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1 Introduction

In many decentralised markets for heterogeneous goods or services, exchange

is aided by intermediaries. Even if trade is feasible and legal without them,

intermediaries exist because they increase the realised gains from trade by

lowering the traders’ search costs and by reducing the extent of mismatch.

Nevertheless, not all traders use intermediaries. Traders who stand to gain

little from exchange may simply find intermediation too expensive, but one

often sees the traders on the two sides of the market who have the highest

surplus between them decide to trade in the direct searchmarket — risking severe

mismatch and/or incurring high search expenditure — despite the availability

of “cheap” intermediation. For example, as the title hints, the most desirable

singles do not advertise in “lonely hearts” newspaper columns, nor do they

join on-line dating services; also, in many instances, the best jobs are not filled

through agencies, the best shops are not in shopping centres, the most exclusive

holidays are not on offer in travel agencies and the best properties do not come

on the open market.1 As further examples, some banks do not allow mortgage

brokers to offer their products, and some insurers advertise the fact that they

are not available on web comparison sites.

Formally, the common feature of the above examples is that the traders’

decisions to enter the intermediated (sub)market are non-monotone in type.2

1But note that very different outcomes can occur in similar markets: for example, on

2 December 2009, the most expensive family residence in London available for sale online

had an asking price of $66 million. The most expensive one in Rome, a market with not

too dissimilar supply and demand, was on offer at $8.7 million, a figure certainly well below

the prices paid for residences at upper end of the Roman market. This dichotomy is neatly

captured by the multiplicity of equilibria in our model.
2Solid empirical evidence linking types and propensity to use intermediaries is hard to

come by. The recent paper by Hitsch et al (2010), briefly discussed in Section 5, hints at some

non-monotonicity. In general, however, survey studies of the intermediated marriage market

(e.g. Goodwin (1990), Bozon and Heran (1989), Kalmijn and Flap (2001) and Rosenfeld and
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While this inefficient outcome is clearly a coordination failure, whether it can be

supported by an equilibrium depends on the specific modelling set-up. In this

article we investigate the features of a model that delivers such non-monotone

entry decisions, and we explore the intuition underlying these equilibria. Given

the prevalence of markets where traders have the choice between intermediated

or direct trade, it is surprising that only a few of the numerous theoretical

articles on intermediated markets allow direct and intermediated trade to co-

exist. Gehrig (1993) is the seminal paper in this area: he posits a one-shot

random matching market, where the maximisation of overall gains from trade

requires matching high valuation buyers with low valuation sellers: efficient

matching is negatively assortative. In his equilibrium, buyers and sellers who

trade are separated by a “threshold”: buyers (sellers) with valuation below

(above) the threshold trade in the direct market, buyers (sellers) with valua-

tion above (below) the threshold trade via the intermediary. Gehrig’s finding

that trade is via the intermediary for the matches with the highest surplus is

confirmed by Fingleton (1997) who models intermediaries as suppliers of liq-

uidity, in the sense that they buy from the sellers before securing a buyer to

sell to. Rather than a flat fee, in Yavaş (1994) the intermediary charges a com-

mission on the gains from trade. A second difference is that Yavaş (1994) is a

search, not a matching model. Both modelling assumptions make intermedia-

tion the less attractive the higher a type is and thus, quite naturally, he finds

a reverse threshold: traders’ participation strategies are monotone in type, but

the keener types search directly and the less keen go to the intermediary.

A crucial feature of markets with optional intermediation is that each trader’s

willingness to employ the intermediary depends on which traders decide to join

Thomas (2010)), the well established literature on users of real estate agents (Zumpano et

al 1996), and the more limited one on job exchanges (Gregg and Wadsworth 1996) contain

very limited information about users’ types. Conversely, comprehensive studies of individual

preferences in marriage markets, such as Choo and Siow (2006), do not have information

about use of intermediation.
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on the other side of the market. In the existing literature, equilibria are “co-

ordination” ones, leading naturally to multiplicity. As mentioned above, all

equilibria are similar in nature, characterised by a single threshold, possibly a

“reversed” one; in particular, traders’ choices are never non-monotone in equi-

librium. This does not tally with the stylised facts motivating our paper. We

show here that to explain these observations, it is necessary to eschew the sim-

plified modelling of negotiation between matched traders used by the previous

literature, which either studied static models (as discussed above) or assumed

a dynamic set-up, but with non-transferable utility (Bloch and Ryder, 2000).

In contrast, our model displays a richer dynamic set-up where, crucially, a

matched trader’s share of the surplus depends on the disagreement, or con-

tinuation, payoffs, and therefore on which equilibrium the market finds itself

in.

We consider a two-sided market where the traders’ types are complements:

higher types benefit more from trade with higher types than lower types do. At

the beginning of the first trading period, each trader chooses whether or not to

pay a fixed fee to “join” the intermediary. If they join, they are matched assor-

tatively with those who have joined from the other side. Traders who stay out

are randomly matched among those who have stayed out on the other side of

the market. Once matched, traders negotiate; crucially, refusing an exchange

does not entail the loss of all benefit from trade because all the agents who

have not traded can re-enter the market later.3 In this dynamic set-up, the

outcome of bargaining is a function of the continuation values of the traders,

which in turn depend on their type. We find equilibria with the following fea-

tures: high quality traders trade in the direct search market, and may suffer a

delay in finding a suitable partner; traders with medium quality use the inter-
3Burani (2008) has a similar, fully dynamic set-up; however, for tractability, she needs to

restrict attention to two types on each side of the market, ruling out non-monotone equilibria

by construction.
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mediary, and so trade immediately with probability 1; low quality traders also

search directly, even when the price of intermediation is per se insufficient to

deter them. The middle quality traders who use the intermediary are therefore

“sandwiched” between the high and low quality ones who do not, and so we

label this a “sandwich equilibrium”.

This seemingly appealing intuition disguises however that for this outcome

to emerge as an equilibrium stringent conditions must hold, suggesting therefore

that sandwich equilibria have more to them than simple coordination. We

show in Proposition 4 that, for a sandwich equilibrium to exist, the traders’

bargaining share must be sufficiently increasing in their own type.4 The logic

of this requirement can be gleaned by considering the decisions of two types: a

high type, H, who does not join the intermediary, and a medium type,M , who

does join. In order for H not to want to deviate from her equilibrium strategy

and join the intermediary instead, the probability of meeting a low type in

the open market must be sufficiently low. Since matching is type-independent,

this is true for every trader. That is, any agent who stays out must have a

relatively high chance of meeting a high type. Given this, why does M not

want to deviate? What stops staying out and perhaps meeting a high type

from becoming an alluring prospect for M? It must be that if M meets H, he

receives a low enough share of the surplus. Given the Nash bargaining protocol,

this in turn is possible if M has a sufficiently lower continuation value than H.

The paper develops this argument in detail. The model is presented in

Section 2, and the results in Section 3. There, in Proposition 3, we show

that sandwich equilibria do indeed exist if the continuation value is increasing

in type and in Proposition 4 that they do not if the continuation value is

the same for all traders. Section 4 discusses the results and reports some

numerical simulations, which indicates that the set of sandwich equilibria is
4In particular, with non-transferable utility, as assumed by Bloch and Ryder (2000),

sandwich equilibria cannot happen.
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“large”. Section 5 concludes, relating the analysis to some empirical evidence.

2 The model

2.1 The traders

We study a two-sided market where the participants meet in pairs and share

the surplus jointly available to them. For specificity we refer to the two sides

as buyers and sellers, but the set-up clearly applies to more general situations,

such as the marriage market. Each trader is characterised by a single attribute:5

a seller by the quality she offers, denoted by q, and a buyer by the value he

places on quality, v. We assume that the (empirical) distribution of attributes

on both sides of the market is common knowledge among the traders.6

The attributes of matched traders are complements: a high value buyer

appreciates a given increase in quality more than a low value buyer. Note that

this means that the most efficient matching is the perfectly assortative one (see

Becker, 1973). For definiteness, we assume that the joint gross surplus available

to the matched pair of a seller of quality q and a buyer of value v is given by

2vq.

Within a matched pair of traders, utility is transferable and the outcome

of negotiation is given by the Nash Bargaining Solution. That is, each trader

obtains the sum of (i) the payoff he/she would obtain if trade did not happen —

the disagreement payoff —, and (ii) one half of the net surplus from trade. The
5In practice traders are differentiated along several, imperfectly correlated dimensions. A

model capturing this could generate sandwich equilibria even if behaviour were monotone

along each dimension. By compressing the differences among traders along one dimension

we “stack the deck” against sandwich equilibria, giving more robustness to our analysis.
6The role of this assumption, which simplifies the analysis, is to ensure that in equilibrium

the traders can predict with certainty whether or not they will be matched with a given group

of traders on the other side of the market.
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latter is given by the difference between the gross surplus and the sum of the

parties’ disagreement payoffs. If it is negative, no trade takes place.

