

v

)(
v

vA

)
[αF (ĉA)]vA [(1− α)F (ĉB)]v−vA

× [1− αF (ĉA)− (1− α)F (ĉB)]n−v

× [qM (v − vA + 1, vA)− qM (v − vA, vA)]

+ (1− λ)
n∑
v=1

v∑
vA=0

(
n

v

)(
v

vA

)
[αF (ĉA)]vA [(1− α)F (ĉB)]v−vA

× [1− αF (ĉA)− (1− α)F (ĉB)]n−v
vA

(v + 1)v

+
1

2
[1− αF (ĉA)− (1− α)F (ĉB)]n .

Taking the limit of the above expression for α that tends to 1 we obtain the following

lim
α→1

BB(ĉA, ĉB) = λ
1

2
nF (ĉA) [1− F (ĉA)]n−1 (16)

+ (1− λ)

n∑
v=1

(
n

v

)
F (ĉA)v [1− F (ĉA)]n−v

1

v + 1

+
1

2
[1− F (ĉA)]n .
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Just like in the case of A-supporters, supporters of B receive a benefit of 1
2
from

voting when everybody else abstains. This is true under both proportional and
majority rule and is captured by the last term of the above expression. That aside,
under majority rule, as α → 1, a B-supporter can only be pivotal when only one
other individual votes, as represented by the first term of expression (16). Finally,
the second term captures the proportional component of the benefit. However, note
that when only another person votes the benefit under proportional rule is identical
to the benefit under majority rule. Hence, we can rewrite (16) as

lim
α→1

BB(ĉA, ĉB) =
1

2
nF (ĉA) [1− F (ĉA)]n−1 (17)

+ (1− λ)
n∑
v=2

(
n

v

)
F (ĉA)v [1− F (ĉA)]n−v

1

v + 1

+
1

2
[1− F (ĉA)]n .

From this we can draw two conclusions. First, note that, just like (15), the above
expression is a function of ĉA alone. Moreover, notice that (17) is strictly greater
than (15) for any λ. Since we know that c∗A < c̄, it follows that when α→ 1 it must
be that c∗B > c∗A for any λ. The continuity of the equilibrium cutoffs guarantees the
existence of a neighborhood of α = 1 such that F (c∗B) > F (c∗A). Second, because
expression (17) is decreasing in λ then c∗B is also decreasing in λ when α → 1.
Since BB(ĉA, ĉB) is continuous in α there exists a neighborhood of α = 1 such that
∂BB(ĉA,ĉB)

∂λ
< 0 and, therefore, such that F (c∗B) is decreasing in λ.

Proof of Proposition 7. Let us prove the first part of the proposition. We start
by comparing turnout at α = 1

2
and α = 1. As we know, when α = 1

2
a strategy

can be described by a single cut-off cost. Let us focus on A-supporters and thus
call the cut-off ĉA. Recall that at α = 1

2
turnout is lowest under proportional rule

qP , in which case the equilibrium threshold c
α= 1

2
,qP

A is given by the solution to the
following equation

1

2
[1− F (ĉA)]n +

1

2

n∑
v=1

(
n

v

)
F (ĉA)v [1− F (ĉA)]n−v

1

v + 1
= ĉA. (18)

When α = 1, everyone support A and the equilibrium cut-off cα=1A is found by solving
the following

1

2
[1− F (ĉA)]n = ĉA, (19)

independently of the voting rule qλ.
First, notice that the left-hand side of (18) is strictly greater than the left-hand

side of (19) for any ĉA > c¯
, while they coincide when ĉA = c

¯
. Further, we know from

expression (9), as worked out in the proof of Lemma 1, that the left-hand side of (18)
is decreasing in ĉA, as it is clearly the case for the left-hand side of (19). Since we

know from Proposition 5 that c
¯
< cα=1A < c̄, it follows that c

α= 1
2
,qP

A > cα=1A and thus

F
(
c
α= 1

2
,qP

A

)
> F (cα=1A ). At α = 1

2
, in equilibrium supporters of alternative B follow
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the same strategy adopted by A-supporters. On the other hand, at α = 1 there are
no supporters of B. Hence turnout at α = 1

2
under qP is higher than turnout at

α = 1 under any voting rule qλ. Since the former is a lower bound, we can conclude
that turnout at α = 1

2
is always higher than turnout at α = 1, independently of the

voting rule. Finally, we know that turnout is a continuous function of α, both in
a neighborhood of α = 1

2
and α = 1. Hence, it must be the case that the lowest

possible turnout in a tight election, i.e., under qP , is higher than the maximum
turnout in a biased election.
Let us now prove the second part of the proposition. We focus on the voting

rule qP , hence we drop the superscript to simplify notation. We want to compare
the individual turnout probability of supporters of alternative B in a neighborhood

of α = 1
2
and α = 1. Call c

α= 1
2

B and cα→1B the equilibrium cut-off for supporters of B
when α = 1

2
and when α→ 1, respectively.

On the one hand, we know by symmetry that c
α= 1

2
B = c

α= 1
2

A and therefore we can
write

c
α= 1

2
B =

1

2

[
1− F

(
c
α= 1

2
A

)]n
+

1

2

n∑
v=1

(
n

v

)
F
(
c
α= 1

2
A

)v [
1− F

(
c
α= 1

2
A

)]n−v 1

v + 1
.

On the other hand, we know from (16) that when α → 1 then B’s equilibrium
cut—off is equal to

cα→1B =
1

2

[
1− F

(
cα=1A

)]n
+

n∑
v=1

(
n

v

)
F
(
cα=1A

)v [
1− F

(
cα=1A

)]n−v 1

v + 1
.

Recall that c
α= 1

2
A > cα=1A and that the left-hand side of (18) is decreasing in ĉA.

Therefore, it follows that

c
α= 1

2
B =

1

2

[
1− F

(
c
α= 1

2
A

)]n
+

1

2

n∑
v=1

(
n

v

)
F
(
c
α= 1

2
A

)v [
1− F

(
c
α= 1

2
A

)]n−v 1

v + 1

<
1

2

[
1− F

(
c
α= 1

2
A

)]n
+

n∑
v=1

(
n

v

)
F
(
c
α= 1

2
A

)v [
1− F

(
c
α= 1

2
A

)]n−v 1

v + 1

<
1

2

[
1− F

(
cα=1A

)]n
+

n∑
v=1

(
n

v

)
F
(
cα=1A

)v [
1− F

(
cα=1A

)]n−v 1

v + 1
= cα→1B .

Because the equilibrium threshold is continuous in α both in a neighborhood of
α = 1

2
and α = 1, it follows that F (c∗B) is higher in a neighborhood of α = 1 than

at α = 1
2
.

25