The nature of the disagreement payoff, that is whether it is fixed or type

dependent, affects the equilibrium set greatly. In a static set-up, there is no

future and so the status quo payoff is fixed at 0. As we show below, in this

case it is impossible to capture the empirical regularities mentioned in the

introduction. In order to endogenise the disagreement payoff, we build a simple

dynamic model.

Time is divided in periods. At the beginning of the first period, traders on

both sides of the market simultaneously choose whether they wish to participate

in the direct market or to employ the intermediary. Their choices create two

submarkets: the intermediated and the direct market. The direct market is

anonymous: each trader on the same side has identical expectations about

whether she will find a match an in case yes, who with. Joint rationality of

these expectations implies that, in equilibrium, the likelihood of meeting a

given type must be proportional to the empirical type distribution. We assume

that the matching technology is efficient: all the traders on the short side get

matched to someone on the long side. If the matched traders trade, they leave

the market. If they do not trade, they stay in the market, and will be matched

again in the second period. All unmatched traders continue in the market as

well. There is no entry of new traders. The continuation payoff of the traders

who return to the market after the first period satisfies the following condition.

Assumption 1 The present value of trading in the future equals a proportion

λ ∈ (0, 1) of the utility a trader would receive if in the second period he/she
were perfectly assortatively matched among the remaining traders and shared

the gross surplus equally.

Assumption 1 can be relaxed, its important feature is that a trader’s con-

tinuation payoff increases sufficiently with his/her type, which we show to be
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crucial to establish the existence of sandwich equilibria. Notice that the contin-

uation payoff depends on the other traders’ period 1 choices: a trader’s chances

tomorrow depend on who is not trading today, and will therefore be still around

tomorrow.

λ is a measure of the cost of delaying trade. For example, if, in the second

period, all traders who have not traded in the first period were indeed matched

assortatively, say by a free intermediary, then λ would simply be the discount

factor.7 Alternatively, Assumption 1 holds if traders use hyperbolic discount-

ing, whereby the discounted present value of a reward W in period t > 0 is

given by λγtW , with γ ∼= 1. This means that traders believe that they will

become infinitely patient from the next period onwards, and therefore believe

that they will be willing to wait indefinitely for the perfect match, leading to

the efficient assortative matching.8

2.2 The intermediary

The simplest form of intermediation is one where the intermediary selects as

“members”, through price or other means, only a subset of traders from both

sides of the market (see, for example, Damiano and Li, 2007), and subsequently

matches its members randomly. This merely ensures that members meet with

members only, but already reduces mismatch. In practice, intermediaries, from
7Given assortative matching in the second period, no unmatched traders are left in the

market beyond it, and so it is irrelevant whether or not the game continues after period 2.
8Note that our set-up satisfies the sufficient conditions proposed by Shimer and Smith

(2000) for assortative matching in a dynamic search equilibrium. Damiano et al. (2005) imply

that such a dynamic matching model would unravel and lead to pooling instead of assortative

matching. However, their result depends crucially on the assumption of a per period fixed

cost of participation. With discounting only, as in our model, assortative matching is the

limit for infinitely patient players. Lu and McAfee (1996) use simulations to establish this

in a closely related model without intermediation.
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tour operators through online dating services to wholesalers of grain and tea,9

make very good use of their understanding of their members’ characteristics to

improve the efficiency of matches, by arranging the traders into fine clusters

and restricting matches to within each cluster. This practice approximates

assortative matching, and, for the sake of simplicity, we take it to the extreme

and assume that the intermediary has access to a costless, perfectly assortative

matching technology.10 Thus the intermediary will match the highest members

from each side of the markets, the two second highest ones, and so on. The low

ranked members on the long side will remain unmatched, and try their luck in

the second period. For ease of exposition, we work with a continuum of traders.

Taking it literally, this would imply that if in equilibrium the same measure of

traders joined the intermediary on the two sides of the market then a deviating

trader who was not supposed to join in equilibrium would still get matched if he

joined, as the measure of traders joining would still be equal on the two sides.

This would be unsatisfactory, as a repeated use of the assumption would lead

to a paradox, in a similar fashion to the generation of thick indifference curves.

Our preferred way to solve this problem is to view the case of the continuum

as the limit case of a model with a finite number of traders. In a finite set-up,

if in equilibrium the same number of traders joined then a deviating one (with

a low valuation) would be the lowest on the long side and hence would not

be matched. To retain the logic of the finite set-up in the continuum case,

we assume that, when the same measure of traders on the two sides join the

intermediary, an additional trader with type lower than all those who have

joined the intermediary on his side of the market would remain unmatched.
9See for example, Clerides et al. (2008), Hitsch et al (2010) Gabre-Mahdin (2001) and

Koo and Lo (2004), respectively. Biglaiser (1993) gives a theoretical treatment.
10In related contexts it has been shown that the loss of efficiency from a “coarse” relative

to a “fine” clustering is very low and, consequently, perfect assortative matching is not a

particularly strong assumption: see McAfee (2002) and Hoppe et al. (2008).
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Joining the intermediary11 entails paying an exogenously given fee c > 0,

which is the same for all traders.12

We end this Section with a summary of the extensive from of the game.

1. At the beginning of Period 1 all traders observe the distribution of at-

tributes in the market and then simultaneously decide whether to join

the intermediary and pay the joining fee c > 0, or to trade in the direct
market.

2. Matching takes place in the two separate submarkets. Matching in the

direct market is random, with the intermediary is assortative. If the

joiners are of equal measure, then a deviating trader with a valuation

below the minimum for joining in equilibrium will remain unmatched.

Matched traders observe each other’s type and, if and only if their joint

surplus is non-negative, they trade according to the Nash Bargaining

Solution. Buyers and sellers who trade leave the game.

3. In Period 2 the remaining traders are matched assortatively and once

they have observed each other’s type they trade according to the Nash

Bargaining Solution (with zero status quo payoffs). Seen from Period 1,

the payoffs from agreements in Period 2 are discounted by λ.

11As will become apparent, our model is equivalent to a situation where the intermediary’s

fee is paid only by the traders who are matched.
12Notice how our model could be reinterpreted as a special case of two-sided markets,

where traders are restricted to trade via “platforms”. One platform is direct trade, the other

is the intermediary. The former has lower efficiency and an exogenously given zero fee. To

our knowledge, such a set-up has not been analysed in this literature. The most closely

related papers are Armstrong (2006), Caillaud and Jullien (2003), Damiano and Li (2007,

2008) and Rochet and Tirole (2003).
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3 Equilibrium analysis

3.1 A simple finite market

We begin with a simple example. While our interest is in the study of large

anonymous markets, and so the more natural set-up is with a continuum of

traders, considering first a finite market highlights the intuition underlying our

results and assumptions. Suppose therefore that we have n buyers and n sellers,

with the sets of types, {v1, ..., vn} and {q1, ..., qn}, where vi 6 vi+1, and qi 6 qi+1
i = 1, ..., n − 1. Consider the following strategy vector: traders {v1, vn} and
{q1, qn} stay in the market and all other traders join the intermediary. For
suitable parameter values, this is an equilibrium. We show this with several

simplifying assumptions, and the reader should bear in mind that the restric-

tions they imply are sufficient, but not necessary for the existence of sandwich

equilibria.

In order for the above strategy profile to be an equilibrium, no type can

have an incentive to deviate: Consider the highest type, vn, first. Suppose that

λ >
2q1vn

qnvn + q1v1
. (1)

If (1) holds, type vn will not trade if matched with the lowest type q1.13 It

follows that vn’s expected payoff if he stays in the market is 1+λ
2
vnqn: if he is

not matched with type qn initially, he will in period 2, since qn (who is matched

to v1) by the mirror image of (1) will also refuse to trade. If type vn deviates

and joins the intermediary, he will be matched to type qn−1. To calculate his

payoff, we need to work out his reservation payoffs in this match, and to do so

we need to consider what happens in the event of a break-down in their (vn

and qn−1) negotiations. Given the deviation, there is one buyer (type v1) and

two sellers (qn and q1) in the open market in period 1. This implies that:
13When vn and q1 are matched, their respective reservation utilities are λqnvn and λq1v1,

and so the surplus is 2q1vn−λqnvn−λq1v1. Trade does not occur if this surplus is negative,

which gives the condition on λ.
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• with probability 1
2
, v1 and q1 are matched and trade, and in period 2 there

is only buyer qn and seller v2 (who cannot find a match through the inter-

mediary). Therefore, in the event of a break-down in the negotiation for

the pair hvn, qn−1i, the period 2 market would be {{vn, v2} , {qn, qn−1}}.

• with probability 1
2
v1 is matched to qn, and they do not trade but return

to the market in period 2, and q1 is unmatched. So in the event of a

break-down in the negotiation for the pair hvn, qn−1i, the period 2 market
would be {{vn, v2, v1} , {qn, qn−1, q1}}.

In either of these cases, in period 2 vn will be matched to qn, and his period

1 partner, qn−1, will be matched to v2. To sum up, vn’s deviation payoff is

λvnqn +
¡
1
2
(2vnqn−1 − λvnqn − λqn−1v2)

¢
− c, if the surplus from trade, the

term in the brackets, is non negative, which is the case if

λ 6 2vnqn−1
vnqn + qn−1v2

(2)

If we assume the above to hold, then the difference between the equilibrium

and the deviation payoff for type vn is:

λqn−1v2
2

+ vn

µ
1

2
qn − qn−1

¶
+ c (3)

Next consider a type who uses the intermediary in equilibrium, call him vi.

His equilibrium payoff is viqi−c. Suppose he contemplates a deviation. He will
find himself in a market where there are three types on his side, {v1, vi, vn},
and two types on the other side {q1, qn}. In the next period, q2 will be there,
plus the unmatched v type, and whoever has failed to trade. So we have three

possible outcomes, each with probability 1
3
.

• vi is unmatched. In the following period, either the market is {{vi} , {q2}},
because period 1matching was assortative, or it is {{vn, vi, v1} , {qn, q2, q1}},
if q1 was matched to vn. In both cases, vi will be matched to q2 in period

2, so his deviation payoff in this case is λviq2.
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• vi is matched to type q1. Either v1 is unmatched, and qn and vn trade with
each other, so the next period market, in the case of a break-down in the

{vi, q1} negotiation is {{vi, v1} , {q2, q1}}, or vn is unmatched, and qn and
v1 do not trade, so the next period market is {{vn, vi, v1} , {qn, q2, q1}}.
In both cases, vi is matched in the second period to q2, and so the reser-

vation payoff for the traders is λviq2 for vi and λv1q1 for q1. So the devi-

ation payoff for trader vi is λviq2 +max
©
1
2
(2viq1 − λviq2 − λv1q1) , 0

ª
=

1
2
(2viq1 + λviq2 − λv1q1), if

λ < 2
viq1

viq2 + v1q1
, i = 2, . . . , n− 1. (4)

• vi is matched to type qn. Again there are two cases, the unmatched
buyer can be either v1 or vn. If v1 is unmatched, qn and vn trade with

each other, and the remaining match hq1, vni does not lead to trade, so the
next period market, in the case of a break-down in the hvi, qni negotiation
is {{vn, vi, v1} , {qn, q2, q1}}. If instead vn is unmatched, then the post
break-down market is {{vn, vi} , {qn, q2}}. Again, in both these cases vi
will be matched to q2, so her period 2 payoff is 12 (2viqn + λviq2 − λvnqn).

Putting the above three observations together the difference between equi-

librium and deviation payoff of player vi is

2vi (3qi − q1 − qn)− λ (4viq2 − v1q1 − vnqn)
6

− c (5)

Finally, the lowest type buyer, v1, would certainly be unmatched if he joined

the intermediary, so deviating only (possibly) delays his trade with q1, in expec-

tation lowering his payoff. If (1), (2) and (4) (and their mirror images for the

other side of the market) hold, and both (3) and (5) (and their mirror counter-

parts) are non-negative, then this combination of strategies is an equilibrium.

As an example,14 this happens if λ = 0.8, c = 0.014, and the two sides of the
14The calculations are available at sites.google.com/site/giannidefraja/.
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market have types {0.98, 0.6, ..., 0.48, 0.32} and {0.97, 0.55, ..., 0.45, 0.28} and
any combination of types for the traders ranked 3, ..., n−2: they join the inter-
mediary and all trade with their match, since (4) holds for every i = 2, . . . , n−1.
It is relatively straightforward, though it becomes notationally complex very

rapidly, to add traders at the top and at the bottom of the type distribution,

who do not join the intermediary, and so to obtain equilibria where more than

four traders use the direct market.

Though simple, the example illustrates an important feature of sandwich

equilibria: the continuation payoffs, following deviations, of type vn and of

type vn−1 are radically different. The reason is that type vn, if instead of

following the equilibrium strategy, deviates and joins the intermediary to be

matched with qn−1 will have a very strong hand in the negotiation, because,

in the next period, qn−1 would be matched to the lowest type among those

who have joined the intermediary, v2: and so, when matched to qn−1, vn will

have the lion’s share of their joint surplus. If however vn−1 were to deviate and

join the market, he would, by the same argument, have a very weak hand in

a negotiation with the top type, qn (which of course happens with probability

less than 1, as there is also trader q1 in the market). So there is a discontinuity,

determined by the difference in the bargaining strength, which in turn depends

on the dynamic nature of game, between the payoffs of the lower type in the

top group of traders in the market, who will be matched with a trader in the

same group, and the top trader in the intermediary, who will be matched to

the least desirable trader among those who join the intermediary in period 1.

3.2 A continuum of traders

We now consider the general case, where there are a continuum of risk neutral

traders — of equal measure — on each side of the market. The buyers’ values

and the sellers’ qualities are distributed according to strictly positive density

functions fB (v) and fS (q) in [0, 1]. We have seen in the previous section
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that the distribution of attributes need not be symmetric for the existence

of a sandwich equilibrium. Nonetheless, for simplicity we assume henceforth

that fB (t) = fS (t) for every t ∈ [0, 1]. Therefore, we can refer to a generic
trader’s type as t ∈ [0, 1], with values distributed according to the strictly
positive function f (t). We also define F (t) =

R t
0
f (x) dx, which we normalise

by F (1) = 1.15 We begin by calculating the payoffs in the case where the

joining decisions mirror each other on the two sides of the market. Let A be

the set of types that do not join the intermediary, and let µ (A) denote the

measure of this set.

Proposition 1 If the set of types that join the intermediary is the same on

both sides, then the payoff of a trader of type t ∈ [0, 1] is

t2 − c, (6)

if he/she joins the intermediary, and

λt2 +

R
A
max

©
tq − λ

2
(q2 + t2) , 0

ª
f (q) dq

µ (A)
, (7)

if he/she does not join.

Proof. (6) is obvious: since the intermediary matches the members assortatively,

and since the n-th ranked type that joins the intermediary is the same on both sides

of the market, type t is matched with type t and they trade immediately. By doing so,

they obtain payoff t2−c, because, since they have the same outside option, they share

the gross surplus equally, from which the joining fee is subtracted. Consider next (7),

the payoff for not joining the intermediary. This is simply the weighted average payoff

of all possible matches. The probability of a match with type q is f(q)
µ(A) . The payoff to

type t following a match with type q is max
©
tq − λ

2

¡
q2 + t2

¢
, 0
ª
. To show this, note

15Note that the type distributions are deterministic, while in the direct market the traders

(rational) belief is that the relative likelihood that they are matched to type p rather than

type q is given by p
q . This set-up avoids possible complications that might arise with defining

a random matching process with a continuum of traders (see, for example, Alos-Ferrer,1999).
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that in equilibrium, the continuation payoff of a type t trader is λt2. This is the case

because, in period 2, the type distribution is the same on the two sides of the market:

in the first period symmetry holds by assumption and, by the law of large numbers,

the distribution of “leavers” is also the same on both sides. Therefore, trade between

t and q occurs in the first period if and only if they obtain a non-negative surplus

from trading, that is if 2tq − λ
¡
q2 + t2

¢
> 0, and (7) follows.

Based on the proof of Proposition 1, Corollary 1 identifies which matches

lead to trade.

Corollary 1 If the set of types that join the intermediary is the same on both

sides, a type v trader trades with a type q trader in the first period if and only

if q ∈
h
1−
√
1−λ2
λ

v, 1+
√
1−λ2
λ

v
i
.

Figure 1 illustrates this: trade occurs only if the matched traders’ type

vector is in the grey area. Notice that, since λ → 1 implies 1−
√
1−λ2
λ

→ 1,

as λ increases, the grey area shrinks to the diagonal: if traders are infinitely

patient, they are unwilling to “trade down” and matching must be assortative.

Vice versa, if λ → 0, we have 1−
√
1−λ2
λ

→ 0, and the grey area tends to the

whole square [0, 1]2: if waiting becomes infinitely costly then any match leads

to trade as the gross surplus is non-negative.

As mentioned in the introduction, the equilibria derived in the existing

literature stratify the types into two groups. Definition 1 captures this idea.

Definition 1 A t-threshold equilibrium is a SPE with the property that all

traders with type greater than or equal to t join the intermediary.

As one would expect, our model exhibits a rich multiplicity of threshold

equilibria, as the following proposition shows. Let r = 1−
√
1−λ2
λ

and σ (λ) =

λ+
R 1
r

¡
q − λ

2
(q2 + 1)

¢
f(q)dq. Note that σ (λ) ∈ [0, 1], with σ (1) = 1.

Proposition 2 For every joining fee c ∈ [0, 1− σ (λ)), there exists x(c) ∈
[0, 1) such that a t-threshold equilibrium exists for every t ∈ [x(c), 1].
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Figure 1: The set of matched pairs who agree to trade.

Proof. Fix a putative t-threshold equilibrium. By Proposition 1, types v > t ex-
pect a payoff of v2−c in equilibrium, whereas deviating implies an expected payoff of
λv2+

R t
0 max{vq−λ

2 (q
2+v2),0}f(q)dq

F (t) which, by Corollary 1, equals λv2+
R t
vr(vq−

λ
2 (q

2+v2))f(q)dq
F (t) .

Let D (t, v) be the difference between the equilibrium and deviation payoffs for type

v > t. We start with establishing that D(t, v) is increasing in v, so that it is sufficient
to check incentive compatibility for the threshold type, v = t.

∂D(t, v)

∂v
= 2v (1− λ)−

Z t

vr

(q − λv) f(q)

F (t)
dq +

r
¡
v2r − λ

2 (r
2v2 + v2)

¢
f(vr)

F (t)

≥ 2t (1− λ)−
Z t

vr

(t− λt) f(q)

F (t)
dq = t (1− λ)

µ
1 +

F (vr)

F (t)

¶
≥ 0.

Here the first inequality follows from the fact that v ≥ t ≥ q and that the last term

is 0, as the lower bound of the integral is by definition the value of q for which the

integrand is 0.

Next, observe that D(1, 1) = 1 − c − σ (λ). As the integrand in σ (λ) is strictly

increasing, we obtain a strict upper bound on σ (λ) by setting q = 1 in the integrand:

σ (λ) < λ + (1− λ) (1 − F (r)) < 1. Hence, 1 − σ (λ) > 0, so for c ∈ [0, 1 − σ (λ)),

D(1, 1) > 0.

Then, by the continuity of the function D (t, t) in t, for any c ∈ [0, 1−σ (λ)) there

exists a type x(c) < 1, such that for all v > x(c), we have D(v, v) > 0.
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Finally, consider types v < t. Their equilibrium payoff is at least λv2, while

their deviation payoff is λv2 − c, since, given that they are the lowest type on the

long side of the intermediated sub-market, they would remain unmatched with the

intermediary. Hence deviation is not profitable.

When intermediation is free, a more precise characterisation is possible:

x(0) = 0.

Corollary 2 When c = 0 there is a threshold equilibrium for every t ∈ [0, 1].

Proof. Take any t > 0. We show that there exists a t-threshold equilibrium,
which establishes the result. Consider first types below t: in the second period they

are assortatively matched, and so their period 1 reservation payoff is the same in

equilibrium and following a deviation. However, they trade with zero probability

in period 1 if they deviate (the intermediary will not match them), and with non-

zero probability in equilibrium. Therefore, it is preferable for them to follow their

putative equilibrium strategy and stay out. Consider now a type v > t. If she follows
the equilibrium strategy, she is matched by the intermediary to type v, trades, and

obtains a payoff of v2. If she deviates, she is matched to type q < t, which gives her

a payoff of λv2 if she does not trade and λv2 + vq − λ
2

¡
v2 + q2

¢
if she trades. Since

the last expression is strictly increasing in q for q < v and equals v2 when q = v),

it is no more than v2 for q 6 v, and so type v does not gain by deviating from her

putative equilibrium strategy. This shows that no-one has an incentive to deviate

and so there is a t-threshold equilibrium.

Hence, for any λ ∈ [0, 1], there exists a 0-threshold equilibrium if and only

if c = 0. In words, with no intermediation fee, and only with no intermediation

fee, it is an equilibrium for all traders to join, which is the efficient outcome,

given our assumption that the intermediary can sort costlessly.

Threshold equilibria are identified in the existing literature, and have a

natural explanation: the top traders join a club, which, although open to all
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who are willing to pay the fee, has little use for those whose valuation and

quality is below the threshold, as they will be cold-shouldered by the members.

This is a straightforward “coordination” explanation, each trader wants to do

whatever his or her “natural” partner does, highlighted sharply in the extreme

case of free intermediation, when any type t ∈ [0, 1] can be the threshold in a
t-threshold. As we see below, a coordination explanation is not sufficient for

the emergence of sandwich equilibria.

But this natural equilibrium configuration is not the only possible one in

our dynamic setting. We show next that there are equilibria where only traders

with intermediate types join the intermediary, while “top” and “bottom” type

traders search directly.

Definition 2 A
©
t, t
ª
-sandwich equilibrium with 0 ≤ t < t < 1 is a SPE,

where in period 1 a trader joins the intermediary if and only if he/she has type

t ∈
£
t, t
¤
. If 0 < t, the sandwich equilibrium is non-degenerate.

The following lemma, which we need in the proof of our main result, is of

independent interest.

Lemma 1 In a
©
t, t
ª
-sandwich equilibrium, the deviation payoff of a type t

trader is given by:

λt2 − c for t ∈ [0, t) , (8)

λtt+

R
[0,t)∪(t,1] max

©
tq − λ

2
(q2 + tt) , 0

ª
f (q) dq

1− F
¡
t
¢
+ F (t)

for t ∈
£
t, t
¤
, (9)

λt2 +max

½
tt− λ

2

³
t2 + t

2
´
, 0

¾
− c for t ∈

¡
t, 1
¤
. (10)

Proof. If a low type (t ∈ [0, t)) deviates and joins the intermediary, she pays

the joining fee c, does not trade, and is assortatively matched in the next period.

Her payoff is therefore λt2 − c.

Consider a middle type next: t ∈
£
t, t
¤
. Her deviation payoff is determined by the

Nash bargaining solution and it is a function of her continuation value, which is λtt.
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To see this, note that, following a deviation, a seller of type q is either matched to a

high type (with probability
1−F(t)

1−F(t)+F (t)
) or matched to a low type (with probability

F (t)

1−F(t)+F (t)
). In both cases, all the top buyers who reach period 2 will be matched

with a seller of type equal to their own, and therefore, a deviating type q seller will

be matched to the highest type who is left in the market after all the top buyers are

assortatively matched, which is t.

Finally, consider a high type buyer, v ∈
¡
t, 1
¤
. If he decides to join the interme-

diary, he will participate in an assortative matching, where he is the highest type.

Consequently, he will be matched with the highest type seller who joins the inter-

mediary in equilibrium, q = t. This gives his deviation payoff (10), and establishes

Lemma 1.

The proof hinges on the comparison between equilibrium and deviation

payoffs. Of the latter, (8) and (10) in Lemma 1 are relatively straightforward,

(9) less so. To evaluate it, it is necessary to determine whether a type t ∈£
t, t
¤
, who should join the intermediary in equilibrium, would trade in the first

period, if he/she deviated instead and were matched in the direct market. To

proceed, compact notation by writing
¡
tq − λ

2
(q2 + tt)

¢
f (q) as h (q, t, t), and

1−
√
1−λ2(t/t)
λ

as R (t/t), and write (9) as:R t
tR(t/t)

h (q, t, t) dq

1− F
¡
t
¢
+ F (t)

+ λtt for t ∈
³
t, λt

2

2t−λt

´
, (11)R t

tR(t/t)
h (q, t, t) dq

1− F
¡
t
¢
+ F (t)

+

R t
R(t/t)

t
h (q, t, t) dq

1− F
¡
t
¢
+ F (t)

+ λtt for t ∈
h

λt
2

2t−λt ,
λ

2−λt

i
, (12)R t

tR(t/t)
h (q, t, t) dq

1− F
¡
t
¢
+ F (t)

+

R 1
t
h (q, t, t) dq

1− F
¡
t
¢
+ F (t)

+ λtt for t ∈
³

λ
2−λt , t

i
. (13)

Figure ?? illustrates this. The coloured subset in the diagram depicts the

combinations of types (v, q) such that if a type v ∈
£
t, t
¤
deviates and is matched

to type q ∈ [0, t) ∪
¡
t, 1
¤
, then trade occurs. These points are those above and

to the right of the locus determined by the two curves q =
v−
√
v2−λ2vt
λ

and
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. This locus intersects the line t at v = λt
2−λ ; it also intersects the

diagonal at v = λt
2−λ . It reaches its leftmost point (a minimum on the vertical

axis) at point (v = λ2t, q = λt), and it has a horizontal asymptote at q = λ
2
t.

Finally, it intersect the line q = 1 at v = λ
2−λt , and the line

v
λ

¡
1−
√
1− λ2

¢
at

v = t.

A further noteworthy feature illustrated in Lemma 1 is the dependence of

traders’ continuation payoff on the first period actions of the other traders.

For example, a trader of type t ∈
£
t, t
¤
contemplating a deviation has a no

trade payoff given by λtt, since we have assumed the second period matching

to be perfectly assortative. This captures the idea that an “intermediate”

type trader needs to take into account the fact that tomorrow, he will likely be

“mismatched”, given that his natural partner — the types similar to his — will be

rare, as they have traded today through the intermediary. This likely mismatch

will be understood and exploited by his period 1 match, and so deviating from

the equilibrium strategy reduces a trader’s current bargaining power.

We are now ready to present our main result.

Proposition 3 If the density of the distribution of attributes f(t) is Lipschitz
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continuous at 0, then for any λ > 1
2
, there exists c∗ > 0 such that, for every

c ∈ [0, c∗], there exists a non-degenerate
©
t, t
ª
-sandwich equilibrium.

Proof. We begin by considering the special case of a degenerate sandwich

equilibrium, t = 0, and no entry fee, c = 0. Our argument will be based on the

concept of
©
t, t
ª
-almost strict sandwich equilibrium,

©
t, t
ª
-ASSE for short. This is

a
©
t, t
ª
-sandwich equilibrium where all traders, with the exception of trader t = 0,

strictly prefer to follow their equilibrium strategy rather than deviate; trader t = 0

is indifferent. We first show that there are
©
0, t
ª
-ASSE’s. Next we establish the

existence of a
©
ε, t
ª
-ASSE: it is possible to increase the lower bound of the set of

“joiners” slightly above 0, to some ε > 0, and maintain the property that all traders,

including traders in (0, ε], strictly prefer to follow their equilibrium strategy rather

than to deviate. This establishes the proposition for the special case c = 0. Since all

traders who join the intermediary strictly prefer to do so, it is possible to choose a

positive c such that this continues to be the case, establishing the Proposition.

To begin, therefore, we first want to show that, for some t ∈ (0, 1), when t = 0 and
c = 0, the types in

¡
0, t
¢
(the “degenerate” middle) prefer to join the intermediary

and the types above t prefer not to. Formally:

t2 >

R
(t,1] max

©
tq − λ

2 q
2, 0
ª
f (q) dq

1− F
¡
t
¢ for t ∈

¡
0, t
¤
, (14)R

(t,1] max
©
tq − λ

2

¡
q2 + t2

¢
, 0
ª
f (q) dq

1− F
¡
t
¢ > max

½
tt− λ

2

³
t2 + t

2
´
, 0

¾
for t ∈

£
t, 1
¤
.

(15)

To ensure almost strictness, we require that both (14) and (15) be satisfied at t. Take

constraint (15), and evaluate it for the marginal type, t = t. We need to show thatR
(t,1] max

n
tq − λ

2

³
q2 + t

2
´
, 0
o
f (q) dq

1− F
¡
t
¢ > (1− λ) t

2.

This is implied by R
(t,1]

¡
tq − λ

2 q
2
¢
f (q) dq

1− F
¡
t
¢ >

µ
1− λ

2

¶
t
2. (16)
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Note that the LHS in (16) is the average value of the function g (q) = tq − λ
2 q
2 in

the interval [t, 1], while the RHS is g(t). g(q) is a negative quadratic and hence it

reaches its minimum on [t, 1] either at t or at 1. Consequently, a sufficient condition

for the strict inequality to hold is that g(t) = t
2 ¡
1− λ

2

¢
≤ t − λ

2 = g(1). This is

equivalent to t ∈
h

λ
2−λ , 1

i
, which is non-empty for all λ ∈ (0, 1). Next, we show that

if the inequality is satisfied for the marginal type, t = t, it is also satisfied for all

types t > t . Note first that whenever tq − λ
2

¡
q2 + t2

¢
> tt− λ

2

³
t2 + t

2
´
for every t,

it is also true that q ∈ [t, 1], and therefore (15) is implied byR
(t,1]

¡
tq − λ

2

¡
q2 + t2

¢¢
f (q) dq

1− F
¡
t
¢ − tt+ λ

2

³
t2 + t

2
´
> 0 for t ∈

£
t, 1
¤
.

Differentiate the LHS of the above with respect to t:R
(t,1] (q − λt) f(q)dq

1− F (t) −
¡
t− λt

¢
.

Note that the first term is the average of h(q) = q − λt in the interval [t, 1], while

the second is h(t). As h(q) is increasing in q, the above is positive and so (15) holds

for t ∈
h

λ
2−λ , 1

i
.

Next consider (14), which requires that types in
£
0, t
¤
prefer to join the interme-

diary rather than deviate. (14) can be written as expressions (11)-(13), which, for

t = 0, reduce to (note that limt→0R (t/t) = 2
λt):

t2 > 0 for t ∈
³
0, λt2

´
,

t2 >

R t
2λ

t

¡
tq − λ

2 q
2
¢
f (q) dq

1− F
¡
t
¢ for t ∈

h
λt
2 ,

λ
2

i
,

t2 >

R 1
t

¡
tq − λ

2 q
2
¢
f (q) dq

1− F
¡
t
¢ for t ∈

¡
λ
2 , t
¤
.

The first line is clearly true. Consider the second. Since 2
λt < 1, the RHS does not

exceed the average of k(q) = tq − λ
2 q
2 in the set

h
t, 2tλ

i
. k(q) is a negative quadratic

with its global maximum at q = t
λ , which is to the left of

2t
λ . Therefore its maximum

in
h
t, 2tλ

i
is either at q = t or at q = t

λ . Hence, a sufficient condition for the second

line to hold with slack (given that k(q) is not constant) is t2 ≥ max
n
k(t), k

³
t
λ

´o
=
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max
n
tt− λ

2 t
2
, t

2

2λ

o
. When t ≤ t the LHS of the quadratic inequality t2−tt+ λ

2 t
2 ≥ 0

has no real roots for λ ≥ 1
2 . Therefore for λ ≥

1
2 the condition in the second line is

always satisfied.

Finally, the third line. We have the same situation as with the second line, except

that now the maximum of k(q) might be reached at q = 1, as t
λ may be greater than

one. Hence, we have the additional condition: t2 ≥ t− λ
2 , which again is guaranteed

for λ ≥ 1
2 .

We have thus shown that when λ ≥ 1
2 and c = 0, there exists a

©
0, t
ª
-ASSE for

any t ≥ λ
2−λ ≥

1
3 . The next Lemma ensures that this continues to be the case if

the lower bound of the middle group, those who join the intermediary, is increased

slightly.

Lemma 2 Let c = 0, and let t be such that there exists a
©
0, t
ª
-ASSE. Then there

exists ε > 0 such that there exists an
©
ε, t
ª
-ASSE.

Proof. Take a
©
0, t
ª
-ASSE and a t > 0. All types t ∈ (0, t) will still strictly

prefer not to deviate, as by symmetry and the fact that they would be on the longer

side of the sub-market, they will not be matched if they join the intermediary. Types

in
¡
t, 1
¤
, will become more inclined to deviate as they now might be matched with a

trader from the bottom slice. However, as we have started from a
©
0, t
ª
-ASSE, by

the continuity of payoffs in t (due to the Lipschitz continuity of f), we can take a

small enough t > 0 that keeps the top types from deviating. Thus, to establish the

lemma we only need to show that for some t > 0, types t ∈
£
t, t
¤
strictly prefer not

to deviate. Since we had a
©
0, t
ª
-ASSE, (12) and (13) are still satisfied for t > 0

sufficiently small, so we only need to check that (11) holds. Rewriting it in full:

t2 −

R t
t
1−
√

1−λ2 tt
λ

¡
tq − λ

2

¡
q2 + tt

¢¢
f (q) dq

1− F
¡
t
¢
+ F (t)

− λtt > 0 for t ∈
³
t, λt

2

2t−λt

´
. (17)

We first evaluate (17) at t = t, which is the lower end of the range, obtaining,

(1− λ)t2 − 1

P (t)

Z t

tr

µ
tq − λ

2

¡
t2 + q2

¢¶
f(q)dq > 0, (18)

23



since t > 0. Recall that r = 1−
√
1−λ2
λ , and let P (t) = 1 − F

¡
t
¢
+ F (t). Next

differentiate the LHS of (18) with respect to t:

2 (1− λ) t+
f (t)

P (t)2

Z t

tr

µ
tq − λ

2

¡
t2 + q2

¢¶
f (q) dq+

1

P (t)

½
(1− λ) t2f (t)− r

µ
r − λ

2

¡
1 + r2

¢¶
t2f (rt) +

Z t

tr
(q − λt) f (q) dq

¾
.

Note that r − λ
2

¡
1 + r2

¢
= 0, and so the above is

2 (1− λ) t+
f (t)

P (t)2

Z t

tr

µ
tq − λ

2

¡
t2 + q2

¢¶
f (q) dq+

1

P (t)

½
(1− λ) t2f (t) +

Z t

tr
(q − λt) f (q) dq

¾
,

which is 0 at t = 0. Had this been positive the proof would be complete. Instead,

we need to check the second derivative:

2 (1− λ) +
d f(t)

P (t)2

dt

Z t

tr

µ
tq − λ

2

¡
t2 + q2

¢¶
f (q) dq+

2f (t)

P (t)2

½
(1− λ) t2f (t) +

Z t

tr
(q − λt) f (q) dq

¾
−

1

P (t)

½
2 (1− λ) tf (t) + (1− λ) t2f 0 (t) + t (1− λ) f (t)− r (tr − λt) f (tr)−

Z t

tr
λf (q) dq

¾
.

Evaluating the above at t = 0:

2 (1− λ) +
d f(t)

P (t)2

dt

Z t

tr

µ
tq − λ

2

¡
t2 + q2

¢¶
f (q) dq − (1− λ) t2f 0 (t)

P (t)
.

or

2 (1− λ) +
f 0 (t)

P (t)

½
1

P (t)

Z t

tr

µ
tq − λ

2

¡
t2 + q2

¢¶
f (q) dq − (1− λ) t2

¾
.

The requirement that f be Lipschitz continuous at 0 implies that f 0 (0) is finite, and

therefore the above is 2 (1− λ) > 0 at t = 0. Hence, the LHS of (18) is convex, which

establishes the Lemma.

The Lemma implies that, whenever both
©
0, t
ª
and

©
ε, t
ª
are ASSEs, in the latter

equilibrium all the joining players strictly prefer to join the intermediary, as their

equilibrium payoff is the same but their deviation payoff is lower. Consequently,
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there is a sufficiently small cε > 0 such that
©
ε, t
ª
is an ASSE when the joining fee

is cε or less. This establishes the Proposition.

This existence result holds regardless of the distribution of types, f ,16 and

is therefore very general. However it clearly does not characterise fully the

set of sandwich equilibria: as intuition suggests, and the technique of the proof

confirms, there is a rich multiplicity of sandwich equilibria:17 specifically, the set

of sandwich equilibria has, generically, full dimensionality in the set of possible

values of t and t,
©
t, t ∈ [0, 1] |t < t

ª
.18 Intuitively, sandwich equilibria exist

if a number of incentive constraints are satisfied, and the proof of Proposition

3 shows that it is possible to select
©
t, t
ª
such that all these constraints are

slack at the
©
t, t
ª
-sandwich equilibrium. This implies that the set of sandwich

equilibria contains
©
t, t
ª
-sandwich equilibria which have the property that there

exists ε such that for every {v, v} satisfying |t− v|+
¯̄
t− v

¯̄
< ε there is also a

{v, v}-sandwich equilibrium. This can be interpreted as giving our equilibrium
16The requirement that f be Lipschitz continuous at 0 is a sufficient condition, which

is used to prove existence, but is not necessary: sandwich equilibria exist even when the

condition is violated.
17The defining feature of a sandwich equilibrium is that the “top” and the “bottom”

traders do not join the intermediary: this feature is in contrast to the “threshold” equilibria

identified by the literature, where the highest types join the intermediary. There might also

exist more complex equilibria, for example, sandwiches with three slices: the unit segment

is divided in five intervals, such that type in the first, third and fifth stay out and those in

the second and fourth interval join the intermediary: in this case the middle interval has a

“hole”, that is there are types in
£
t, t
¤
who do not join the intermediary. This is analogous

to Bloch and Ryder’s (2000) finding that there might be threshold equilibria where there

are “holes” in the distribution of joiners (Theorem 3.5, p 107). This can only happen if the

intermediary charges a proportional commission, not, as here, a flat fee. We also conjecture

that there exist asymmetric sandwich equilibria, where the intervals of joiners are different

on the two sides of the market, though their measure is the same.
18In Section 4.5, we use computer simulations to provide a full characterisation of the set

of sandwich equilibria, for specific values of the two parameters and restricting attention to

the uniform distribution.
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set a degree of robustness to the introduction of small errors in the matching

technology available to the intermediary. Suppose, for example, that matching

through the intermediary is perfectly assortative with probability (1− ε), and

random with probability ε, with ε > 0 and “small”. This would reduce slightly

the benefit of joining the intermediary, given in (6), (8) and (10), and therefore

make a deviation slightly less attractive for types in
¡
t, 1
¤
, and slightly more

attractive for types in [0, t). Conversely, it would make following the equilibrium

strategy slightly more (less) attractive for types below (above) the average of

the types in
£
t, t
¤
. Except at the boundary of the set of sandwich equilibria,

a sufficiently small ε would not prevent a pair
©
t, t
ª
from being a sandwich

equilibrium.

The “robust” nature of sandwich equilibria may suggest that they are some-

what easy to obtain. This, however, is definitely not the case: existence of

sandwich equilibria is subject to quite stringent conditions. These conditions

illustrate the crucial role played by the continuation value, which must be such

that higher types have a better outside option, and therefore also provide the

intuitive reason for the emergence of sandwich equilibria. The following propo-

sition establishes this formally.19

Proposition 4 If the continuation value is constant across types, then there

are no sandwich equilibria.

Proof. Let the discounted value of the common option be denoted by ` > 0, the

same for all traders. We prove the Proposition by contradiction. Suppose therefore

that there does exist a sandwich equilibrium. Let x be the supremum of types who

join the intermediary at this equilibrium. Then, for any y > x, the following two
19Damiano and Li (2007, p. 260) conjecture that type dependent reservation utilities

would not alter the “threshold” structure of the equilibria. Our paper can therefore be seen

as limiting the applicability of this conjecture.
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inequalities must hold:

x2 − c ≥ xE [v|xv ≥ `] Pr (xv ≥ `) + `Pr (xv < `) , (19)

yE [v|yv ≥ `] Pr (yv ≥ `) + `Pr (yv < `) ≥ yx− c. (20)

The probabilities and expectations on the RHS of (19) and on the LHS of (20) are

taken relative to the distribution of types who do not join in equilibrium. The LHS

of both (19) and (20) is the equilibrium payoff: (19) requires that type x, who joins

the intermediary and receives payoff x2 − c, is better-off than at her outside option,

otherwise she would not join. If she does not join, trade takes place if 2yv − 2` ≥ 0,

splitting the gross surplus equally; otherwise she collects her outside option, `. The

RHS in (19) and (20) is the deviation payoff: if the type who joins were to deviate,

she would be randomly matched with a non-joiner and would save the fee. Vice

versa, if a type who should not join in equilibrium decided to join instead, she would

pay the fee and be assortatively matched with a trader on the other side, whose type

will be arbitrarily close to x, the supremum of the joiners. As y > x, either trade

occurs, giving y the payoff in the inequality or it is y who refuses to trade to obtain

an even higher payoff.

Rearranging inequalities (19) and (20), we have

x2 − xE [v|xv ≥ `] Pr (xv ≥ `)− `Pr (xv < `) ≥ c (21)

≥ yx− yE [v|yv ≥ `] Pr (yv ≥ `)− `Pr (yv < `) .

Next, note that

xE [v|xv ≥ `] Pr (xv ≥ `) + `Pr (xv < `) ≥ xE [v|yv ≥ `] Pr (yv ≥ `) + `Pr (yv < `) .

This holds because the LHS is type x’s optimal deviation payoff, while the RHS

assumes that (following a deviation) sometimes x trades even if it gives her less than

her outside option.

Hence a necessary condition for (21) to hold is that

x2 − xE [v|xv ≥ `] Pr (yv ≥ `)− `Pr (yv < `) ≥ c

≥ yx− yE [v|yv ≥ `] Pr (yv ≥ `)− `Pr (yv < `) ,
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or

(x− y) (x−E [v|yv ≥ `] Pr (yv ≥ `)) ≥ 0. (22)

Note that, by (21), x − E [v|xv ≥ `] Pr (xv ≥ `) ≥ `Pr(xv<`)+c
x > 0. Thus if we can

show that there exists y > x such thatE [v|yv ≥ `] Pr (yv ≥ `)−E [v|xv ≥ `] Pr (xv ≥ `) <
`Pr(xv<`)+c

x , then x − E [v|yv ≥ `] Pr (yv ≥ `) > 0 and hence (22) implies a contra-

diction. Such a y indeed exists because — by construction — all types between x and

y do not join the intermediary; since the type distribution contains no mass points,

E [v|yv ≥ `] Pr (yv ≥ `) is continuous in y, soE [v|yv ≥ `] Pr (yv ≥ `)−E [v|xv ≥ `] Pr (xv ≥ `)

converges continuously to 0 as y tends to x.

The logic underlying this result is that a uniform outside option has no effect

on the outcome of bargaining; the gross surplus is divided equally between the

parties. This is exactly the same as if utility were non-transferable: our paper

therefore shows that transferability of utility is necessary for sandwich equilibria

to exist. Intuitively, the fifty-fifty arrangement implied by uniform continuation

value or non-transferable utility makes meeting high types very attractive, and

thus puts an upper bound on the relative probability of meeting a high type if

not joining the intermediary. On the other hand, this very fifty-fifty split also

makes meeting low types not very attractive, because they will have a good

deal of bargaining power. To keep high types from joining the intermediary the

relative probability of meeting a low type if not joining the intermediary must

be low. With uniform continuation values, these two requirements cannot be

simultaneously met. To alter the constraints so as to make them compatible

with each other, the bargaining outcome needs to favour the higher types.

Having a continuation value which is increasing in the type does just that.

4 Discussion

4.1. We have assumed perfect information: upon meeting, the traders can

observe each other’s type. Imperfect observability would generate asymmetry
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of information and give rise to a potential for signalling. The decision whether

or not to join the intermediary conveys some information, and thus it affects

a trader’s payoff not just because it affects the range of potential partners,

but also because it affects the partner’s beliefs about one’s type. Analysis of

a model which incorporates both asymmetric information and the possibility

of joining an intermediary is likely to be beyond tractability. Interestingly,

in a pure signalling set-up, Feltovich et al. (2002) show that there can be

equilibria with non-monotone signalling strategies, known in the literature as

counter-signalling. In these equilibria, only middle types send the costly signal,

while low types and high types pool by not sending it.20 The analogy with the

outcome of our model suggests that, in situations where there is a binary choice

(join the intermediary or send the signal), non-monotonicity of the equilibrium

strategies in type is a common outcome (Renou, 2010, is another example).

4.2. Some of the existing literature (e.g. Yavaş, 1994, Bloch and Ryder, 2000)

considers a fee proportional to the benefit from trade, as is the case when the in-

termediary charges a commission. Charging a commission has of course a much

higher information requirement than a flat fee, and in fact in many markets

(online dating, mortgage brokering and shopping centres are examples) the fee

charged is flat. A second reason why we have chosen to model the case of a flat

fee is that it makes our result stronger, as a proportional commission makes the

existence of sandwich equilibria easier : with a flat fee, when middle types join,

it is certainly the case that the high types will not forgo intermediation due

to its cost, which may happen with a proportional commission. Finally, note
20As an example, suppose there are three types, H > M > L, and the signal is binary.

Suppose that H types are much more likely to be associated with one signal while L types

with the other, while M types are associated with either with equal probability. In such a

situation, H is sufficiently confident that she will be told apart from L and hence she is more

interested in distinguishing herself from M. AsM is signalling to distinguish himself from L,

the way for H to be different is by not signalling.
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that the existence of non-degenerate sandwich equilibria is not due to the flat

fee excluding the lower quality segment from intermediation, since our result

holds for zero fee.

4.3. We assume that the intermediary does not choose the fee strategically

(unlike, among others, Damiano and Li, 2007). The main purpose of this pa-

per is to show the possibility that sandwich equilibria might exist. The fee

could simply reflect the cost, as it would be the case with a welfare maximising

intermediary (or with sufficiently intense competition among intermediaries).

On the other hand, in the presence of multiple equilibria it is not straightfor-

ward how to identify the best strategy for a profit maximising intermediary. As

the example in 4.5 shows, sandwich equilibria exist only for small fees, while

threshold equilibria exist for higher fees too. Imagine, for example, that the

intermediary would like to raise the price in order to move from a sandwich

equilibrium to a more profitable threshold equilibrium. It is unlikely that the

top players, who do not join, would at some price high enough decide instead

to do so.

4.4. A further assumption we made is that the intermediary has access to a

perfect matching technology, whereas trading in the direct market gives rise to

perfectly random matching. In practice, of course, both are approximations.

Relaxing them has in general an ambiguous effect on the attractiveness of using

the intermediary. On the one hand, real world trading in the direct market is

far from random: for example, high quality singles who do not join a lonely

heart agency but choose to search by patronising nightclubs are much more

likely to meet a high quality potential partner, since the choice of nightclubs

or similar venues is clearly not random: dress codes, bouncers, high prices

for drinks are all imperfect substitutes for membership fees. This reduces the

opportunity cost of not joining, reducing further the non-joiners’ incentive to

join. Moreover, if the intermediary has access to a technology less perfect

30



than what we have assumed here, then again joining it clearly becomes less

attractive. A countervailing tendency is the fact that, while we have assumed

that matching occurs with probability 1 both through the intermediary and in

the direct market, in practice the frequency of matches would be lower in the

direct market.

An important insight of our analysis is that a technological advantage by

the intermediary is a necessary condition for the existence of sandwich equi-

libria. To see this, suppose that matching through the intermediary is in fact

random. In this case, for c = 0, there is a unique sandwich equilibrium:21 this

is given by the condition that the average type is the same in the direct and the

intermediated markets. But now consider a strictly positive fee, c > 0. Because

of supermodularity, different types would be indifferent at different differences

in averages, so only threshold equilibria can exist.

4.5. A natural question of interest is the shape and size of the set of sandwich

equilibria. This matters because, if it turned out in practice that any sandwich

equilibrium is arbitrarily close to a threshold equilibrium, which is a degenerate

{t, 1}-sandwich equilibrium, then our analysis would not be able to explain the
observed regularity which motivate it, that “a lot” of top traders do not use

intermediation. While characterising in general the set of sandwich equilibria

is hard, a simple example suffices to address this question. In Figure ??,22 we

illustrate the entire set of sandwich equilibria in the special case of a uniform

density function for v and q, that is when f (t) ≡ 1. The two diagrams depict
the lower portion of [0, 1]2 (note that the diagonal is not a 45 degree line, as

the axes are drawn in different scales). The highlighted regions are the sets
21Provided we maintain the assumption of assortative matching in the second period.
22The appendix (available on request or at sites.google.com/site/giannidefraja/) provides

details of how the pictures have been obtained. In essence, it was a “brute force” process:

given t and t we checked that no trader in [0, 1] had an incentive to deviate, and repeated the

procedure on a fine grid, checking for every possible pair of points
¡
t, t
¢
below the diagonal.
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of sandwich equilibria for two values each of c and λ. In both diagrams, the

shaded (respectively outlined) area represents combinations of points
¡
t, t
¢
such

that a
©
t, t
ª
-sandwich equilibrium exists when c = 0 (respectively c = .0005).

For c = 0 and λ > 1/2, the set of sandwich equilibria is drawn on the RHS

of Figure 3: the lower contour of the set is the set of points on the horizontal

axis between a critical value of t and 1; the upper contour of the sandwich

equilibrium set is a locus strictly above 0 for t < 1, which tends to 0 as t

tends to 1. When c is positive, clearly there cannot be equilibria where the

lowest types join the intermediary: they simply cannot afford the fee. Note

the “multiplier” effect of the fee: the types just below the lowest type who

join are not deterred from joining by the fee, which is but a tiny fraction of

their valuation. The relatively high lower bound is needed in equilibrium as,

if there were too few low types joining, then the highest types who should

join the intermediary would prefer to deviate as they would be likely to be

matched with types from the upper end of the distribution. The multiplier

effect implies that highest value of c such that sandwich equilibria exist is“very

low”, the intermediation fee must be small, compared to the average or median

valuation.

In the diagram threshold equilibria are represented by points on the vertical

segment joining (1, 0) and (1, 1). By Proposition 2, all points on a vertical

segment with its lower end at (1, 0) are threshold equlibria, and, for c = 0, by

Corollary 2 the set of threshold equilibria is the entire segment joining (1, 0)

and (1, 1). Note therefore that, for c = 0, the equilibrium set (the union of

the set of sandwich and of threshold equilibria) is connected for high λ and

disconnected for low λ. Numerical simulations suggest that, for the uniform

density case we considered the cut-off value of λ is 1
2
. As Proposition 3 gives

sufficient conditions, it is not surprising that there exist sandwich equilibria

for λ < 1/2 as well. Note that, as shown in Figure 3, in the low λ case, t

can be very low, and even for λ high there are sandwich equilibria where no
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trader above the median uses the intermediary. For c = 0 sandwich equilibria,

unlike threshold equilibria, are “rare”, suggesting that a simple “coordination

equilibrium” story is not all is needed to explain their emergence.

5 Concluding remarks

This paper contributes to our understanding of markets where intermediaries

are active but traders may also choose to trade unassisted.

Stylised facts indicate that trader behaviour may be non-monotone. For ex-

ample, consider the role of education in the marriage market: the widespread

evidence of assortative education matching (for example, Blossfeld and Timm,

2003) indicates that education is a supermodular characteristic: more educated

individuals value it more. With this in mind, consider the diagram in Figure

4. It is an illustration derived from the dataset constructed by Hitsch et al

(2010). They study the link between mate preference and match formation,

and report data on the education level of internet users at large and a rep-

resentative sample of the members of a major online dating service provider

in San Diego and Boston. In the picture, we choose convenient thresholds in

their ranking to determine three groups. The figure plots the percentage of

internet users belonging to each group who have joined the dating service. The

diagram suggests a non-monotonic relation between “type” and the propensity

to join the intermediary: those with intermediate education levels are consid-

erably more likely to use the online provider than types with higher or lower

education.23

In this paper we have rigorously established that this non-monotone be-
23The diagram is only suggestive, as clearly only a small fraction of the internet users are

looking for a partner in the period considered. It seems plausible that the likelihood of being

looking for a partner is roughly independent of education. In this case, if we conditioned the

joining probabilities on actually being looking for a partner, the height of each bar would

increase roughly proportionally, and their relative size would not change.
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haviour, where the traders who have the most to gain from using the superior

matching mechanism provided by the intermediary choose not to use it, may

indeed form part of an equilibrium. The existence of such “sandwich” equilib-

ria, however, is subject to the strong condition that the traders’ continuation

value is sufficiently increasing in their type. Consequently the intertemporal

characteristics of each market determine whether or not sandwich equilibria can

exist: high type traders have most to gain from trade now, this must continue

to be the case if they choose to delay trade.

34



References
Alos-Ferrer, C.. “Dynamical Systems with a Continuum of Randomly Matched

Agents.” Journal of Economic Theory, Vol. 86(2) (1999), pp. 245—267.

Armstrong, M. “Competition in two-sided markets.” RAND Journal of Eco-

nomics, Vol. 37 (2006), pp. 668-691.

Becker, G.S. “A theory of marriage: Part I.” Journal of Political Economy,

Vol. 81 (1973), pp. 813-846.

Biglaiser, G. “Middlemen as experts.” RAND Journal of Economics, Vol. 24

(1993), pp. 212—223.

Bloch, F. and Ryder, H. “Two-sided search, marriages amd matchmakers.”

International Economic Review, Vol. 41 (2000), pp. 93-115.

Blossfeld, H-P. and Timm, A. Who Marries Whom?: Educational Systems

as Marriage Markets in Modern Societies. Springer, Berlin, (2003).

Bozon, M. and Heran, F. “Finding a spouse: A survey of how French couples

meet.” Population, Vol. 44 (1989), pp. 91—212.

Burani, N. “Matching, search and intermediation with two-sided heterogene-

ity.”Review of Economic Design, Vol. 12 (2008), pp. 75-117.

Caillaud, B. and Jullien, B. “Chicken & Egg: Competition among Inter-

mediation service providers.” RAND Journal of Economics, Vol. 34 (2003), pp.

309-328.

Choo, E. and Siow, A. “Who marries whom and why.” Journal of Political

Economy, Vol. 114 (2006), pp. 175-201.

Clerides, S., Nearchou, P. and Pashardes, P. “Intermediaries as quality

assessors: Tour operators in the travel industry.” International Journal of Industrial

Organization, Vol. 26 (2008), pp. 372-392.

Damiano, E. and Li, H. “Price discrimination and efficient matching.” Eco-

nomic Theory, Vol. 30 (2007), pp. 243-263.

Damiano, E. and Li, H. “Competing matchmaking.” Journal of the European

Economic Association, Vol. 6 (2008), pp. 789-818.

35



Damiano, E., Li, H. and Suen, W. “Unravelling in dynamic sorting.” Review

of Economic Studies, Vol. 72 (2005), pp. 1057-1076.

Feltovich, N., Harbaugh, R. and To, T. “Too cool for school? Signalling

and countersignalling.” RAND Journal of Economics, Vol. 33 (2002), pp. 630-649.

Fingleton, J. “Competition among middlemen when buyers and sellers can

trade directly.” Journal of Industrial Economics, Vol. 45 (1997), pp. 405-427.

Gabre-Madhin, E.Z. “The role of intermediaries in enhancing market efficiency

in the Ethiopian grain market.” Agricultural Economics, Vol. 25 (2001), pp. 311-

320.

Gehrig, T. “Intermediation in search markets.” Journal of Economics and Man-

agement Strategy, Vol. 2 (1993), pp. 97-120.

Goodwin, R. “Dating agency members: Are they ‘different’?” Journal of Social

and Personal Relationships, Vol. 7 (1990), pp. 423—430.

Gregg, P. and Wadsworth J. “How effective are state employment agencies?

Jobcentre Use and Job Matching in Bretain.” Oxford Bulletin of Economics and

Statistics, Vol. 58 (1996), pp. 443—467.

Hendershott, T. and Zhang, J. “A Model of direct and intermediated sales.”

Journal of Economics and Management Strategy, Vol. 15 (2006), pp. 279-316.

Hitsch, G.J., Hortacsu, A. and Ariely, D. “Matching and sorting in online

dating.”American Economic Review, Vol. 100 (2010), pp. 130-163.

Hoppe, H.C., Moldovanu, B. and Ozdenoren, E. “Coarse matching and

price discrimination.” CEPR Discussion Paper #6041, May, 2008.

Kalmijn, M. Flap, H. “Assortative meeting and mating: Unintended conse-

quences of organized settings for partner choices.” Social Forces, Vol. 79 (2001), pp.

1289—1312.

Koo, H-W. and Lo, P-Y. “Sorting: The function of tea middlemen in Tai-

wan during the Japanese colonial era.” Journal of Institutional and Theoretical Eco-

nomics, Vol. 160 (2004), pp. 607-626.

Lu, X. and McAfee, R.P. “Matching and expectations in a market with het-

36



erogeneous agents.” Advances in Applied Microeconomics, Vol. 6 (1996), pp. 121-

156.

McAfee, R.P. “Coarse matching.” Econometrica, Vol. 70 (2002), pp. 2025-

2034.

Renou, L. “Group formation and governance.” Journal of Public Economic

Theory, Vol. 13 (2011), pp. 595-630.

Rochet, J-C. and Tirole, J. “Platform competition in two-sided markets.”

Journal of the European Economic Association, Vol. 1 (2003), pp. 990-1029.

Shimer, R. and Smith, L. “Assortative matching and search.” Econometrica,

Vol. 68 (2000), pp. 343-369.

Smith, L. “The marriage model with search frictions.” Journal of Political Econ-

omy, Vol. 114 (2006), pp. 1124-1144.
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